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Abstract: W is a widely used refractory metal with ultra-high melting point up to 3410 ◦C. However,
its applications are limited by poor ablation resistance under high-temperature flame and air flow,
which is crucial for aerospace vehicles. To improve the ablation resistance of W under extreme
conditions, W-Y alloys doped with different Hf mass fractions (0, 10, 20, and 30) were prepared using
the fast hot pressing sintering method. Microstructure and ablation behaviours at 2000 ◦C were
investigated. Results showed that adding an appropriate amount of Hf improved the properties of
the W-Y alloy evidently. In particular, the hardness of the alloy increased with the increased content
of Hf. The formation of the HfO2 layer on the surface during ablation decreased the mass and linear
ablation rates, indicating enhanced ablation resistance. However, excessive Hf addition will result in
crack behaviour during ablation. With a Hf content of 20 wt.%, the alloy exhibited high stability and
an excellent ablation resistance.

Keywords: tungsten-yttrium-hafnium alloy; HfW2; ablation resistance; HfO2 oxide layer

1. Introduction

W is a refractory metal with the highest melting point of 3410 ◦C compared to those
of the others. In addition, it exhibits excellent properties, such as high density, high
chemical stability, low vapor pressure, and low coefficients of thermal expansion, which
increase its wide applicability [1–5]. Recently, the high-temperature applications of W, such
as in fusion reactors and hypersonic vehicles, have received considerable attention. In
particular, the first wall materials, missile nose caps, and rocket nozzles are representative
components operating in harsh external environments, such as high temperature of over
2000 ◦C and strong airflow scouring [6]. However, the application of W in high-temperature
scenarios is limited by its poor oxidation and ablation resistance. In detail, W starts to
oxide at 300–400 ◦C and forms WOx (x = 2~3) at higher temperatures, exhibiting a low
melting point of 1473 ◦C, resulting in a poor resistance of the oxide layer. Therefore, the
oxidation and ablation resistance of W should be improved to withstand higher service
temperatures [7].

In order to improve this situation, researchers hope to improve the ablation resistance
of W by the alloying method. Now, several studies have confirmed the benefits of the
addition of metals [8–12]. However, these metals cannot withstand high-temperature
ablation, and their oxides exhibit poor stability, similar to W. Therefore, how to improve
the ablation resistance should be further investigated. Hf is also a refractory metal with
a high melting point of 2233 ◦C. Higher melting point oxide (HfO2) will be formed at
high temperatures. Based on W-Hf phase diagram [13], HfW2 formed by diffusion during
sintering also has a high melting point and microhardness, implying excellent properties of
the W-Hf alloy. However, as Hf is located in the IVB region of the periodic table, similar
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to Zr, its high activity results in the oxidation after sintering [14,15]. To address this issue,
rare earth (RE) elements, which have high affinity toward O and impurities, can be used to
prevent the oxidation of Hf. RE-doped W alloys possess notable characteristics, such as
high-temperature strength and wear properties, and they demonstrate high performance
in purifying the matrix and pinning the grain boundary [16–19].

Y is more active than Hf, and its corresponding oxide (Y2O3) is highly stable. Previous
studies have employed Y and Y2O3 to promote sintering [20]. As one of rare earth oxides,
Y2O3 is an excellent sintering aid with a low W eutectic point of 1560 ◦C [21]. Therefore, it
is an optimal reinforcement for oxide-dispersion-strengthened W [22–25]. Though Y will
be oxidized for the absorption to oxygen, the formed Y2O3 will not have a negative effect
on the matrix. Further, the addition of RE elements in their metallic state is more effective
than that of their oxidic state [26].

Owing to the poor sintering performance, the fabrication of fully dense W by hot
pressing requires a temperature more than 2200 ◦C, and it will prompt grain growth [25].
To address this issue, fast hot pressing (FHP) sintering is proposed as a new technology
to complete the sintering process with the assistance of current within minutes, thereby
saving the sintering time and inhibiting grain growth.

In this study, W-1.5 wt.% Y-x wt.% Hf (x = 0, 10, 20, 30) alloys (shortened as W-1.5 Y-x
Hf) were fabricated using the FHP method to investigate their microstructure and ablation
behaviour based on a previous study [27]. This study evaluated the effects of Hf on W-Y
alloys during high-temperature ablation and elucidated the ablation mechanisms with
Hf addition.

