Impact of Particle Size Distribution in the Preform on Thermal Conductivity, Vickers Hardness and Tensile Strength of Copper-Infiltrated AISI H11 Tool Steel
Abstract
:1. Introduction
- (i)
- Cavity:
- (ii)
- Cooling channels:
- (iii)
- Bulk:
2. Materials and Methods
2.1. Preform Preparation and Infiltration
C | Si | Mn | Cr | Mo | V | Fe | |
---|---|---|---|---|---|---|---|
min | 0.30 | 0.80 | 0.25 | 4.80 | 1.10 | 0.30 | bal. |
max | 0.41 | 1.20 | 0.50 | 5.50 | 1.50 | 0.50 |
2.2. Material Characterization
3. Results and Discussion
3.1. Characterization of the Preforms
3.2. Characterization of the H11/Cu Composites
4. Conclusions
- ▪
- The shrinkage of the preforms was found to be less than half with respect to that in the MIM or FFF approach. When sintering large-scale and massive components, as is required for the majority of tool inserts, the infiltration-based approach is therefore believed to be less susceptible to thermal cracking. Hence, the process limitation of the conventional sintering process may be shifted towards larger components with higher mass.
- ▪
- For all specimens regardless of PSD, practically complete infiltration of the preforms was observed. Consistently accomplished relative densities of more than 99.90% gave rise to the infiltration process being robust and thus well suited for the production of industrially relevant high-performance components.
- ▪
- By varying the addition of fine powder in the starting powder, the thermal conductivity, material hardness and tensile strength could be varied within a wide range. With respect to the sintered tool steel, thermal conductivity was elevated for the composites by a factor in the range of 1.84 to 2.67 with simultaneously compromised mechanical properties. With the thermal and mechanical requirements known, a certain tool insert can be manufactured using the appropriate PSD that can be calculated by the determined fit functions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopmann, C.; Menges, G.; Michaeli, W.; Mohren, P. Spritzgießwerkzeuge: Auslegung, Bau, Anwendung, 7th ed.; Carl Hanser Verlag: München, Germany, 2018; ISBN 9783446451926. [Google Scholar]
- Silva, F.J.G.; Martinho, R.P.; Alexandre, R.J.D.; Baptista, A.P.M. Increasing the wear resistance of molds for injection of glass fiber reinforced plastics. Wear 2011, 271, 2494–2499. [Google Scholar] [CrossRef][Green Version]
- Magnum Manufacturing. Injection Molding: The Definitive Engineering Guide. Available online: https://magnum-mfg.com (accessed on 4 November 2022).
- Samei, J.; Asgari, H.; Pelligra, C.; Sanjari, M.; Salavati, S.; Shahriari, A.; Amirmaleki, M.; Jahanbakht, M.; Hadadzadeh, A.; Amirkhiz, B.S.; et al. A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies. Addit. Manuf. 2021, 45, 102068. [Google Scholar] [CrossRef]
- Kharytonau, D.S.; Zimowska, M.; Gurgul, J.; Mordarski, G.; Powalisz, R.; Rutowski, A.; Putynkowski, G.; Zięba, A.; Mokrzycki, Ł.; Socha, R.P. Corrosion failure analysis of a cooling system of an injection mold. Eng. Fail. Anal. 2022, 135, 106118. [Google Scholar] [CrossRef]
- Fu, J.; Wang, J. Effect of Mo Content on the Thermal Conductivity and Corrosion Resistance of Die Steel. J. Mater. Eng. Perform. 2021, 30, 8438–8446. [Google Scholar] [CrossRef]
- Norhafzan, B.; Aqida, S.N.; Fazliana, F.; Reza, M.S.; Ismail, I.; Khairil, C.M. Laser melting of groove defect repair on high thermal conductivity steel (HTCS-150). Appl. Phys. A 2018, 124. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals 2017, 7, 550. [Google Scholar] [CrossRef][Green Version]
- Kota, N.; Charan, M.S.; Laha, T.; Roy, S. Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties. Ceram. Int. 2022, 48, 1451–1483. [Google Scholar] [CrossRef]
- Trumble, K.P. Spontaneous infiltration of non-cylindrical porosity: Close-packed spheres. Acta Mater. 1998, 46, 2363–2367. [Google Scholar] [CrossRef]
