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Abstract: The principal objective of this project was to investigate the rheological properties of Fe–C–
Cr and Fe–C–Ni-based low-alloy steels using an Anton Paar high-temperature rotational viscometer
up to 1550 ◦C. The emphasis was placed on determining the liquidus temperatures and evaluating
the flow and viscosity curves and the temperature dependence of dynamic viscosity. All were studied
depending on the change in the content of chromium (0.010–4.863 wt%), nickel (0.001–4.495 wt%),
and carbon (0.043–1.563 wt%). It was shown that the dynamic viscosity decreases with increasing
nickel content and increases with increasing carbon and chromium content. The experimental data
of the flow curves were fitted using the Herschel–Bulkley model with a good agreement between
the measured and calculated values. Characterization of the internal structure was performed by
SEM and EDX analyses, confirming non-significant changes in the microstructure of the original
and remelted samples. The phase composition of the selected samples was also determined using
JMatPro 12.0 simulation software (Sente Software Ltd., Guildford, UK).

Keywords: chromium; nickel; viscosity; flow curve; viscosity curve; low-alloy steel

1. Introduction

Since their introduction, steels have made significant progress and have ceased to
be “mere” iron-carbon alloys, with improved properties such as fracture resistance and
strength. Today, steels are modified with various alloying elements added, often in minute
quantities, to suit specific applications. Advances in computer technology and an ever-
expanding range of material-testing instruments have facilitated the production of steels
with a narrow compositional scope and a wide variety of properties [1]. Low-alloy steels
with compositions ranging from 2 wt% to 10 wt% of alloying elements belong to a broad
group of ferrous materials with a wide range of potential uses. Significant are the ones
mainly containing nickel, chromium, and other alloying elements such as vanadium,
niobium, and titanium [2]. It is well-established that nickel and chromium enhance the
mechanical properties of low-alloy steels, especially strength, toughness, and hardenability,
which is reflected in the microstructural changes after quenching [3–5]. Low-alloy steels
are used for nuclear pressure vessels, steam generators, and other applications in nuclear
power plants where conventional steels do not meet the required endurance strength. From
this perspective, they are essential materials for ensuring higher safety and durability
of nuclear power plants and contribute to increasing power generation efficiency [6–8].
However, low-alloy steels are also used as special structural parts in the aerospace and
automotive industries and in the production of gears and crankshafts, where high require-
ments are imposed for high tensile strength, temperature resistance, corrosion resistance,
fatigue resistance, and fracture toughness [9–13]. Despite their widespread use, mainly
due to the advantageous combination of their cost and unique properties, there is still a
paucity of thermophysical and especially experimental data in the literature regarding their
rheological properties.
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The determination of viscosity and other rheological parameters of molten metals,
steels, and alloys is highly demanded as they play a crucial role in mass transfer processes
and enable the design and optimization of the melting, casting, and welding processes
of Fe-based alloys [14,15]. This determination is also challenging because the systems
under investigation have high liquidus temperatures, oxidize easily, and the stability of
the measuring system must be ensured during experiments. In addition, the measured
viscosity values are typically in the order of mPa·s [16,17].

