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Abstract: In order to explore the microstructure evolution of an Mg-RE alloy refined by Al during
solution treatment, an Mg-3Y-4Nd-2Al alloy was treated at 545 ◦C for different time periods. Phase
evolution of the alloy was investigated. After solution treatment, the Mg-RE eutectic phase in the Mg-
3Y-4Nd-2Al alloy dissolves, the granular Al2RE phase does not change, the acicular Al11RE3 phase
breaks into the short rod-like Al2RE phase, and the lamellar Al2RE phase precipitates in the grains.
With the extension of solution time, the precipitated phase of the lamellar Al2RE increased at first and
then decreased, and its orientation relationship with the matrix is < 112 >Al2RE// < 2110 >Mg and
{111}Al2RE//{0002}Mg. The undissolved granular Al2RE phase can improve the thermal stability
of the alloy grain by pinning the grain boundary, and the grain size did not change after solution
treatment. Solution treatment significantly improved the plasticity of the alloy. After 48 h of solution
treatment, the elongation increased to 17.5% from 8.5% in the as-cast state.

Keywords: Mg-3Y-4Nd-2Al; solution treatment; phase evolution; grain size; plasticity

1. Introduction

Cast Mg-Y-Nd alloy has been widely used in industrial fields because of its excellent
mechanical properties at room temperature and high temperatures [1–4]. The cast Mg-
RE alloys without refinement have very well-developed and coarse grains, making their
mechanical properties low while promoting the formation of defects such as hot cracking
and porosity. Therefore, grain refinement is necessary for the cast Mg-RE alloy [1,4].
Generally, Zr is used as a grain refiner of the Mg-Y-Nd alloy [5,6]. However, Zr refinement
of the Mg-Y-Nd alloy has the disadvantage of low efficiency and high cost. In recent years,
researchers have found that the addition of Al instead of Zr as a refiner is an effective
strategy for the Mg-Y-Nd alloy [7,8].

Most Mg-RE alloys need to be strengthened by heat treatment. Solution treatment,
as an indispensable pretreatment process, provides the microstructure basis for aging
treatment [9–11]. Therefore, controlling the microstructure transformation in the solution
process is one of the key factors to improve the mechanical properties. For the Zr-refined
Mg-RE alloy, the second phase in the as-cast state is mainly the Mg-RE eutectic phase, and
the Mg-RE phase completely dissolves into the matrix after solution treatment [12]. For
the Al-refined Mg-RE alloy, due to the lower enthalpy of formation between Al and RE ele-
ments, various second phases can be formed, such as Al2RE, Al11RE3, LPSO, et al. [13–16].
Ding et al. [17] showed that the Al2RE phase in the Mg-RE-Al alloy is stable at high temper-
atures, which cannot be dissolved by homogenization and solution treatment. Su et al. [18]
revealed that the Al11RE3 phase in the Mg-RE-Al alloy at high temperatures is unstable
and can be decomposed to form the Al2RE phase. Li et al. [19] found that the Mg-10Y-1Al
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alloy has excellent thermal stability after solution treatment. The reason for this stabil-
ity is that the long-period stacking-ordered (LPSO) phase precipitated along the grain
boundary can effectively pin the grain boundary. In addition, Peng et al. [20] found that
after solution treatment, in addition to the micro-sized Al2Y particles in or along the grain
boundary, nano-sized particles would also precipitate in or along the grain boundary of the
Mg-1Al-6.2Y alloy, and confirmed that the precipitated phase was Al2Y.

In summary, different from the traditional Zr-refined Mg-RE alloy, the microstructure
change in Al-refined Mg-RE alloy during heat treatment is more complex. At present, the
research on the microstructure evolution of new Al-refined Mg-RE alloy during solution
treatment is very limited. In view of the importance of solution treatment of the Mg-RE-
Al alloy, the microstructure and evolution of the Mg-3Y-4Nd-2Al alloy during solution
treatment are deeply analyzed in this paper. In addition, the effect of solution time on the
thermal stability and tensile properties of alloy grains is also discussed, which provides a
theoretical basis for the development of the heat treatment process of the Mg-RE-Al alloy.

