\

Yesl materials MBPI|
e w 7
Article

Towards an Optimized Artificial Neural Network for Predicting
Flow Stress of In718 Alloys at High Temperatures

Chunbo Zhang !, Qingyu Shi 2, Yihe Wang 3, Junnan Qiao 2, Tianxiang Tang 2, Jun Zhou !, Wu Liang !

and Gaogiang Chen *

check for
updates

Citation: Zhang, C.; Shi, Q.; Wang, Y.;
Qiao, J.; Tang, T.; Zhou, J.; Liang, W.;
Chen, G. Towards an Optimized
Artificial Neural Network for
Predicting Flow Stress of In718
Alloys at High Temperatures.
Materials 2023, 16, 2663. https://
doi.org/10.3390/mal6072663

Academic Editor: Adam Grajcar

Received: 18 February 2023
Revised: 21 March 2023
Accepted: 23 March 2023
Published: 27 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Harbin Welding Institute Limited Company, Harbin 150028, China

Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Smart Manufacturing Thrust, Systems Hub, Hong Kong University of Science and Technology (Guangzhou),
Guangzhou 511466, China; ywang686@connect.hkust-gz.edu.cn

*  Correspondence: chengl@tsinghua.edu.cn

Abstract: Artificial neural networks (ANNSs) have been an important approach for predicting the
value of flow stress, which is dependent on temperature, strain, and strain rate. However, there is
still a lack of sufficient knowledge regarding what structure of ANN should be used for predicting
metal flow stress. In this paper, we train an ANN for predicting flow stress of In718 alloys at high
temperatures using our experimental data, and the structure of the ANN is optimized by comparing
the performance of four ANNSs in predicting the flow stress of In718 alloy. It is found that, as the
size of the ANN increases, the ability of the ANN to retrieve the flow stress results from a training
dataset is significantly enhanced; however, the ability to predict the flow stress results absent from
the training does not monotonically increase with the size of the ANN. It is concluded that the ANN
with one hidden layer and four nodes possesses optimized performance for predicting the flow stress
of In718 alloys in this study. The reason why there exists an optimized ANN size is discussed. When
the ANN size is less than the optimized size, the prediction, especially the strain dependency, falls
into underfitting and fails to predict the curve. When the ANN size is less than the optimized size,
the predicted flow stress curves with the temperature, strain, and strain rate will contain non-physical
fluctuations, thus reducing their prediction accuracy of extrapolation. For metals similar to the
In718 alloy, ANNs with very few nodes in the hidden layer are preferred rather than the large ANNs
with tens or hundreds of nodes in the hidden layers.

Keywords: artificial neural network; nickel alloys; accuracy; flow stress

1. Introduction

In718 alloy is a precipitation-strengthened nickel alloy that possesses excellent proper-
ties, such as mechanical strength, strong oxidation resistance, and high corrosion resistance
at temperatures up to 650 °C [1-3]. In718 alloy has been widely used in applications in
which mechanical performance at high temperatures is important [2,4]. Certain manu-
facturing processes at high temperatures [5-13] of In718 alloy are generally involved to
maintain its mechanical properties and the geometric part. In previous studies [14,15],
finite element simulation was employed to predict and visualize the in-process thermal
and mechanical variables during these manufacturing processes. With this information, the
optimization of processing parameters could be expedited with more confidence, as both
the thermal and mechanical variables are relevant to shape the final microstructure and thus
the properties. An accurate model for predicting the flow stress at high temperatures is of
critical importance to calculating the heat generation induced by material deformation and
mechanical strain distribution. In this paper, we optimize an artificial neural network for
quantitatively predicting the flow stress of In718 alloys at high temperatures for application
in numerical simulations of manufacturing processes.
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Quantitative models, such as the Sellars—Tegart model [16,17] and the Johnson-Cook
model [18], have been proposed for predicting the flow stress of In718 alloy, which is
dependent on temperature, strain, and strain rate. These models have been extensively
employed in simulation models for manufacturing processes in which high processing
temperatures are involved. For example, based on the hot compression experimental
data of In718 superalloy, Jin et al. [19,20] established a constitutive equation based on
the Sellars-Tegart model to predict the flow stress of In718 at high temperatures in their
simulation of the forging processes. Wang et al. [21] also used the Sellars-Tegart model to
predict the characterization of residual stresses and grain structures after hot forging of
In718 alloy. Yang et al. [22] constructed a finite element model of the linear friction welding
of In718 alloy using the Johnson—Cook material model and investigated the shearing and
extrusion deformation types. The simulated results were validated through experiments.
To provide in-depth understanding of the thermal-mechanical coupling behavior during
linear friction welding, Geng et al. [23] developed a three-dimensional thermal mechanical
model that included the strain-compensated Sellars-Tegart model for In718 based on the
hot compression experimental data. Nan et al. [24] focused on constructing an accurate
finite element model-based maximum entropy production principle to simulate the thermal-
mechanical coupling process using DEFORM software, in which the Sellars—Tegart model
of In718 superalloy was employed, and the simulation results were in good agreement with
the experimental measurements.