2. Materials and Methods

Pure W (1–3 µm, 99.9% purity), YH2 (~74 µm, 99% purity), and Hf (~10 µm, 99.9%
purity) powders were prepared for the experiment. Different mass fractions of Hf (0, 10,
20, and 30) were added to W-1.5 wt.% Y alloy powders used as the starting materials. The
powders were mixed in a planetary ball mill (ZQM-4L, Tianchuang, Changsha, China)
using zirconia balls with a ball-to-powder ratio of 5:1 and speed of 280 rpm for 8 h. Ethanol
was used as the medium. The ball-milled powders were filtered and vacuum dried for
sintering (FHP-828, Hateng, Suzhou, China). The powder was placed in a graphite mould
and sintered at 1800 ◦C for 3 min under an Ar atmosphere at a pressure of 50 MPa. The
heating rate was maintained at 100 ◦C/min up to 1600 ◦C and 50 ◦C/min up to 1800 ◦C.

The diameter of sintered specimens is 30 mm, and the height is more than 3 mm
(to optimize the process for ablation). The mass contents of powders are calculated and
weighed to prepare the composition of sintered specimen. For example, for 100 g W-1.5
Y-10 Hf powder, the mass of different elements can be calculated as follows:

m = mW + mY + mH f = 100 g

mY = 100× 1.5%

mH f = 100× 10%

mW = 100−mY −mH f

The sintered specimens were ground to 2000 mesh and polished using the diamond
polishing agent. The phase composition was analysed via X-ray diffraction (XRD, X pert Pro
MPD, PANalytical B.V., Almelo, NL, USA). Field emission scanning electron microscopy
(FE-SEM) coupled with energy-dispersive spectroscopy (JSM-7001 F (JEOL, Akishima,
Tokyo) + INCA X-MAX (Oxford Instruments, Abbington, Oxford, UK)) was employed
to investigate the microstructure and elemental distribution. A transmission electron mi-
croscopy (TEM) instrument integrated with an EDS system (FEI Talos F200x G2 + super-x,
Thermo Fisher Scientific, Waltham, MA, USA) was used to investigate the crystal structure.
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Vickers microhardness (HX-1000 TM, Taiming, Shanghai, China) was tested under a
load of 200 g for 15 s. The calculation formula is listed as follows:

HV0.2 =
0.1891× F

d2 (F : load; d : indentation diameter)

The relative density was measured by the Archimedes method using an electronic
balance (ML204/02, Mettler Toledo, Columbus, OH, USA). The calculation progress is
concluded as follows:

ρrelative =
ρreal

ρtheory

ρreal =
M× ρ0

M1
(ρ0 : density o f water; M1 : mass in the water)

ρtheory =
M

ΣVi

Vi =
Mi
ρi

The weight and height of the specimens before and after ablation were recorded
to calculate the mass and linear ablation rates. The ablation test was performed in an
Ar-H plasma ablation system that can provide high temperatures of more than 2000 ◦C.
The distance between spray nozzle and surface of specimen was set to 45 mm. During
temperature detection using an infrared thermometer (RAYMM1MHVF1L, Raytek, Santa
Cruz, CA, USA), the ablation condition was controlled at 2000 ◦C for 60 s. The surface and
cross-section of the ablated specimen were also investigated.

3. Results and Discussion
3.1. Microstructure Analysis
3.1.1. Composition Analysis

The XRD results of the milled powders and sintered specimens are shown in Figure 1.
The peaks of milled powders in Figure 1a are identified as W, Hf, and YH2, respectively,
corresponding to the starting materials. Figure 1b shows the results of the sintered speci-
mens. Four characteristic peaks identified as W were observed on each curve, whereas Y
peaks were not noted for relatively weak peak intensity. With the increase in Hf content,
different peaks corresponding to HfW2 appeared with increasing intensity. Besides, some
peaks of HfW2 phase are highly coincident with W [13], leading to the combination of
two diffraction peaks. The combined peaks are marked using “W & HfW2” in order to
distinguish them from the others. The phase equilibrium values and SemiQuant values of
W and HfW2 phases formed after sintering with different contents of Hf are listed in Table 1.
The values of SemiQuant are close to phase equilibrium values. According to Table 1, the
main phase of matrix will change from W to HfW2 when the Hf content reaches 20 wt.%.

Table 1. Phase equilibrium values and SemiQuant values of different phases in alloys.