2. Experimental Method

The experimental alloy selected in this paper is the Mg-3Y-4Nd-2Al alloy. The experi-
mental alloy is made of pure Mg, pure Al, Mg-30 wt.% Nd, and Mg-30 wt.% Y master alloy.
All raw materials were smelted in a resistance furnace with a steel crucible. The mixture of
SF6 (1 vol.%) and CO2 (99 vol.%) was used to protect the melting process, and the melting
temperature was 750 ◦C. The melt was stirred, rested, slagged, and then poured into a
metal mold preheated at 200 ◦C (cavity size: 100 mm × 10 mm × 60 mm). A box-type
resistance furnace (HCY-03F, Songjiang Co., Ltd., Harbin, China) was used, the temperature
control precision was less than ±2 ◦C, and the solution treatment temperature was 545 ◦C
based on the result of the differential scanning calorimeter (DSC) (STA 449F3, Netzsch,
Bavaria, German). The DSC samples were heated from room temperature to 700 ◦C at the
rate of 10 ◦C/min. The solution treatment time was from 2 h to 48 h, and the water medium
was used for cooling.

The samples were etched by using picric acid caustic (10 g picric acid +8 mL glacial
acetic acid +20 mL deionized water +70 mL ethanol). The microstructure was observed
by optical microscope (OM, XD30M, Beijing Instant Hengye Technology Co., Ltd., Beijing,
China), and the average grain size was measured by the linear intercept method. The phase
crystal structure of the alloy was analyzed by X-ray diffractometer (XRD)(X’Pert PRO,
PANalytical B.V., Almelo, The Netherlands). The experimental voltage was set at 40 kV, Cu
target was used, the scanning range was 10◦~90◦, and the scanning rate was 8◦/min.

Scanning electron microscopy (SEM, Apreo C, Thermo Fisher Scientific Inc., St. Bend,
OR, USA) was used to observe the morphology and distribution of the second phase. Trans-
mission electron microscopy (TEM, TALOS 200FX G2, Thermo Fisher Waltham, Waltham,
MA, USA) was used to observe the microstructure of the alloy and analyze the structure
and element distribution of the second phase in the alloy. The TEM specimens were ground
to 40~50 µm in thickness and then prepared by ion milling operating at 20 µA and 3◦~9◦

milling angle.
The universal testing machine (MTS E44.304, MTS Systems Co., Eden Prairie, MN,

USA) was used to carry out the tensile test at room temperature at a tensile rate of
1 mm/min. The gauge dimension of the tensile specimens is 15 mm × 3 mm × 2 mm.
In order to ensure the test accuracy, five tensile samples were measured, and the average
value was taken as the final test result.

3. Results and Analysis
3.1. Microstructure of As-Cast Alloy

Figure 1a–c are SEM, XRD, and EDS energy spectra of the as-cast Mg-3Y-4Nd-2Al
alloy, respectively. Combined with various characterization methods, it is known that the
as-cast Mg-3Y-4Nd-2Al alloy mainly contains three kinds of second phases, namely, the
granular phase in the grain (Al2RE phase), the acicular second phase (Al11RE3 phase) near
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the grain boundary, and the eutectic phase near the grain boundary (Mg-RE intermetallic
phase: Mg12RE, β1-Mg14Nd2Y). The Al2RE phase is preferentially precipitated during
solidification and can be used as the nucleating particles to refine grains [21].
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Figure 1. As-cast Mg-3Y-4Nd-2Al alloy: (a) SEM, (b) XRD pattern, and (c) EDS mapping.

3.2. DSC of As-Cast Alloy

In order to determine the dissolution temperature of the phase in the alloy, the as-cast
Mg-3Y-4Nd-2Al alloy was analyzed by DSC, and the results are shown in Figure 2. The
DSC curve of the Mg-3Y-4Nd-2Al alloy has one large and one small endothermic peak. The
larger endothermic peak is at 640.5 ◦C, corresponding to the dissolution temperature of the
Mg matrix. The smaller endothermic peak is at 547.6 ◦C, corresponding to the dissolution
temperature of the second phase. To avoid overheating, the solid solution temperature
was selected near the solution temperature of the second phase. Thus, the solid solution
temperature was 545 ◦C.

3.3. Phase Evolution of Solution-Treated Alloy

Figure 3 shows the XRD patterns of the Mg-3Y-4Nd-2Al alloy after solution treatment
at 545 ◦C for different time periods. The diffraction peaks of the α-Mg, Al2RE, Mg12RE,
and Al11RE3 phases were mainly contained in the alloy after 2 h of solution treatment.
When the solution time was longer than 2 h, only α-Mg and Al2RE phase diffraction peaks
were contained in the alloy, indicating that only the Al2RE phase existed in the alloy after
solution treatment. The Al2RE phase has a high melting point and does not dissolve during
solution treatment. Similarly, there is an undissolved second phase in the Al-refined Mg-RE
alloy studied by Ding [17] after solution treatment.
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time periods.