In recent years, quantitative models based on artificial neural networks (ANNs) have
been an important approach for determining high-temperature flow stress of metals and
alloys with improved accuracy. Senthilkumar et al. [25] proved that ANNs have higher
accuracy in predicting flow stress than the Sellars-Tegart model and the Johnson—Cook
model. Sabokpa et al. [26] applied an ANN to predict the flow behavior of AZ81 magnesium
alloy under high temperatures. To optimize the accuracy of ANNs, some researchers have
adopted updated ANN algorithms called BP-ANN [27,28]. Huang et al. [29] further
developed the GA-BP-ANN method, which also applied genetic algorithms (GAs), and
precisely predicted the hot deformation of 40Mn steel. Wan et al. [30] introduced a particle
swarm optimization (PSO) algorithm and developed a PSO-BP-ANN model to study the
behavior of Zr-4 alloy with hot deformation.

Nevertheless, the accuracy of the models is highly dependent on the size and struc-
ture of the ANN. Moon et al. [31] investigated the prediction accuracy of an ANN with
different sizes, and they also revealed that the hidden layer size and node number have
independent influences on the accuracy. Sani et al. [32] predicted the constitutive equation
of magnesium (Mg—-Al-Ca) alloy by an ANN with one hidden layer and seven neurons
per layer. Haghdadi et al. [33] established an ANN model to estimate the high temperature
flow behavior of A356 aluminum alloy. The results indicated that an ANN with one hidden
layer and 20 neurons per layer yielded the best trade-off between error and cost. However,
there is still a lack of sufficient knowledge about what structure of ANN should be used for
predicting metal flow stress.

In this paper, we train an ANN for predicting the flow stress of In718 alloys at high
temperatures using our experimental data, and the structure of the ANN is optimized by
comparing the performance of four ANNs in predicting the flow stress of In718 alloys at
high temperatures. First, the experimental data, including the stress-strain value of In718
superalloy at high temperatures, are measured. Second, the measured data are used to
train an ANN for the prediction of the stress-strain behavior. Third, the performance of
ANN s with different hidden layers and numbers of neurons per layer is compared. Finally,
an optimized ANN-based model for the prediction of high-temperature flow stress of In718
alloy is determined.
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2. Materials and Methods
2.1. Hot Compression Tests

In this study, we used an In718 rod to test the flow stress. The chemical composition
(wt. %) of In718 is given in Table 1. Before the tests, cylindrical specimens with a diameter
of 8 mm and a height of 12 mm were prepared, and a K-type thermocouple was connected
to the surface of the specimen for monitoring and controlling the temperature. In addition,
uniaxial hot compression tests were performed using a Gleeble-3500 system at temperatures
ranging from 900 °C to 1150 °C with an interval of 50 °C, and the experimental strain rates
were 0.01/s,0.1/s, 1/s, and 10/s, respectively. During hot compression, all specimens were
heated to the target deformation temperature with a heating rate of 10 °C/s. Thereafter, the
temperature was held at the targeted deformation temperature for 120 s to obtain a uniform
microstructure [34]. Then, the specimens were compressed to a true strain of 0.6. In the
compression tests, the friction between the end surfaces of the specimen and the anvils
retarded the material flow, leading to a barrel-shaped specimen and consequent flow stress
with a large measurement error. Therefore, graphite foils with a thickness of 0.05 mm were
used as lubricants between the specimens and anvils to minimize the influence of friction
during the hot compression tests. The detailed process is illustrated in Figure 1. After the
hot compression tests, the specimen was quickly cooled to room temperature by water
quenching. Consequently, the compressed specimens attained a near-net cylindrical shape
with negligible bulging. As such, the calculation of the true stress-strain curve was based
on assumption of uniform deformation. In the hot compression tests, loading force—stroke
data were automatically recorded and were subsequently converted to stress—strain data
according to the following equations:

)

e ’”(LLO> @)

where Ly and Ry are the original length and radius of the specimen, respectively; F is the
loading force; and L is the instantaneous height of the specimen during compression.