The main component of low-alloy steels is iron, whose viscosity measured at melting
temperature is about 6 mPa·s. Specifically, Chapman determined it to be approximately
6.5 mPa·s [18], Battezzati 5.5 mPa·s [19] and Brooks 6.93 mPa·s [16]. However, even in
the case of binary and ternary systems, the viscosity of iron-based alloys can vary by
units of mPa·s, with the addition of alloying elements in the order of tenths to units of
percent [20,21]. Furthermore, it is worth noting that the effect of the same dissolving
element on viscosity may differ for binary and multicomponent melts, and it can be
assumed that specific interactions between the components change the patterns of their
effect on viscosity [22]. Over the past two decades, studies have been performed addressing
the effect of chromium and nickel on the viscosity of binary and more complex systems. Sato
examined the viscosities of binary systems, including Fe–Ni, over the whole concentration
range using an oscillating viscometer up to 1600 ◦C, showing a good match with Arrhenius
linearity [23]. A similar effect of nickel on the viscosity of Fe–Ni binaries was found in
article [24]. A study of the dependence of kinematic viscosity on chromium content in
the Fe–Cr melts showed that the viscosity isotherm is nonmonotonic with a minimum at
5 wt% and a maximum at 12 wt%. The increase in crystallization tendency was related to
atoms’ geometric and chemical arrangement over short distances [25]. The viscosities of
the Cr–Fe–Ni ternary system were studied at elevated temperatures, and it was found that
the viscosities increased monotonically with increasing iron and chromium content [14].
Liu calculated isoviscosity curves of the ternary Fe–Ni–Cr system using Gibbs free energy
of mixing and geometrical models operating with excess activation energies of sub-binary
systems. Nickel decreased viscosity over the entire concentration range, but chromium
only did so at contents exceeding 20 mol% [26]. The viscosity of Fe–Cr–Mn–Ni alloys
with nickel contents up to 20% in the temperature range of 1723–1873 K was measured
using a vibrating finger viscometer. Nickel was found to decrease viscosity within this
range, which was related to the change in the primary solidification structure from a body-
centered cubic unit cell to a face-centered cubic unit cell [27]. The effect of nickel on the
viscosity of Fe-based multicomponent melts was evaluated in [28], where nickel decreased
the viscosity and increased the activation energy, with the change in viscosity being related
to structural changes and decomposition of high-temperature clusters of cementite and
silicon oxides. A large amount of published data on the viscosity of metals, alloys, and
intermetallic compounds is given in [19].

The present study was designed to determine the effect of alloying elements such as
nickel, chromium, and carbon on the rheological properties of selected low-alloy steels.
Since investigated systems were poly-component and, in these cases, the properties are
difficult to calculate or simulate through advanced applications, this study sought to
obtain data that would help address corresponding research gaps. For these reasons, the
measurements were performed on a highly sensitive instrument under conditions not
significantly affecting the composition and structure of the specimens.

2. Materials and Methods
2.1. Sample Preparation

Alloy samples were prepared from pure metals (Fe, Ni, Cr, purity 99.99%), carbon
(purity 99.99%), and Fe2O3 tablets (purity 99.999%) by vacuum induction melting using
a Leybold Heraeus furnace. The melt was cast into the vertically oriented mold, yielding
3 kg ingots from which rods of diameter 27 mm and, subsequently, cylindrical specimens
(27 mm diameter × 38 mm height) were made. The chemical composition of all samples,
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determined by a Spectruma GDA 750 HP optical emission spectrometer (GDOES), is listed
in Table 1. The carbon, oxygen, and sulfur contents were determined by Eltra 200 CS and
Eltra 2000 ONH combustion analyzers.

Table 1. Chemical composition of Fe–alloys (wt%).

Sample C Cr Ni O P S Mn Cu N Ti W

1 0.382 0.010 1.084 0.002 0.004 0.006 0.030 0.014 0.003 0.004 <0.001
2 0.338 0.010 4.478 0.001 0.005 0.006 0.031 0.012 0.003 0.003 <0.001
3 0.344 0.924 0.001 0.002 0.005 0.068 0.056 0.007 0.026 - -
4 0.34 4.796 0.001 0.002 0.002 0.006 0.042 0.005 0.001 0.010 0.044
5 0.043 0.013 4.465 0.005 0.004 0.006 0.062 0.007 0.002 0.003 <0.001
6 1.563 0.011 4.495 0.002 0.005 0.006 0.046 0.009 0.003 0.004 <0.001
7 0.043 4.863 0.001 0.022 0.004 0.064 0.053 0.006 0.024 - -
8 1.378 4.591 <0.001 0.011 0.004 0.054 0.047 0.007 0.016 <0.001 0.038