In order to further characterize the microstructure evolution of the Mg-3Y-4Nd-2Al
alloy during solution treatment, the solution-treated alloy was analyzed by SEM, and the
results are shown in Figure 4. After solution treatment for 2 h, the alloy contained a small
amount of undissolved Mg-RE eutectic phase, as shown by the blue arrow in Figure 4a. The
morphology of the granular Al2RE phase (“A” phase) and the acicular Al11RE3 phase (“B”
phase) was almost unchanged, while a large number of the fine lamellar phase (“C” phase)
was precipitated within the grains. As shown in Figure 4b–f, with the extension of solution
time, the Mg-RE eutectic phase was almost completely dissolved into the Mg matrix, while
the granular phase remained unchanged, and the acicular phase gradually evolved into a
short rod-like morphology and gradually spheroidized at the grain boundary. Only the
second phase with a partially short rod-like morphology can be observed at the grain
boundary. When the solution time is extended to 4 h (Figure 4b), the lamellar second phase
precipitated inside the grain boundary increases more densely, while when the solution
time reaches 8~16 h (Figure 4c,d), the number of the lamellar second phase decreases and
the size increases. When the solution time is extended to 24 h to 48 h (Figure 4e,f), the
content of the lamellar phase is very little. Combined with the results of SEM and XRD
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analyses, the short rod-like phase and precipitated lamellar phase after solution treatment
may be the Al2RE phase.
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Figure 4. SEM images of the Mg-3Y-4Nd-2Al alloy after solution at 545 ◦C for different time periods:
(a) 2 h, (b) 4 h; (c) 8 h, (d) 16 h, (e) 24 h, and (f) 48 h.

In order to further determine the structure of each phase in the solution-treated alloy,
TEM analysis was carried out. Figure 5 shows the TEM image and SAED patterns of
granular phases in the solution-treated alloy. After the solution treatment, the morphology
of the granular phase does not change obviously, and the granular phase has a face-centered
cubic structure, and the lattice constant is about 0.78 nm, which is determined to be the
Al2RE phase.

Figure 6 shows the HAADF-STEM morphology, SEAD patterns, and EDS mapping
of the acicular phase before and after fracture with different solution times. As shown in
Figure 6a, when the solution time is 2 h, the morphology of the acicular phase is basically the
same as that of the as-cast alloy, but some of the acicular phase has broken and transformed
into a short rod-like phase. From Figure 6b, it can be seen that both the acicular phase and
the short rod-like phase mainly contain Y, Nd, and Al elements. SAED analysis shows
that the acicular phase is the Al11RE3 phase, while the short rod-like phase is the Al2RE
phase, indicating that the Al11RE3 phase is metastable in Mg-Y-Nd-Al alloys. The fractured
acicular phase with a solution time of 4 h is shown in Figure 6c,d. Combined with the
mapping and SEAD results, it can be seen that the fractured acicular phase is still the Al2RE
phase, indicating that when the solution time exceeds 2 h, all the acicular phases fracture
and transform into the Al2RE phase, which is consistent with the XRD results.
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Figure 6. HAADF-STEM morphology, SEAD patterns, and EDS mapping of acicular phase and short
rod-like phase in the Mg-3Y-4Nd-2Al alloy with different solution times: (a,b) 2 h; (c,d) 4 h.

The existence of precipitated phase in the Al-refined Mg-RE alloy during solid solution
is an interesting phenomenon [13–17]; however, the precipitated phase was not character-
ized in detail in previous studies. Therefore, the lamellar precipitated phase was analyzed
and studied in detail by TEM technology in this paper. Figure 7 shows the HAADF-STEM
morphology, EDS mapping, HRTEM images, and SAED patterns of the lamellar phase
of the alloy with different solution times. It can be seen that the lamellar phase can be
observed in the matrix under different solution times as shown in Figure 7a,e,i and the
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lamellar phase mainly contains Y, Nd, and Al elements as shown in Figure 7b,f,j. HRTEM
images showed that there was a clear interface between the lamellar precipitated phase
and the α-Mg matrix as shown in Figure 7c,g,k. It can be confirmed from SAED patterns
that the lamellar phase is the Al2RE phase, and the orientation relationship between the
Al2RE precipitated phase and the matrix is: [112]Al2RE//[1120]Mg, (111)Al2RE//{0001}Mg
as shown in Figure 7d,h,l.
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Figure 7. HAADF-STEM morphology, EDS mapping, HRTEM images, and SAED patterns of lamellar
phase in the Mg-3Y-4Nd-2Al alloy with different solution times: (a–d) soluted for 2 h; (e–h) soluted
for 8 h; (i–l) soluted for 48 h.