Table 1. Chemical Composition of In718 (Mass Fraction, %).

Element C Cr Si Cu Mn Mo P Ni S Pb
Mass Fraction, % 0.027 17.89 0.062 0.05 0.13 2.92 0.0084 53.14 <0.001  <0.0005
Element Ag Ti Al Nb Ta B Bi Co Ca @)
Mass Fraction, %  <0.0005 1.01 0.51 5.42 0.003 0.038 <0.00003 0.28 <0.005  <0.0003
Element Mg Tl Te As Se Sn N Fe
Mass Fraction, %  <0.003  <0.0001 <0.00005 <0.0025 <0.0003  0.0012 0.006 Bal

2.2. Preparation for the Training Data

As described above, the temperatures in the experimental dataset were 900 °C, 950 °C,
1000 °C, 1050 °C, 1100 °C and 1150 °C, and the strain rates in the experimental dataset
were 0.01/s,0.1/s,1.0/s, and 10.0/s per second. Under experimental loading, the strain
varied from 0 to 0.6 with an interval of 0.05. As a result, there were in total 288 data points
collected as training data. In each data point, the flow stress was collected as a result of
the corresponding loading condition. This experimental dataset was applied in the ANN
model to predict the flow stress. The performance of the ANN for predicting the flow stress
of In718 alloy was evaluated in two aspects. One aspect is the ability to reproduce the
flow stress at the datapoints included in the training data. The other aspect is the ability
to reproduce the flow stress at datapoints other than the training data. Regarding the
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two aspects, the experimental data were divided into two datasets: the training dataset
and the validating dataset. The training dataset and validating dataset are distinguished
for regression and prediction purposes, respectively. Notably, the validating dataset does
not engage in the training process. We randomly chose two sets of data from specific
temperatures and strain rates. The training dataset included all the experimental data
except the data at 950 °C/0.1/s and 1100 °C/1.0/s, and the validating dataset included the
data at 950 °C/0.1/s and 1100 °C/1.0/s. The training dataset was noted as ‘datasetl’, and
the validating dataset was noted as ‘dataset2’ for clarity of presentation. For the training
process, we applied the ‘adam’ algorithm to perform the training. In future work, back
propagation [35] methods could also be applied to increase the accuracy of training.

r
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Figure 1. Schematic of thermomechanical history in the hot compression tests.

2.3. ANN Model for Predicting Flow Stress

An ANN model was employed in this work for flow stress prediction. We illustrate
the structure of the employed ANN model in Figure 2. It consisted of an input layer,
hidden layers, and an output layer. In this model, the input layer consisted of three nodes,
corresponding to three variables: temperature, strain rate, and strain. In terms of the output
layer, it only consisted of one node, which is the value of flow stress. In the hidden layers,
we applied to each hidden layer the same number of neurons, represented as N. The total
number of hidden layers is represented as L. The structure of ANN is noted by N x L. In
this work, we aimed to clarify the influence of ANN structure on accuracy. The ANNs with
structures of 1 x 2,1 x 4,2 x 10, and 4 x 15 are taken as four typical cases in the analysis in
this work.

Number 7/ hidden layers

X Number of nodes per layer

Temperature

Strain Flow Stress

Strain Rate

Figure 2. Illustration of the ANN for predicting the flow stress.

For an ANN process, normalization of training data is generally used to ensure the
efficiency and validity of training. According to the value range obtained from experiments,
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the input and output variables are normalized. The normalized temperature T, is defined by

T — 800
=40 ®
where T is the temperature in °C. The normalized strain rate ¢, is defined by,
. logy(¢)+3
by = 810(8) 4)

5

where ¢ is the strain rate in 1/s. The normalized strain is taken as the true value of the
measured strain, which is given by
e, =¢ @)

where ¢ is the measured strain. The normalized flow stress is given by,

ors
7= 500 ©)
where 0g is the measured flow stress in MPa.