2.2. Determination of Liquidus Temperature

Differential thermal analysis (DTA), 3D differential scanning calorimetry (3D DSC),
and an optical method were used to determine the liquidus temperature [29]. A Setaram
SETSYS 18TM laboratory system and a Setaram Line 96 Multi High-Temperature Calorime-
ter (MHTC) were used for DTA and DSC analyses, respectively. The samples were analyzed
in high-purity corundum crucibles. Before analyses, the alloys with the approximate masses
of 190 mg (DTA) and 1200 mg (DCS) were brushed and cleaned in acetone. A dynamic at-
mosphere of Ar (purity 99.9999%) was maintained to protect the samples against oxidation.
Liquidus temperatures of each alloy were obtained throughout the heating runs. The DTA
and DCS runs were carried out at a heating rate of 10 ◦C·min−1 and 5 ◦C·min−1, respec-
tively. The obtained liquidus temperatures were corrected for the melting temperatures of
high-purity metals, Ni and Pd, and for the experimental conditions.

The optical method was carried out by sessile drop in a CLASIC high-temperature
observation furnace. The alloy sample was placed in an Al2O3 substrate and inserted into
the furnace tube, which was hermetically sealed, evacuated to 0.1 Pa, and purged with Ar
(purity 99.9999%). Liquidus temperatures were determined optically based on changes in
the sample silhouettes taken with a CANON EOS 550D during heating (heating rate of
5 ◦C·min−1).

2.3. Determination of Rheological Properties (Parameters)

The rheological measurements were carried out with an Anton Paar FRS 1600 high-
temperature rotational viscometer (Anton Paar GmbH, Graz, Austria). This instrument
combines a laboratory furnace and a DSR 301 measuring head with air bearings. The
furnace allows measurements of up to 1550 ◦C registered by a Pt–13% Rh/Pt thermocouple.
The rheometer is air-cooled to protect mechanical and electronic components from over-
heating. The measuring system consists of an alumina spindle mounted on a long ceramic
shaft connected to the rheometer head and an alumina crucible fixed to a lower ceramic
shaft. The experiments were conducted in rotation mode by measuring the torque of a
spindle rotating in a crucible filled with molten alloy.

Prior to the experiment, the alloy samples were thoroughly cleaned mechanically to
remove surface oxides. The corundum crucible containing the alloy sample was placed
in the furnace. To prevent oxidation of the samples, a gas mixture of argon (99.9999%
purity) and hydrogen (2.6 vol%, 99.999% purity) was used at a flow rate of 150 L·h−1.
The furnace was heated to 1550 ◦C at a heating rate of 17 ◦C·min−1. The sample was
kept at this temperature for 150 min for temperature stabilization and homogenization.
Subsequently, the alumina spindle was immersed in the melt, and flow curves were
recorded at a temperature of 1550 ◦C. Based on measurements of viscosity dependence on
the shear rate, an optimum shear rate of 10 s−1 was chosen for the viscosity measurement,
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performed during cooling at a rate of 2.5 ◦C·min−1 in the temperature range from 1550 ◦C
to the temperature at which the samples began to solidify.

2.4. SEM and EDX Methods

Firstly, metallographic samples were polished and etched (nital etching process).
Consequently, the structures were examined using an Olympus IX70 (LM) light microscope
(Olympus, Melville, NY, USA) and a JEOL 6490 LV scanning electron microscope ((JEOL
Ltd., Akishima, Japan)) operating in a secondary electron mode, equipped with an INCA
EDX (Energy Dispersive X–ray Spectroscopy) analyzer (Oxford Instruments, Oxford, UK)
enabling X-ray analysis. The SEM settings were as follows: thermionic cathode LaB6,
voltage 20 kV, and the specimen chamber kept at 10−3 and 25 Pa.

3. Results and Discussion
3.1. Liquidus Temperatures

The liquidus temperatures were obtained using three experimental methods: DTA,
DSC, and optical. The experimentally obtained values were then compared with those
theoretically calculated by ThermoCalc 2019a software. All temperatures are listed in
Table 2.

Table 2. Measured and calculated liquidus temperatures (◦C).