Proportion (wt.%)

W HfW2

Phase
Equilibrium Value SemiQuant Values Phase

Equilibrium Value SemiQuant Values

W-1.5Y-10Hf 80 75 20 25
W-1.5Y-20Hf 45 49 55 51
W-1.5Y-30Hf 11 6 89 94

SEM was used to investigate the microstructure of the W-1.5 Y alloys with different
Hf contents, as shown in Figure 2a–d. When the Hf content was less than 10%, the
microstructure of the samples was retained. When the Hf content was increased to
20 wt.%, the microstructure changes obviously, which is consistent with the above
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analysis. When the content of Hf reaches 30%, the matrix changes completely, and the
black phase agglomerates.
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Figure 2. SEM images of the sintered W-1.5 Y-x Hf, where x is (a) 0, (b) 10, (c) 20, and (d) 30.

EDS analysis was performed to identify the different phases of the specimen, as listed
in Table 2. Two phases of A and B in Figure 2a are, respectively, identified as W and
Y2O3 [26,28]. With 10 wt.% Hf, three phases marked as A, B, and C are noted in Figure 2b.
The bright grey phase A is W with a small amount of Hf diffusion. Meanwhile, phase B is
still Y2O3, and the dark grey phase C is Hf dissolved with W. It demonstrates the diffusion
of W and Hf within each other at high temperatures. When the Hf content is 20 wt.%, the
content of HfW2 (A) exceeds that of W (D). Meanwhile, part of W phase still exists in the
matrix. However, when the Hf content reaches 30 wt.%, the matrix is basically transformed
into HfW2, as shown in Figure 2d, which conforms to the results in Table 1.
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Table 2. EDS analysis results revealing the element content at different points in Figure 2.

Compositions (at.%) W Hf Y O

(a) A 100.00 — — —
(a) B 6.57 — 29.66 63.77
(b) A 93.13 6.87 — —
(b) B — — 34.78 65.22
(b) C 12.08 87.92 — —
(c) A 65.82 34.18 — —
(c) B — 4.32 29.48 66.20
(c) C — 87.66 — 12.34
(c) D 100.00 — — —
(d) A 64.43 35.57 — —
(d) B — 2.33 41.25 56.42
(d) C — 100.00 — —

3.1.2. Relative Density and Microhardness Analyses

The relative density and microhardness values are listed in Table 3. The W-1.5 Y alloy
has a lower relative density due to the difficulty of sintering [22,23]. Adding appropriate
amounts of Hf improved the density of the alloys. However, the relative density decreased
to 96% when the Hf content reached 30 wt.%, indicating that excessive Hf addition inhibited
sintering. Nevertheless, the relative density of all specimens exceeds 95%, suggesting the
successful sintering and densification of the W-Y-Hf alloys. Meanwhile, the hardness
sharply increased up to 1213 HV0.2 when the Hf content reaches 30 wt.%. This can be
attributed to the improved density, solid solution strengthening effects, and the formation
of a large amount of HfW2 phase, which has high hardness [13]. Hence, appropriate Hf
addition promotes the matrix performance of W alloys.

Table 3. Relative density and hardness of the W-1.5 Y alloys with the addition of different Hf contents.

Relative Density Hardness (HV0.2)

W-1.5 Y 96.3% 501 ± 15
W-1.5 Y-10 Hf 99.8% 655 ± 13
W-1.5 Y-20 Hf 98.9% 950 ± 13
W-1.5 Y-30 Hf 96.0% 1213 ± 16

3.1.3. Structure Analysis

TEM analysis was used to investigate the microstructure, element distribution, and
diffraction patterns of different phases. Figure 3a,b show the morphology of W-1.5 Y-20
Hf after ion-beam thinning and the corresponding element distribution, respectively. The
W-rich and Hf-rich phases are obviously different in morphology. O is mainly distributed
in the Y-containing area because Y absorbs O to form Y2O3 and purify the matrix [29].
Figure 3c shows the line scan image of relative intensity of the different elements marked
in Figure 3b. As the line scan did not pass through the Y-rich area, Y and O intensity curves
are horizontal. W and Hf exhibit diametrically opposite trends when the line scan passed
through the Hf-rich area. Meanwhile, the trend of the black curve shows that there are still
large amounts of W remaining in Hf, implying the formation of HfW2. Figure 3d shows
the lattice stripes on both sides of the boundary marked in Figure 3b. The stripe spacing in
the left and right areas are 0.223 and 0.434 nm, respectively, which is consistent with the
crystallographic W (110) plane and HfW2 (111) plane [30]. The included angle between
two phases is approximately 20◦. Figure 3e,f show the fast Fourier transform results of
the circled area in the embedded HR-TEM images. The calculation results correspond to
the crystallographic structure of W and HfW2. Therefore, adding Hf to the W-1.5 Y alloy
resulted in the formation of HfW2, confirming the results in Figure 1b.
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3.2. Ablation Analysis
3.2.1. Ablation Surface Analysis