In this work, we used the scikit-learn tool [36] for training algorithms. The solver
parameters are established to expedite the training process. “Adam’ solver was applied to
improve the training result. We used a mode of constant learning rate of the solver, and the
learning rate was set with a value of 0.001. The maximum iteration was set to be 1x10%,
and the tolerance was set to be 1 x 10711, The standard error is supposed to decrease
at each iteration, while the training effect is weakened at each iteration. Thus, when the
error reaches or values less than the tolerance, the training procedure will stop, and the
solver will record the optimized ANN. If the error cannot provide a value greater than the
tolerance, the solver will stop at the maximum iterations to save training time.

3. Results and Discussion
3.1. Measured and Predicted Flow Stress

Figure 3 shows the experimental measured stress-strain curves of the In718 alloy
under the testing conditions. The measured strain-stress curves at 900 °C, 950 °C, 1000 °C,
1050 °C, 1100 °C and 1150 °C are plotted in Figure 3a—f, respectively. Each of the figures
depicts the stress-strain curves at four strain rates at the corresponding temperatures. The
relationship among flow stress and strain, strain rate, and temperature could be analyzed
based on these measured curves. It could be found that the flow stress during the hot
compression process in each condition changed in a similar pattern. When the sample was
loaded from a zero-stress state, the stress first increased with the strain in a linear pattern
in the elastic stage. Then, metal material yielded, and the plastic deformation began. In
the plastic deformation state, the recorded stress value stabilized. As the material was
loaded in a uniaxial state, the recorded compression stress equaled the required stress
for deformation, i.e., the flow stress of the material. In this paper, we take the measured
compression stress value in the plastic deformation state as the flow stress of the In718 alloy.
It can be noted that the flow stress is related to the strain, strain rate, and temperature. The
relationship between the flow stress of these thermomechanical variables is essential for
modeling metal processing processes. In this paper, we used the measured flow stress data
to train an ANN for predicting the flow stress of In718 alloy as a function of strain, strain
rate, and temperature to develop a predictive model for the rotary friction welding process.

As described in Section 2.2, 264 data points in the training dataset (datasetl) were
used for training the ANN, while 24 data points in validating dataset (dataset2) were used
for validation. The result is visualized by the scattered plots in Figure 4. The measured
flow stresses are plotted versus the predicted flow stress using an ANN with one layer and
two neurons per layer for the training data ‘datasetl” in Figure 4a and for the validating
data ‘dataset2’ in Figure 4b. The measured flow stresses are plotted versus the predicted
flow stress using an ANN with one layer and four neurons per layer for the training data
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‘dataset1’ in Figure 4c and for the validating data ‘dataset2’” in Figure 4d. The measured
flow stresses are plotted versus the predicted flow stress using an ANN with two layer
and 10 neurons per layer for the training data ‘datasetl” in Figure 4e and for the validating
data ‘dataset2’ in Figure 4f. The measured flow stresses are plotted versus the predicted
flow stress using an ANN with four layers and 15 neurons per layer for the training data
‘datasetl” in Figure 4g and for the validating data ‘dataset2’ in Figure 4h.
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Figure 3. Experimentally measured stress-strain curves of In718 alloys at different temperatures and
strain rates. The curves are grouped according to the testing temperature. The measured stress-strain
are plotted in different colors for 0.01, 0.1, 1.0, and 10.0 in each figure. (a—f) are the experimental
measured stress-strain curves at 900 °C, 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C.

The discrepancy between the experimental data and the predicted data is quantified
using the root mean square error (RMSE) value, which is defined as

2
Zfi‘a {Upredicted(o - O‘GXP(Z)}
Ny

RMSE = @)

where Ny represents the number of data points in the corresponding dataset; ap,gdictgd(i)
and 0,y (i) represent the predicted flow stress by the ANN and the experimentally mea-
sured flow stress, respectively.
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Figure 4. Plot of the measured flow stress versus the predicted flow stress of In718 alloy using ANNs

with different structures. (a,c,e,g) are the training dataset, and (b,d,f,h) are the validating dataset.

The ANN structure is noted inside each plot.