Sample DTA DSC Optical Method ThermoCalc

1 1495 1498 1502 1503
2 1492 1493 1500 1497
3 1501 1504 1512 1506
4 1496 1500 1496 1501
5 1514 1515 1516 1516
6 1405 1406 1404 1403
7 1522 1527 1532 1524
8 1417 1421 1408 1428

Elements that were not included in the equilibrium calculations were: P, O, Cu, N, Ti, and W.

Good agreement was observed when comparing the liquid temperatures obtained
using the DTA and DSC methods, with a maximum difference not exceeding 5 ◦C. However,
concerning the temperatures obtained by the optical method, the differences were more
significant, especially for samples 3 (0.344 wt% C, 0.924 wt% Cr), 7 (0.043 wt% C, 4.863 wt%
Cr), and 8 (1.378 wt% C, 4.591 wt% Cr), where the maximum difference was 13 ◦C for
sample 8. A possible explanation for this might be that the optical method considers the
temperature of the liquid as that at which the sample assumes a perfect drop shape. It is
worth noting that determining liquid temperatures at high temperatures entails several
challenges, including those relating to the experimental setup, experimental conditions
(heating rate, sample weight), or changes in the chemical composition of the samples
during heating (oxidation, decarburization) [30–32]. As for the values calculated with Ther-
moCalc 2019a software (Thermo-Calc Software, Stockholm, Sweden), one must consider
certain simplifications that the software operates with, e.g., the absence of certain elements,
equilibrium conditions, and others.

3.2. Flow and Viscosity Curves

The flow characteristics of systems in the liquid state respect the rheological equations
of state describing the relationship between shear stress and fluid deformation. The flow
behavior can be represented by the flow and viscosity curves. Based on their shape, the
Newtonian or non-Newtonian behavior of the melt under investigation can be determined.
For Newtonian melts, the shear stress is directly proportional to the shear rate, and the
viscosity depends only on the temperature, i.e., it is independent of the shear rate. In the
case of non-Newtonian melts, the viscosity is dependent on the shear rate. Figure 1 shows
flow and viscosity curves for all samples at 1550 ◦C. The flow curves are presented as
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the dependence of shear stress on shear rate, and the viscosity curves as the dependence
of viscosity on shear rate. All dependencies were measured in the shear rate interval
of 5–35 s−1. For all alloys, shear stress and viscosity increased non-linearly with shear
rate. From this, it can be concluded that all the alloys investigated exhibit a type of non-
Newtonian behavior, i.e., shear thickening.
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Figure 1. Flow (f.c.) and viscosity (v.c.) curves for samples (A) 1 and 2, (B) 3 and 4, (C) 5 and 6, and
(D) 7 and 8.

The experimental data of the flow curves obtained at 1550 ◦C were fitted with the
Herschel–Bulkley model [33] according to Equation (1):

τ = τ0 + k
.
γ

n (1)

where τ (Pa) is the shear stress, τ0 (Pa) is the yield stress, k (Pa·sn) is the consistency index,
.
γ [s−1] is the shear rate, and n [-] is the flow index.

Non-linear least squares analysis involving a generalized reduced-gradient optimiza-
tion algorithm [34] was used to optimize the model parameters listed in Table 3. The fitting
curves are shown in Figure 2. Excellent agreement was reached between the experimental
and theoretical data, as evidenced by the values of the correlation coefficients and the error
sum of squares (SSE).



Materials 2023, 16, 2656 6 of 13

Table 3. Optimized parameters of the Herschel–Bulkley model.

Sample 103 τ0 (Pa) 103 k (Pa·sn) n R2 SSE

1 1.2 8.2 1.3 0.9989 0.0017
2 1.9 8.1 1.3 0.9994 0.0009
3 1.1 7.8 1.3 0.9995 0.0006
4 1.5 5.9 1.4 0.9999 0.0001
5 1.3 6.7 1.4 0.9994 0.0009
6 0.9 6.3 1.4 0.9998 0.0004
7 1.7 7.7 1.3 0.9989 0.0014
8 1.4 5.9 1.4 0.9998 0.0003
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(A)–samples 1–4, (B)–samples 5–8.