Because of the high solubility of RE in the α-Mg at high temperatures [22], the Mg-RE
eutectic phase in the Mg-3Y-4Nd-Al alloy dissolved and the RE element diffused into the
α-Mg matrix to form a solid solution after the solution treatment. The previous results
show that the Al-RE phase has the lowest enthalpy of formation in Mg-RE-Al alloys,
while the Al2RE phase has the lowest enthalpy of formation [23,24] in the Al-RE phase;
therefore, the Al2RE phase is the most stable. Because the formation enthalpy of the
Al11Nd3 phase is higher than that of the Al2RE phase, it decomposed and transformed into
the Al2RE phase during the solution treatment. Zhang et al. [25,26] showed that when the
temperature is higher than 150 ◦C, the Al11RE3 phase in the alloy decomposes according to
the following reactions:

Al11RE3→3Al2RE + 5Al (1)

The formation of the lamellar Al2RE phase during the solution treatment is related
to the fracture of the acicular Al11RE3 phase and the dissolution of the Mg-RE phase. The
Al element released by the decomposition of the acicular Al11RE3 phase combines with
the RE element released by the dissolution of the Mg-RE eutectic phase to precipitate the
lamellar phase in the crystal. When the solution time is 2~4 h, the number of lamellar
precipitates is large, and their size is fine. With the extension of the solution time, the
number of intragranular lamellar phases decreases, and the size increases.

According to the principle of solid phase transformation, the new phase always precip-
itates along the specific crystal plane of the matrix, that is, there is a habit plane to ensure the
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minimum resistance to phase transformation [27]. According to the calculation of the E2EM
model [28], the mismatch between the close-packed plane {111}Al2RE of the Al2RE and
{0002}Mg of the α-Mg is the minimum, and the mismatch between the close-packed direc-
tion <112>Al2RE and < 1120 >Mg is the minimum. Therefore, when the precipitated Al2RE
phase and the α-Mg matrix have the orientation relationship < 112 >Al2Nd// < 1120 >Mg,
{111}Al2Nd//{0002}Mg, the strain energy is the lowest, and the precipitation is the easiest.
Consequently, the habit plane is (0002)Mg and the characterization in Figure 7d,h,l confirms
that the precipitated Al2RE satisfies the orientation relationship.

3.4. Grain Thermal Stability

Al refinement of the Mg-RE alloy usually has good grain thermal stability. Figure 8
shows the change in grain size of the as-cast alloy with different solution times. The
average grain size of the as-cast alloy is 49 ± 4 µm. With the extension of solution time,
the grain size does not change obviously. After holding for 48 h, the average grain size is
51 ± 5 µm. It can be seen that, as reported in the literature [19], the Mg-3Y-4Nd-2Al alloy
also shows excellent grain thermal stability. It can be seen that the Mg-3Y-4Nd-2Al alloy
shows excellent grain thermal stability during solution treatment at 545 ◦C. In general, the
undissolved second phase at the grain boundary could hinder the growth of grains in the
process of heat treatment. As shown in Figure 9a, in the solution-treated alloy, the granular,
short rod-like and lamellar phases can be observed at the grain boundary. Through the EDS
mapping shown in Figure 9b, these phases are all the Al2RE phase. These high-temperature
stable Al2RE phases can effectively pin the grain boundary, hinder the movement of the
grain boundary, and improve the thermal stability of grains.
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3.5. Mechanical Properties of Solution-Treated Alloys

Figure 10 shows the tensile properties of the Mg-3Y-4Nd-2Al alloy after the solution
treatment at 545 ◦C for different time periods. The results show that the yield strength
and tensile strength of the as-cast alloy are 125 MPa and 205 MPa, respectively, and the
elongation is 8.5%. With the extension of the solution time, the yield strength and tensile
strength change little and the elongation increases greatly. After a solution treatment of
48 h, the elongation is 17.5%, which is 106% higher than that of the as-cast alloy.
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different time periods.