Figure 4a shows the ablation curve plotted with temperature as a function of time.
When the content of added Hf was less than 20 wt.%, the specimens remained stable under
temperature variations, thereby withstanding ablation at 2000 ◦C for 60 s. However, when
the Hf content reached 30 wt.%, the specimen cracked at the heating stage. The ablated
specimens are shown in Figure 4b. The sizes of alloys remained the same after ablation. As
the poor oxidation resistance of W and low melting point of its oxide decrease the ablation
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resistance, W-1.5 Y has a smooth pit surface without an obvious melting layer. Compared
with W-1.5 Y, the alloy added with 10 or 20 wt.% Hf exhibited a flat surface covered with a
melting layer. The melting layer of W-1.5 Y-20 Hf was more uniform and denser. Although
W-1.5 Y-30 Hf has a flat surface, it is too unstable at high temperatures to withstand ablation.
This can be ascribed to the increased press in sintering with the excessive addition of Hf,
resulting in cracking behaviour during the high-temperature ablation process [31,32].
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Figure 4c shows the surface XRD of ablated specimens. Compared with W-1.5 Y, the
ablated surfaces with 10 and 20 wt.% Hf generated large amounts of HfO2 phase, implying
the formation of Hf oxide layer [33]. The number and intensity of diffraction peaks of
ablated W-1.5 Y-20 Hf alloy increased, indicating better protection effects. Figure 4d shows
the mass and linear ablation rates of ablated specimens. The mass and linear ablation rates
decreased from 32.3 × 10−3 to 7.0 × 10−3 g/(cm2·s) and 25.3 × 10−3 to 3.8 × 10−3 mm/s,
respectively, as the Hf content was increased from 0 to 20 wt.%. Compared with traditional
W-Cu alloy, Hf-added alloys have lower mass and linear ablation rate, and they are close to
composites added with carbides [34]. These results suggest the significant effect of adding
Hf for improving ablation resistance. Based on the results, W-1.5 Y-20 Hf exhibited the
highest ablation resistance in this study.

The topographies of ablated surfaces of W-1.5Y alloys added with different Hf contents
are shown in Figure 5. Figure 5a shows the smooth ablated surface of W-1.5 Y alloy, which
is consistent with the results in Figure 4b. However, many pores are distributed on the
surface layer, which may be attributed to the porous WO3 and dissolution of Y2O3 in the
WO3 melt during the high-temperature ablation process [35,36]. The low melting point
of WO3 and porous structure lead to the poor performance of surface layer of W-1.5 Y
in resisting oxidation and high-temperature ablation. Figure 5b,c show the central and
surrounding areas of the ablated surface of W-1.5 Y-10 Hf. After cooling, many melted
oxides were generated, attached, and aggregated in the central area, whereas some were
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blown to the surrounding area. In contrast to W-1.5 Y, Hf addition resulted in the generation
of HfO2 during ablation. As HfO2 has a good ablation resistance owing to its high melting
point of ~2800 ◦C, a melted oxide layer covering the alloy surface was observed, though
some pores can be found. Figure 5d,e show the increased content of the melted oxides and
compactness of the surface layer, as indicated by the red-circled area when the Hf content
reached 20 wt.%. EDS analysis was used to investigate the elemental distribution and
compositions of the surface layer, as shown in Figure 5f. W and Y were evenly distributed
in the scanning area. In contrast, Hf was concentrated in the right flat area, as marked by
the white line. The O distribution coincides with that of Hf, indicating the formation of a
HfO2 protective layer.
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3.2.2. Ablation Cross-Section Analysis