- Huber, F.; Bischof, C.; Hentschel, O.; Heberle, J.; Zettl, J.; Nagulin, K.Y.; Schmidt, M. Laser beam melting and heat-treatment of 1.2343 (AISI H11) tool steel – microstructure and mechanical properties. Mater. Sci. Eng. A 2019, 742, 109–115. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Narvan, M.; Al-Rubaie, K.S.; Elbestawi, M. Process-Structure-Property Relationships of AISI H13 Tool Steel Processed with Selective Laser Melting. Materials 2019, 12, 2284. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ilschner, B.; Singer, R.F. Werkstoffwissenschaften und Fertigungstechnik; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Klein, S.; Weber, S.; Theisen, W. Effect of heat treatment on phase structure and thermal conductivity of a copper-infiltrated steel. J. Mater. Sci. 2015, 50, 3586–3596. [Google Scholar] [CrossRef][Green Version]
- Hough, R.R.; Rolls, R. Copper diffusion in iron during high-temperature tensile creep. Metall. Mater. Trans. B 1971, 2, 2471–2475. [Google Scholar] [CrossRef]
- Klein, S.; Weber, S.; Theisen, W. Investigation of heat transfer in a copper-infiltrated tool steel based on measurement, microtomography, and numerical simulation. Mater. Des. 2018, 156, 42–51. [Google Scholar] [CrossRef]
- Chen, M.; Bai, Y.; Zhang, Z.; Zhao, H. The Preparation of High-Volume Fraction SiC/Al Composites with High Thermal Conductivity by Vacuum Pressure Infiltration. Crystals 2021, 11, 515. [Google Scholar] [CrossRef]
- Cramer, C.L.; Wieber, N.R.; Aguirre, T.G.; Lowden, R.A.; Elliott, A.M. Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration. Addit. Manuf. 2019, 29, 100828. [Google Scholar] [CrossRef]
- Duan, L.; Lin, W.; Wang, J.; Yang, G. Thermal properties of W–Cu composites manufactured by copper infiltration into tungsten fiber matrix. Int. J. Refract. Met. Hard Mater. 2014, 46, 96–100. [Google Scholar] [CrossRef]
- Şelte, A.; Özkal, B. Infiltration Behavior of Mechanical Alloyed 75 wt.% Cu-25 wt.% WC Powders Into Porous WC Compacts. Arch. Metall. Mater. 2015, 60, 1565–1568. [Google Scholar] [CrossRef]
- Romański, A.; Cygan-Bączek, E. High Performance Valve Seat Materials for CNG Powered Combustion Engines. Materials 2021, 14, 4860. [Google Scholar] [CrossRef]
- Gomes, M.P.; Santos, I.P.d.; Couto, C.P.; Betini, E.G.; Reis, L.A.M.d.; Mucsi, C.S.; Colosio, M.A.; Rossi, J.L. Heat Treatment of Sintered Valve Seat Inserts. Mater. Res. 2018, 21. [Google Scholar] [CrossRef][Green Version]
- Seleznev, M.; Roy-Mayhew, J.D. Bi-metal composite material for plastic injection molding tooling applications via fused filament fabrication process. Addit. Manuf. 2021, 48, 102375. [Google Scholar] [CrossRef]
- Sachs, E.; Wylonis, E.; Allen, S.; Cima, M.; Guo, H. Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 2000, 40, 1232–1247. [Google Scholar] [CrossRef][Green Version]
- Stoyan, D.; Unland, G. Point process statistics improves particle size analysis. Granul. Matter 2022, 24. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vetter, J.; Huber, F.; Wachter, S.; Körner, C.; Schmidt, M. Development of a Material Extrusion Additive Manufacturing Process of 1.2083 steel comprising FFF Printing, Solvent and Thermal Debinding and Sintering. Procedia CIRP 2022, 113, 341–346. [Google Scholar] [CrossRef]
- Branciforti, D.S.; Lazzaroni, S.; Milanese, C.; Castiglioni, M.; Auricchio, F.; Pasini, D.; Dondi, D. Visible light 3D printing with epoxidized vegetable oils. Addit. Manuf. 2019, 25, 317–324. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- Lindemann, A.; Schmidt, J.; Todte, M.; Zeuner, T. Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range. Thermochim. Acta 2002, 382, 269–275. [Google Scholar] [CrossRef]
- 2343/X38CrMoV5-1 Datenblatt. Available online: https://www.stauberstahl.com/werkstoffe/12343-werkstoff-datenblatt/ (accessed on 2 February 2023).