Table 2 shows the RMSE between the experimentally measured and predicted flow
stress by the ANN for the training dataset and validating dataset for ANNSs with different
sizes. It could be found that the RMSE of the training dataset decreased as the size of
the ANN increased. In contrast, the RMSE of the validating dataset reached its minimum
when the ANN processed one hidden layer and four neurons per hidden layer. It is very
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interesting to note that increasing the size of the ANN from case 2 to case 3 or 4 resulted
in a reduction in predicting accuracy. When the ANN had only one hidden layer and two
nodes per hidden layer, the regression error was 34.96 MPa, and the prediction error was
30.30 MPa. When the ANN had four hidden layers and 15 nodes in each hidden layer, the
RMSE of the training dataset was reduced to 2.06 MPa, while the RMSE of the validating
dataset was as large as 81.52 MPa. It can be concluded that, with the increase in the size
of the ANN, the ability of the ANN to retrieve the flow stress results from training sets is
significantly enhanced; however, the ability to predict the flow stress results absent from
the training does not monotonically increase with the size of the ANN but has an optimized
performance when the ANN has one hidden layer and four nodes.

Table 2. RMSE between the experimentally measured and ANN-predicted flow stress.

RMSE between Measurement and Prediction

Training Dataset Validating Dataset
Case 1 34.96 MPa 30.30 MPa
Case 2 21.21 MPa 23.43 MPa
Case 3 4.25 MPa 95.16 MPa
Case 4 2.03 MPa 81.52 MPa

3.2. Predicted Strain Dependency of Flow Stress

As shown in Figure 5a-d, ANNs with different sizes provide different predictions of
the strain dependency. When the ANN has one hidden layer and two nodes per hidden
layer, the predicted flow stress decreases monotonically with the increase in the strain;
obviously, the expected flow stress is nonlinear sets of values and cannot be well fitted
with quasi-straight lines. Thus, the predicted strain dependency falls into underfitting
and fails to predict the curve. After increasing the number of nodes in one hidden layer
to four, the predicted curve is able to reproduce the strain hardening, where the strain is
less than 0.2, and the strain softens with larger strains. As shown in Figure 5¢,d, when
the size of the ANN further increases, the discrepancy between the training points and
predicted data is further reduced, indicating better fitting between the prediction data and
the original training data. However, for the interval of data in which there are no training
points, it could be found from Figure 5 that the predicted curves of flow stress versus strain
also are prone to having more complicated shapes when the size of the employed ANN
increases. It is worth noting that the curves have more fluctuation, the physical meaning
of which might not be easily understood. For example, it can be noted in Figure 5c,d that,
for strain larger than 0.6, the flow stress value suddenly bounces up and increases. In the
practical manufacturing process, the sudden flow stress value increase is paradoxical to the
commonsense of metal properties. To fully investigate this fluctuation behavior of the flow
stress curve, we further conducted trials to predict the dependency on temperature and the
strain rate of flow stress in the following contents.

3.3. Predicted Temperature Dependency of Flow Stress

Figure 6a—d plots the predicted flow stress versus the temperature using ANNs with
different sizes. When the ANN has either one hidden layer/two nodes per hidden layer or
one hidden layer/four nodes per hidden layer, the predicted flow stress decreases monoton-
ically with the increase in the temperature. This outcome is consistent with the general law
that the material is softened with the increase in temperature, which is also supported by
the experimental data. However, as shown in Figure 6a,d, the predicted curve of flow stress
exhibits more fluctuation, which makes the predicted curve not monotonical. For example,
in Figure 6d, when temperature is less than 600 °C, the flow stress increases with the
increase in temperature. Moreover, in Figure 6¢ the flow stress is prone to reaching a peak
level in the temperature interval of 800-1000 °C and a valley level in the temperature inter-
val of 1300-1400 °C, which cannot be explained by physical laws. It can also be noted that
the abnormal behavior of the curve happens in the intervals outside of the training dataset’s
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temperature region. Thus, we deduce that it is due to the overfitting of the prediction curve
by more complex ANNSs. In other words, although it ‘seems’ that the fitting between the
training datapoints and prediction datapoints is more accurate, the other predicted points
are prone to being beyond the expected curve. It is also interesting to note that, when using
small ANNS, there is no significant underfitting in temperature dependence.
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Figure 5. Predicted strain dependency of flow stress using ANNs with different structures. (a—d) are
the predicted stress-strain curves by using ANNs with 1 x 2,1 x 4,2 x 10, 4 x 15 sizes.
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3.4. Predicted Strain Rate Dependency of Flow Stress