Figure 6a shows the cross-section of ablated W-1.5 Y, whereby an oxide layer covering
the surface can be clearly observed. The average thickness of the oxide layer is approx-
imately 5.5 µm. The flat local oxide layer corresponds well with the smooth surface in
Figure 5a. Figure 6b,c show the ablated cross-section of alloys with 10 and 20 wt.% Hf. The
alloy structure can be divided into three parts, namely, the melted oxide layer, the oxygen
diffusion area, and the internal matrix. The thicknesses of the oxide layer and oxygen
diffusion area are 9 and 141 µm, respectively, in Figure 6b, as well as 13.5 and 173 µm,
respectively, in Figure 6c. The existence of oxygen diffusion area demonstrates that Hf
addition has considerable effects on protecting the internal matrix by forming a surface
layer. Compared to W-1.5 Y-10 Hf, W-1.5 Y-20 Hf has a thicker oxide layer with higher
uniformity and coverage, which is beneficial in preventing the infiltration of oxygen and
reducing the WO3 loss [33,37]. Therefore, W-1.5 Y-20 Hf has a higher ablation resistance,
indicating a more protective effect on the matrix. This also explains the larger oxygen
diffusion depth in W-1.5 Y-20 Hf than that of W-1.5 Y-10 Hf [6]. Two phases in the oxygen
diffusion area caused by oxidation are marked in Figure 6c. The element analysis results
are listed in Table 4. The bright grey phase is the primitive HfW2 phase, and the dark grey
phase is the W-Hf-O compound. Figure 6d shows the EDS analysis of the cross-section of
Figure 6c. W and Y are uniformly distributed in the scanning area. The top distribution
outline of Hf marked in white line matches well with the surface profile, demonstrating the
formation of the HfO2 layer. Moreover, O distribution regions can be divided into three
types: the upper region represents the melted oxide layer, the middle region represents the
partially oxidised W-Hf compound, and the lower region contains only a small amount
of oxygen.
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Table 4. Element analysis of the points in Figure 6c.

Composition (at.%) W Hf O

A 35.02 17.84 47.14
B 66.90 33.10 0.00

3.2.3. Ablation Mechanism

Among the sintered samples, Hf-added W-1.5 Y alloys exhibit better properties.
Figure 7 depicts the ablation process and ablation mechanism of the W-Y and W-Y-Hf
alloys. For W-1.5 Y, the surface was instantaneously oxidised to WO3 when the temperature
reached 2000 ◦C. Due to its low melting point, WO3 formed on the surface became liquid
and was blown away by the plasma plume. The main reaction is:

2W + 3O2 → 2WO3 (1)

Due to the significant loss of W, the specimen exhibited a smooth surface after cooling.
Consequently, the mass and height significantly decreased, particularly near the centre,
thereby forming a crater-like surface. Therefore, the high-temperature applications of W-1.5
Y are severely limited.

The ablation mechanism changed when Hf was added as an anti-ablation component
to protect the matrix. Under the same ablation condition, oxidation occurred, thereby
forming WO3 and HfO2. During the high-temperature ablation process, the W gradually
lost as WO3 was melted, whereas HfO2 remained in the matrix, forming the composite
oxide layer. The altered reactions can be summarised as follows:

2W + Hf→ HfW2 (2)

2W + 3O2 → 2WO3 (3)

HfW2 + 4O2 → 2WO3 + HfO2 (4)
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HfW2 + XO2 → HfW2O2X (5)

The formation of HfO2 layer with a high melting point improved the ablation resistance
by decelerating the oxygen diffusion and reducing the W loss. Therefore, the W-Y-Hf alloys
exhibit flat surfaces with lower mass and linear ablation rates.
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4. Conclusions

This study is mainly focused on investigating the microstructure and ablation be-
haviour of W-1.5 Y-x Hf (x = 0, 10, 20 30) alloys. The results obtained in this study can be
summarised as follows:

(1) The prepared powders sintered using the FHP method achieved high relative densities
of more than 95%. Hf was retained after sintering with the protection effect of Y. W
and Hf formed the HfW2 phase via diffusion. The microhardness increased from
501 to 1213 HV0.2 with the increase in Hf content from 0 to 30 wt.%.

(2) After ablation, the W-1.5 Y alloy had a smooth pit surface, whereas W-Y-Hf alloys had
a flat surface covered with an obvious oxide layer. When the Hf content was increased
from 0 to 20 wt.%, the mass and linear ablation rates decreased from 32.3 × 10−3 to
7.0 × 10−3 g/(cm2·s) and 25.3 × 10−3 to 3.8 × 10−3 mm/s, respectively.

(3) Under the same ablation conditions, the Hf-added W-1.5 Y alloys form a more pro-
tective composite oxide layer. This slowed the diffusion of oxygen and reduced the
ablation loss, thereby improving the ablation resistance and protecting the matrix. In
view of the result, adding Hf will be of benefit to improve the ablation resistance of
W. W-Y-Hf alloys can be developed to fabricate the high-temperature matrix in the
aerospace field or for components and parts for high-temperature ablation. However,
adding too much Hf results in an ablative crack during the high-temperature ablation
process. A comprehensive analysis revealed the W-1.5 Y alloy added with 20 wt.% Hf
as the optimal composition.
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