The strengthening mechanism of the as-cast alloy is mainly fine-grain strengthening
and second-phase strengthening. The contribution of fine grain strengthening remains
unchanged because the grain size of the alloy does not change obviously after solution
treatment. After solution treatment, the second phase strengthening decreases due to the
dissolution of the Mg-RE eutectic phase, and the lamellar phase precipitated along the base
plane has a larger size and has little effect on the strength. According to the EDS results
provided in the Supplementary Materials, the total content of the RE elements in the matrix
of the as-cast alloy is 0.37 at.%. After holding at 545 ◦C for 48 h, the total content of the
RE elements in the matrix is 0.62 at.%. Therefore, the solid solution strengthening effect is
enhanced due to the increase in solute elements in the matrix. Because the strength of the
alloy changes little before and after solution treatment, it shows that the decrease in the
second phase strengthening of the alloy after solution treatment is close to the increase in
solid solution strengthening.

Figure 11 shows the tensile fracture morphology of the Mg-3Y-4Nd-2Al alloy after
solution treatment at 545 ◦C for different time periods. As shown in Figure 11a, the
fracture of the as-cast alloy is mainly composed of cleavage planes, tearing edges, and
granular protrusions. The fracture mode is a mixture of intergranular brittle fracture
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and transgranular fracture. The fracture morphology changed significantly after solution
treatment, and the granular protrusion decreased significantly due to the dissolution of
the eutectic phase. The fracture surface was mainly composed of cleavage planes, tearing
edges, and a small amount of dimples. The fracture mode is a ductile transgranular fracture
as shown in Figure 11b–d. With the extension of the solution time, the number of tear
edges and dimples gradually increased, which indicated that the plasticity of the alloy
increased gradually. In addition, with the extension of the solution time, the number of
tear edges and dimples gradually increased, which indicated that the plasticity of the alloy
gradually increased.
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In the as-cast alloy, because there is a large number of Mg-RE eutectic phases at the
grain boundaries, which are large-size brittle intermetallic compounds [29,30], the stress
concentration easily occurs along the Mg-RE eutectic phases under the tensile loading,
which leads to crack initiation and propagation [31–34]. As shown in Figure 12a, the cracks
in the as-cast alloy mainly originated from the Mg-RE eutectic phases at the grain boundary.
Due to the large number of Mg-RE eutectic phases in the as-cast alloy, more cracks were
formed, showing insufficient plasticity. After a solution treatment of 2 h, compared with
the as-cast alloy, most of the eutectic phase dissolved, the crack source decreased, and the
plasticity of the alloy increased. As shown in Figure 12b, there are still a small amount of
undissolved eutectic cracks. With the further extension of the solution time, all the eutectic
phases dissolved, which greatly reduced the stress concentration at the grain boundary.
However, the lamellar phase precipitated on the base plane and its sharp corner also easily
form stress concentrations. Thus, when the solution time is 4 h, the plasticity of the alloy
is not significantly improved. After 16 h of the solution treatment, the lamellar phase
decreased, and the plasticity further increased, but the existence of cracks can still be
observed near the larger lamellar phase, as shown in Figure 12c. With the further extension
of the solution time to 48 h, the lamellar phase decreased obviously, and the cracks were
mainly caused by the granular phase in the grain, as shown in Figure 12d. Because the
morphology of the granular phase is approximately circular, the stress concentration is
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small, and the plastic deformation is larger during fracture. The plasticity of the alloy is
further improved.
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4. Conclusions

1. After solution treatment of the Mg-3Y-4Nd-2Al alloy, the Mg-RE eutectic phase dis-
solves and the granular Al2RE phase does not change obviously. With the extension
of solution time, the acicular Al11RE3 phase fractures and evolves into a short rod-like
phase. The Al2RE lamellar phase precipitates in the grain during solution treatment.
With the extension of solution time, the precipitated phase first increases and then
decreases. The orientation relationship between the lamellar Al2RE phase and the
α-Mg is < 112 >Al2RE// < 2110 >Mg, {111}Al2RE//{0002}Mg.

2. The undissolved and precipitated Al2RE phase during the solution treatment causes
the Mg-3Y-4Nd-2Al alloy to have excellent grain thermal stability, and the grain size
does not change after the solution treatment of 48 h at 545 ◦C.

3. With the extension of solution time, the strength of the alloy changed little and the
plasticity significantly increased. After the solution treatment of 48 h, the elongation
of the alloy increased by 106% compared with the as-cast alloy. The fracture of as-cast
alloy is a mixed mode of intergranular fracture and transgranular fracture, the cracks
are concentrated at the eutectic phase, and plasticity is insufficient. After the solution
treatment, the fracture mode changes to a transgranular fracture, and the cracks are
mainly concentrated in the undissolved granular phase. A small amount of cracks
occurred at the precipitated lamellar phase.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16062512/s1, Figure S1: SEM and EDS results of α-Mg matrix, (a,b) as-cast
alloy; (c,d) solution-treated alloy.
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