3.3. Temperature Dependence of Dynamic Viscosity

The temperature dependence of the dynamic viscosity of the samples was experi-
mentally investigated during the cooling process, i.e., in the temperature interval from
the maximum temperature (1550 ◦C) to the solidification temperature. The obtained de-
pendencies are shown in Figure 3A–D. As shown in the figure, the dynamic viscosity
increases exponentially with decreasing temperature, which agrees with the Arrhenius
equation [35]. The details show the dependence of the dynamic viscosity on tempera-
ture when the sample is in the liquid state. It can be argued that the effect of chemical
composition—Ni, Cr, and C contents—is almost negligible in the investigated concen-
tration ranges of Cr (0.924–4.796 wt%), Ni (1.084–4.478 wt%), and C (0.043–1.378 wt%).
However, a slight increase in viscosity with increasing chromium content can be observed
in Figure 3B, where sample 3 with 0.924 wt% chromium had a viscosity of 13.6 mPa at
1550 ◦C, while sample 4 with 4.796 wt% chromium had a viscosity of 15.0 mPa at the
same temperature. It is worth noting that a similar effect of chromium was observed for
ternary alloys containing chromium and nickel, but the chromium content varied in the
order of tens of percent [14,26]. A similar trend can be observed for increasing carbon
content (Figure 3C,D). For samples 5 (0.043 wt% C) and 6 (1.563 wt% C), containing roughly
the same nickel content of about 4.5 wt%, the dynamic viscosity values at the maximum
temperature were 14.7 and 14.6 mPa, respectively. Additionally, for samples 7 (0.043 wt%
C) and 8 (1.378 wt% C) with approximately the same chromium content, the viscosity
increased slightly from a value of 13.4 mPa to a value of 14.5 mPa. A slight decrease in
viscosity can be observed with increasing nickel content (Figure 3A), yielding viscosities
of 16.0 mPa for sample 1 (1.084 wt% Ni) and 15.2 mPa for sample 2 (4.478 wt% Ni). In the
same vein, Dubberstein described a moderate decrease in viscosity depending on the nickel
content for Fe–Cr–Mn–Ni alloys with 3–6 wt% Ni [27].
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3.4. Results of SEM and EDX Analyses

Samples with significantly varying carbon contents and the maximum amount of al-
loying element (Cr and Ni) were tested using SEM and EDX analyses in both the initial state
and after rheological experiments (after high-temperature testing). Specifically, samples 5
(0.043 wt% C; 4.465 wt% Ni), 6 (1.563 wt% C; 4.495 wt% Ni), 7 (0.043 wt% C; 4.863 wt% Cr),
and 8 (1.378 wt% C; 4.591 wt% Cr) were investigated for changes in internal structure. The
results of these analyses are shown in Figures 4 and 5. Figures 4A–D and 6A–D show the
microstructures of the samples with low carbon content, i.e., samples 5 and 7 (0.043 wt% C).
When comparing the microstructures of these samples in the initial and remelted states, it
can be surmised that no significant changes in their internal structure occurred during the
rheological measurements. In both samples, bainitic ferrite or bainite is present in the initial
and remelted states. Sample 5 (4.465 wt% Ni) contains minor amounts of perlite and a
coarse cementite network. For sample 7 (4.863 wt% Cr), bainitic ferrite and bainite are more
etchable. In the center of this sample in the remelted state, complex oxide inclusions (Cr
or Mn oxides) were detected in the bulk grain and along the grain boundaries (Figure 5B).
This was supported by EDX analysis, the results of which are shown in Table 4 and Figure 6,
containing the most representative spectra of EDX spot microanalysis. The presence of these
oxides is due to the order of magnitude higher oxygen content of this sample compared to
the other specimens. Figures 4E–H and 5E–H show the microstructure of samples 6 and 8
with a higher carbon content (1.563 and 1.378 wt% C). In both cases, a dominant structure
of lamellar perlite is observed. For sample 6 (4.495 wt% Ni), cementite plates are present
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in the initial state, including a fine cementite network excluded along grain boundaries.
However, after rheological testing, only plates of cementite are present. The lamellae of
pearlite appear finer after the rheological experiment. In sample 8 (4.591 wt% Cr), globular
islands of ledeburite are present in the initial state and are altered in the remelted state to
larger blocks of reticulated ledeburite along grain boundaries.
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Figure 5. Microstructure of chromium sample 7 (A–D) with lower carbon content and sam-
ple 8 (E–H) with higher carbon content; left column—initial state, right column—remelted state;
(A,B,E,F)—light microscopy, (C,D,G,H)—scanning electron microscopy. Locations where EDX spot
microanalysis was performed (inlay of Figure 6B).