Figure 7a—d plots the predicted flow stress versus the strain rate using ANNs with
different sizes. It could be found that the predicted flow stress increases monotonically
with the increase in the temperature when the ANN has either one hidden layer/two nodes
per hidden layer or one hidden layer/four nodes per hidden layer. This outcome is consis-
tent with the general law that the material is hardened with the increase in temperature,
which is also supported by the experimental data. However, as shown in Figure 7a,d, the
predicted curve of flow stress exhibits more fluctuation, which makes the predicted curve
not monotonic. It is also interesting to note that, when using small ANNSs, there is no
significant underfitting in strain rate dependence.
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Figure 7. Predicted strain rate dependency of flow stress using ANNs with different structures. (a—d) are
the predicted stress-strain rate curves demonstration of ANNs with 1 x 2,1 x 4,2 x 10, 4 x 15 sizes.

3.5. Predicted Flow Stress by Using the Optimized ANN

Consequently, by comparing the RMSE data and studying the prediction behavior of
ANNSs with different structures, it is found that ANNs with structural complexity of more
than two layers and five nodes lead to an overfitting prediction result, hence reducing the
prediction accuracy. Additionally, the time cost for training will increase with the increase
in ANN size, while ANNs smaller than one layer and four nodes lead to a underfitting
prediction result, which will reduce the accuracy as well. Thus, we choose the ANN with
one hidden layer and four nodes per layer as an optimized structure. In other words, for
In718 alloy and similar metals, ANNs with very few nodes in the hidden layer are preferred
rather than large ANNs with tens or hundreds of nodes in the hidden layers. The predicted
flow stress is plotted in Figure 8, grouped by strain rate and temperature. By choosing the
ANN with one hidden layer and four nodes per layer, two desirable characteristics are
demonstrated. First, the optimized ANN has good accuracy in predicting the flow stress.
With limited experimental data training, the continuous and infinite case of predicted flow
stress can be acquired. Second, the predicted stress-strain curves have good extensibility.
For the interval during which the strain is less than the minimum experimental value or
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greater than the maximum experimental value, the flow stress values in the curves still fit
the physical regulations of metal characteristics and avoid nonphysical fluctuations.
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Figure 8. Predicted flow stress using the optimized ANN. (a—f) are the predicted stress-strain curves
at 900 °C, 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C.

4. Conclusions

compared. The conclusions below are drawn:

@

@)

In this paper, an ANN is trained to predict the flow stress of In718 alloys at high
temperatures based on experimental data. To optimize the structure of the ANN, the
performance of four ANNSs in predicting the flow stress of In718 alloy is comprehensively

The comparison shows that the ability of the ANN to retrieve the flow stress results
from training dataset is significantly enhanced as the size of the ANN increases, but
the ability to predict the flow stress results absent from the training decreases when

the ANN size exceeds a critical value.

For In718 alloy and similar metals, ANNs with very few nodes in the hidden layer are
preferred rather than large ANNSs with tens or hundreds of nodes in the hidden layers.
Specifically, the ANN with one hidden layer and four nodes possesses optimized
performance for predicting the flow stress of In718 alloys in this study.
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(3) The reason why there exists an optimized ANN size is discussed. When ANN size is
less than the optimized size, the prediction, especially of the strain dependency, falls
into underfitting and fails to predict the curve. When the ANN size is less than the
optimized size, the predicted flow stress curves with temperature, strain, and strain
rate will contain non-physical fluctuations, thus reducing its prediction accuracy
for extrapolation.

The high-temperature flow stress of metal is a complex function of temperature, strain,
and strain rate. Generally, ANN has the ability to predict high-temperature flow stresses of
metals and alloys. This study shows that its ability is reliable unless the structure of the
ANN is optimized by comprehensive research. However, it is obviously time-consuming
to conduct the optimization whenever ANN is used to model the flow stress of metals. In
future work, more effort should be made to develop a software toolbox to help engineers
to use ANN for optimally predating the flow stress of metal.
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