The Effect of GFRP Powder on the High and Low-Temperature Properties of Asphalt Mastic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation Process
2.3. Methods
2.3.1. Temperature Sweep Test
2.3.2. MSCR Test
2.3.3. BBR Test
3. Results
3.1. High-Temperature Rheological Performance
3.2. High-Temperature Creep and Recovery Behavior
3.3. Low-Temperature Rheological Performance
4. Conclusions
- (1)
- The composition and physical characteristics of GFRP lead to improved high-temperature deformation resistance and recovery but also result in reduced low-temperature crack resistance.
- (2)
- Jnrslope, in addition to Jnrdiff, provides a more accurate evaluation of the stress sensitivity of the asphalt mastic at high temperatures. Therefore, two indices were proposed to evaluate the hardening degree of the high and low temperature asphalt mastic, considering the influence of fillers on its properties.
- (3)
- The results of this study indicate the potential of GFRP powder as a pavement filler, with improved high-temperature performance compared to limestone filler. However, it is recommended to limit the filler-asphalt ratio of GFRP asphalt mastic to below 0.8:1 to ensure optimal low-temperature performance.
- (4)
- While this study provides valuable insights into using GFRP powder as a pavement filler, further research is needed to determine the optimal content of GFRP filler and better understand the interaction mechanism between GFRP powder and asphalt.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Zheng, X.Q.; Zhao, X.C.; Chen, Y.; Lugovoy, O. Carbon emission scenarios of China’s power sector: Impact of controlling measures and carbon pricing mechanism. Adv. Clim. Chang. Res. 2018, 9, 27–33. [Google Scholar] [CrossRef]
- Sahu, B.K. Wind energy developments and policies in China: A short review. Renew. Sustain. Energy Rev. 2018, 81, 1393–1405. [Google Scholar] [CrossRef]
- Yao, J.; Yao, F. Status Quo, Development and Utilization Efficiencies of Wind Power in China. Processes 2021, 9, 2133. [Google Scholar] [CrossRef]
- Karatas, M.A.; Gokkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Lichtenegger, G.; Rentizelas, A.A.; Trivyza, N.; Siegl, S. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Manag. 2020, 106, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Psomopoulos, C.S.; Kalkanis, K.; Kaminaris, S.; Ioannidis, G.C.; Pachos, P. A Review of the Potential for the Recovery of Wind Turbine Blade Waste Materials. Recycling 2019, 4, 7. [Google Scholar] [CrossRef][Green Version]
- Arif, Z.U.; Khalid, M.Y.; Ahmed, W.; Arshad, H.; Ullah, S. Recycling of the glass/carbon fibre reinforced polymer composites: A step towards the circular economy. Polym.-Plast. Technol. Mater. 2022, 61, 761–788. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L. Environmental impact and waste recycling technologies for modern wind turbines: An overview. Waste Manag. Res. 2022. [Google Scholar] [CrossRef]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Farinha, C.B.; de Brito, J.; Veiga, R. Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. J. Clean. Prod. 2019, 210, 1579–1594. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, M.; Wang, L.; Ma, G. Experimental study on mechanical property and microstructure of cement mortar reinforced with elaborately recycled GFRP fiber. Cem. Concr. Compos. 2021, 117, 103908. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Massicotte, L. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour. Conserv. Recycl. 2021, 174, 105807. [Google Scholar] [CrossRef]
- Si, W.; Yin, Y.K.; Hu, Y.P.; Kang, X.X.; Xu, Y.S.; Shi, A.Y.; Zhang, B.W.; Liu, J.Y. Analysis on factors affecting the cooling effect of optical shielding in pavement coatings. Build. Environ. 2022, 211, 108766. [Google Scholar] [CrossRef]
- Duojie, C.; Si, W.; Ma, B.A.; Hu, Y.P.; Liu, X.; Wang, X.T. Assessment of Freeze-Thaw Cycles Impact on Flexural Tensile Characteristics of Asphalt Mixture in Cold Regions. Math. Probl. Eng. 2021, 2021, 6697693. [Google Scholar] [CrossRef]
- Ma, B.; Hu, Y.P.; Si, W.; Wei, K.; Chang, X.Y. Study on the temperature control effects of an epoxy resin composite thermoregulation agent on asphalt mixtures. Constr. Build. Mater. 2020, 257, 119580. [Google Scholar] [CrossRef]