- Chan, Y.L.S.; Diegel, O.; Xu, X. Bonding integrity of hybrid 18Ni300-17-4 PH steel using the laser powder bed fusion process for the fabrication of plastic injection mould inserts. Int. J. Adv. Manuf. Technol. 2022, 120, 4963–4976. [Google Scholar] [CrossRef]
- Lamikiz, A.; de Lacalle, L.N.L.; Sánchez, J.A.; Salgado, M.A. Cutting force integration at the CAM stage in the high-speed milling of complex surfaces. Int. J. Comput. Integr. Manuf. 2005, 18, 586–600. [Google Scholar] [CrossRef]
TLS/wt.% | M4P/wt.% | Porosity/% | Shrinkage/% | Tensile Strength σ/MPa |
---|---|---|---|---|
100 | 0 | 40.6 | 5.42 ± 0.15 | 161.0 ± 27.7 |
95 | 5 | 36.4 | 5.86 ± 0.39 | 168.1 ± 9.5 |
90 | 10 | 32.8 | 6.14 ± 0.25 | 257.7 ± 10.9 |
85 | 15 | 28.0 | 7.12 ± 0.24 | 370.5 ± 25.1 |
TLS/wt.% | M4P/wt.% | Cu/vol.% | /cm2/s | /g/cm3 | /J/(kg·K) | |||
---|---|---|---|---|---|---|---|---|
25 °C * | 50 °C * | 85 °C * | 120 °C * | RT | ||||
100 | 0 | 40.6 | 445 [15,32] | |||||
95 | 5 | 36.4 | 447 [15,32] | |||||
90 | 10 | 32.8 | 448 [15,32] | |||||
85 | 15 | 28.0 | 450 [15,32] | |||||
0 | 100 | 0 | 460 [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetter, J.; Beneder, S.; Kandler, M.; Feyer, F.; Körner, C.; Schmidt, M. Impact of Particle Size Distribution in the Preform on Thermal Conductivity, Vickers Hardness and Tensile Strength of Copper-Infiltrated AISI H11 Tool Steel. Materials 2023, 16, 2659. https://doi.org/10.3390/ma16072659
Vetter J, Beneder S, Kandler M, Feyer F, Körner C, Schmidt M. Impact of Particle Size Distribution in the Preform on Thermal Conductivity, Vickers Hardness and Tensile Strength of Copper-Infiltrated AISI H11 Tool Steel. Materials. 2023; 16(7):2659. https://doi.org/10.3390/ma16072659
Chicago/Turabian StyleVetter, Johannes, Samuel Beneder, Moritz Kandler, Felix Feyer, Carolin Körner, and Michael Schmidt. 2023. "Impact of Particle Size Distribution in the Preform on Thermal Conductivity, Vickers Hardness and Tensile Strength of Copper-Infiltrated AISI H11 Tool Steel" Materials 16, no. 7: 2659. https://doi.org/10.3390/ma16072659