Table 4. EDX point analysis of oxide inclusions of sample 7.

Spectrum
O Al Cr Mn Fe

(wt%)

1 29.2 6.6 31.5 20.3 12.6
2 29.7 7.3 32.6 21.0 9.4
3 31.9 8.9 32.6 21.3 5.3
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Figure 6. EDX spectra collected from spot microanalysis of sample 7; (A–C) correspond to spectra 1,
2, and 3.

The results of the SEM/EDX analyses were supplemented by modeling in JMatPro
simulation software, which calculates a wide range of alloy properties and focuses on mul-
ticomponent alloys of significant industrial importance. We targeted the phase composition
of samples 7 (0.043 wt% C, 4.863 wt% Cr) and 8 (1.378 wt% C, 4.591 wt% Cr), and the
results of the calculations are shown in Figure 7. For sample 7, nonequilibrium structural
phases were assumed due to the presence of bainite. Based on the simulated phases of
sample 7 (Figure 7A), bainite is the dominant phase. However, ferrite was also present in
the structure of the samples considered for the experiment. The calculated equilibrium
structural phases of sample 8 are shown in Figure 7B. In this sample, the presence of perlite,
a lamellar mixture of ferrite and cementite, was confirmed. As mentioned above, the
presence of not only perlite but also ledeburite, a mixture of cementite and perlite, was
confirmed for the real sample. In the theoretical calculation, ledeburite was not detected in
the structure, and the sample’s composition does not correspond to the region of ledeburite
formation in the iron-cementite phase diagram, where ledeburite occurs in alloys with
carbon contents higher than 2.11 wt% [36]. However, carbide-forming elements such as Cr
and Mn also promote the formation of ledeburite. Sample 8 contains 1.378 wt% C but also
4.591 wt% Cr and 0.047 wt% Mn. It can be assumed that the larger amount of chromium
probably caused the displacement of the ledeburite formation. The differences between
the calculated compositions and those obtained by SEM analysis could be because the
calculations use simplifications that do not fully reflect the actual processes occurring in
the sample throughout the experiment.
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4. Conclusions

The results of this experimental study on the rheological properties of Fe–C–Cr- and
Fe–C–Ni-based low-alloy steels can be summarized as follows:

• The liquidus temperature of the alloys studied decreased with increasing carbon
content in the samples. The highest liquidus temperature was detected for sample
7, with the lowest carbon content and the highest chromium content (0.043 wt% C,
4.495 wt% Cr), and the lowest liquidus temperature was found for sample 6, with the
highest carbon and nickel contents (1.563 wt% C, 4.495 wt% Ni).

• The flow properties of the alloys studied were represented by flow and viscosity
curves. Based on their shape, it was found that all samples exhibited non-Newtonian
behavior since the shear stress increased non-linearly with the shear rate, as in the case
of dynamic viscosity.

• All samples under study showed an exponential increase in viscosity with decreasing
temperature. The effect of chromium, nickel, and carbon on the dynamic viscosity
value in a given concentration range was minimal. A slight increase in viscosity was
observed with the addition of chromium and carbon, while the viscosity decreased
moderately with the addition of nickel.

• Changes in the microstructure of the selected samples were examined using SEM and
EDX analyses, and it was found that no significant changes in the internal structure
occurred during high-temperature rheological testing.

The determination of rheological properties, especially the viscosity of metallic melts,
is essential, for example, in casting, because viscosity controls the transport rate of liquid
metals, which is intimately related to the formation of casting defects such as hot tearing
and increased porosity.
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