- Yun, C.; Xiaoping, J.; Botong, S.; Zhengming, Z.; Dongye, S.; Shiyu, Z.; Shupeng, H. Investigation on self-healing performance of asphalt mixture containing microcapsules and survival behaviour of microcapsules. Int. J. Pavement Eng. 2023, 24, 1. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Gu, X.; Yao, L.; Dong, Q. Evaluation of aggregate packing based on thickness distribution of asphalt binder, mastic and mortar within asphalt mixtures using multiscale methods. Constr. Build. Mater. 2019, 222, 717–730. [Google Scholar] [CrossRef]
- Chen, M.; Javilla, B.; Hong, W.; Pan, C.L.; Riara, M.; Mo, L.T.; Guo, M. Rheological and Interaction Analysis of Asphalt Binder, Mastic and Mortar. Materials 2019, 12, 128. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Williams, G.J. Canadian Strategic Highway Research Program-C-SHRP: 1988–1989 Progress Report; ARRB: Melbourne, Australia, 1989. [Google Scholar]
- Tayebali, A.A.; Rowe, G.M.; Sousa, J.B. Fatigue response of asphalt-aggregate mixtures. In Proceedings of the Asphalt Paving Technology 1992, Charleston, SC, USA, 24–26 February 1992; pp. 333–360. [Google Scholar]
- Gubler, R.; Liu, Y.; Anderson, D.A. Investigation of the system filler and asphalt binders by rheological means. In Proceedings of the 74th Annual Meeting on Asphalt Paving Technology, Chicago, IL, USA, 8–10 May 1999; pp. 284–304. [Google Scholar]
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 117241. [Google Scholar] [CrossRef]
- Sedghi, R.; Esfandabad, A.S.; Motevalizadeh, S.M.; Asgharzadeh, S.M.; Alavi, M.; Sahebzamani, H. Application of bond strength concept to study the self-healing properties of bituminous mastic. Int. J. Pavement Eng. 2022, 23, 1145–1160. [Google Scholar] [CrossRef]
- Lagos-Varas, M.; Movilla-Quesada, D.; Raposeiras, A.C.; Arenas, J.P.; Calzada-Pérez, M.A.; Vega-Zamanillo, A.; Lastra-González, P. Influence of limestone filler on the rheological properties of bituminous mastics through susceptibility master curves. Constr. Build. Mater. 2020, 231, 117126. [Google Scholar] [CrossRef]
- Zheng, C.F.; Feng, Y.P.; Ma, Z.; Yang, X. Influence of mineral filler on the low-temperature cohesive strength of asphalt mortar. Cold Reg. Sci. Technol. 2017, 133, 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Yan, K.; Liu, J. Rheological Characteristics of Polyphosphoric Acid-Modified Asphalt Mastic. J. Mater. Civ. Eng. 2018, 30, 06018021. [Google Scholar] [CrossRef]
- Rana, A.; Kalla, P.; Verma, H.K.; Mohnot, J.K. Recycling of dimensional stone waste in concrete: A review. J. Clean. Prod. 2016, 135, 312–331. [Google Scholar] [CrossRef]
- Ji, X.P.; Sun, E.Y.; Sun, Y.L.; Zhang, X.Y.; Wu, T.D. Study on crack resistance of cement-stabilized iron tailings. Int. J. Pavement Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- Wei, M.; Wu, S.; Xu, H.; Li, H.; Yang, C. Characterization of Steel Slag Filler and Its Effect on Aging Resistance of Asphalt Mastic with Various Aging Methods. Materials 2021, 14, 869. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, Y.; Xu, M.; Fan, L.; Zhang, Y. Determination of Construction Temperatures of Crumb Rubber Modified Bitumen Mixture Based on CRMB Mastic. Materials 2019, 12, 3851. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rochlani, M.; Canon Falla, G.; Wellner, F.; Wang, D.; Fan, Z.; Leischner, S. Feasibility study of waste ceramic powder as a filler alternative for asphalt mastics using the DSR. Road Mater. Pavement Des. 2021, 22, 2591–2603. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Liu, Q.; Xie, J.; Yang, C.; Wan, P.; Guo, S.; Ma, W. Characteristics of calcareous sand filler and its influence on physical and rheological properties of asphalt mastic. Constr. Build. Mater. 2021, 301, 124112. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, H.; Wang, D.; Hu, S.; Wang, P.; Zhang, C. Research on High-Temperature Rheological Properties of Emulsified Asphalt Mastics and Their Influencing Factors. Coatings 2022, 12, 635. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Communications: Beijing, China; China Communications Press: Beijing, China, 2011.
- ASTM D7405; Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International: West Conshohocken, PA, USA, 2015.
- Anderson, D.; Goetz, W. Mechanical Behavior and Reinforcement of Mineral Filler-Asphalt Mixtures: Technical Paper; FHWA/IN/JHRP-73/05; Purdue University and Indiana State Highway Commission: West Lafayette, IN, USA, 1973. [Google Scholar]
- Craus, J.; Ishai, I.; Sides, A. Some physico-chemical aspects of the effect and the role of the filler in bituminous paving mixtures. In Proceedings of the Association of Asphalt Paving Technologists Proc, Lake Buena Vista, FL, USA, 13–15 February 1978; pp. 558–588. [Google Scholar]
- Liu, H.; Zeiada, W.; Al-Khateeb, G.G.; Shanableh, A.; Samarai, M. Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Constr. Build. Mater. 2021, 269, 121320. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, W.; Xue, Y.; Zhao, P.; Wen, X.; Si, W.; Wang, H.; Zhou, L.; Airey, G.D. Evaluating the Ageing Degrees of Bitumen by Rheological and Chemical Indices. Road Mater. Pavement Des. 2023. [Google Scholar] [CrossRef]
Item | Method [34] | Test Value |
---|---|---|
Penetration (25 °C, 0.1 mm) | T 0604 | 78 |
Softening point (°C) | T 0606 | 47 |
Ductility (5 °C, cm) | T 0605 | 62.5 |
Viscosity(60 °C) | T 0620 | 235 |
Item | GFRP | Limestone | |
---|---|---|---|
Density (g/cm3) | 2.37 | 2.65 | |
Specific surface area (SSA) (m2/g) | 2.15 | 1.95 | |
Particle size range (%) | ≤0.6 mm | 100 | 100 |
≤0.3 mm | 96.5 | 100 | |
≤0.075 mm | 92.3 | 98.6 | |
Moisture content (%) | 0.55 | 0.32 |
Asphalt Mastic Code | Filler-Asphalt Mass Ratio | Filler |
---|---|---|
G-0.01 | 0.01:1 | GFRP |
G-0.1 | 0.1:1 | GFRP |
G-0.8 | 0.8:1 | GFRP |
G-1.0 | 1.0:1 | GFRP |
L-0.8 | 0.8:1 | Limestone |
L-1.0 | 1.0:1 | Limestone |
Neat Asphalt | G-0.01 | G-0.1 | G-0.8 | G-1.0 | L-0.8 | L-1.0 | |
---|---|---|---|---|---|---|---|
Continuous grading temperatures/°C | 65.5 | 66.2 | 67.8 | 78.1 | 82.5 | 73.2 | 76.7 |
Neat Asphalt | G-0.01 | G-0.1 | G-0.8 | G-1.0 | L-0.8 | L-1.0 | |
---|---|---|---|---|---|---|---|
Jnrdiff | 14.15 | 25.51 | 10.78 | −6.38 | −20.10 | 21.62 | 24.19 |
Jnrslope | 14.96 | 25.18 | 10.07 | −0.47 | −0.64 | 8.19 | 7.93 |
HSI | 0 | −0.24 | 0.24 | 2.75 | 3.04 | 0.68 | 0.75 |
TC,S (°C) | TC,m (°C) | ΔTC (°C) | |
---|---|---|---|
Neat asphalt | −26.83 | −27.82 | 0.99 |
G-0.01 | −26.43 | −27.56 | 1.13 |
G-0.1 | −25.91 | −27.12 | 1.21 |
G-0.8 | −21.42 | −24.28 | 2.85 |
G-1.0 | −17.34 | −23.42 | 6.08 |
L-0.8 | −25.68 | −27.21 | 1.53 |
L-1.0 | −22.40 | −26.53 | 4.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, T.; Zhao, P.; Zhang, X.; Si, W.; Ling, T. The Effect of GFRP Powder on the High and Low-Temperature Properties of Asphalt Mastic. Materials 2023, 16, 2662. https://doi.org/10.3390/ma16072662
Zhen T, Zhao P, Zhang X, Si W, Ling T. The Effect of GFRP Powder on the High and Low-Temperature Properties of Asphalt Mastic. Materials. 2023; 16(7):2662. https://doi.org/10.3390/ma16072662
Chicago/Turabian StyleZhen, Tao, Pinxue Zhao, Xing Zhang, Wei Si, and Tianqing Ling. 2023. "The Effect of GFRP Powder on the High and Low-Temperature Properties of Asphalt Mastic" Materials 16, no. 7: 2662. https://doi.org/10.3390/ma16072662