Nano-Hybrid Ag@LCCs Systems with Potential Wound-Healing Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Synthesis and Characterization
2.2. Computational Methods
2.3. Reagents
2.4. Cell Cultures
2.5. Cytotoxicity Assay
2.6. In Vitro Scratch Assay
2.7. Antibacterial Susceptibility Assay
3. Results
3.1. Physicochemical Characterization of Ag@LCC Nanocolloids
3.2. Computational Methods
3.3. Antibacterial Activity
3.4. Biocompatibility with NIH/3T3 Fibroblasts and Effects on In Vitro Scratch Closure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag | silver |
LCC | linear carbon chain |
NPs | nanoparticles |
PLAL | pulsed laser ablation in liquid |
SPR | surface plasmon resonance |
BLA | bond length alternation |
STEM | scanning transmission electron microscopy |
HOMO | highest occupied molecular orbital |
LUMO | lowest unoccupied molecular orbital |
References
- Shariati, A.; Hosseini, S.M.; Chegini, Z.; Seifalian, A.; Arabestani, M.R. Graphene-Based Materials for Inhibition of Wound Infection and Accelerating Wound Healing. Biomed. Pharmacother. 2023, 158, 114184. [Google Scholar] [CrossRef]
- Luanpitpong, S.; Wang, L.; Rojanasakul, Y. The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine 2014, 9, 895–912. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Palmer, B.C.; Phelan-Dickenson, S.J.; De Louise, L.A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part. Fibre Toxicol. 2019, 16, 3. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bryce, M.R. A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics. J. Mater. Chem. C 2021, 9, 10524–10546. [Google Scholar] [CrossRef]
- Lagow, R.J.; Kampa, J.J.; Wei, H.C.; Battle, S.L.; Genge, J.W.; Laude, D.A.; Harper, C.J.; Bau, R.; Stevens, R.C.; Haw, J.F.; et al. Synthesis of Linear Acetylenic Carbon: The “Sp” Carbon Allotrope. Science 1995, 267, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Kuboyama, S.; Matsuzaki, T.; Tsuji, T. Formation of hydrogen-capped polyynes by laser ablation of C60 particles suspended in solution. Carbon 2003, 41, 2141–2148. [Google Scholar] [CrossRef]
- Casari, C.S.; Russo, V.; Bassi, A.L.; Bottani, C.E.; Cataldo, F.; Lucotti, A.; Tommasini, M.; Zoppo, M.D.; Castiglioni, C.; Zerbi, G. Stabilization of linear carbon structures in a solid Ag nanoparticle assembly. Appl. Phys. Lett. 2007, 90, 013111. [Google Scholar] [CrossRef][Green Version]
- Li, X.; Zhang, Y.; Wu, Y.; Shi, L. Pressure-tailored synthesis of confined linear carbon chains. J. Appl. Phys. 2021, 129, 064302. [Google Scholar] [CrossRef]
- Kutrovskaya, S.; Osipov, A.; Baryshev, S.; Zasedatelev, A.; Samyshkin, V.; Demirchyan, S.; Pulci, O.; Grassano, D.; Gontrani, L.; Hartmann, R.R.; et al. Excitonic Fine Structure in Emission of Linear Carbon Chains. Nano Lett. 2020, 20, 6502–6509. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, L.; Grasso, G.; Messina, E.; Bongiorno, C.; Scuderi, V.; Scalese, S.; Puglisi, O.; Spoto, G.; Compagnini, G. Role of Linear Carbon Chains in the Aggregation of Copper, Silver, and Gold Nanoparticles. J. Phys. Chem. C 2010, 114, 907–915. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lim, C.; Lee, H.S.; Shin, Y.K.; Shin, K.O.; Lee, Y.M.; Kim, S. Synthesis and Biological Evaluation of a Polyyne-Containing Sphingoid Base Probe as a Chemical Tool. Bioconjug. Chem. 2013, 24, 1324–1331. [Google Scholar] [CrossRef]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2016, 58, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.A.; Anwar, M.M.; Saeed, H. Nanomaterials for application in wound Healing: Current state-of-the-art and future perspectives. J. Polym. Res. 2022, 29, 91. [Google Scholar] [CrossRef]
- Joshi, H.C.; Dutta, D.; Gaur, N.; Singh, G.; Dubey, R.; Dwivedi, S. Silver-doped active carbon spheres and their application for microbial decontamination of water. Heliyon 2022, 8, e09209. [Google Scholar] [CrossRef] [PubMed]
- Bociaga, D.; Komorowski, P.; Batory, D.; Szymanski, W.; Olejnik, A.; Jastrzebski, K.; Jakubowski, W. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications—Physiochemical and biological evaluation. Appl. Surf. Sci. 2015, 355, 388–397. [Google Scholar] [CrossRef]
- Pasparakis, G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1817. [Google Scholar] [CrossRef]
- Nqakala, Z.B.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, M.; Onani, M.O.; Madiehe, A.M. Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int. J. Mol. Sci. 2021, 22, 11272. [Google Scholar] [CrossRef]
- Tyavambiza, C.; Meyer, M.; Meyer, S. Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering 2022, 9, 712. [Google Scholar] [CrossRef]
- Singh, M.; Thakur, V.; Kumar, V.; Raj, M.; Gupta, S.; Devi, N.; Upadhyay, S.K.; Macho, M.; Banerjee, A.; Ewe, D.; et al. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules 2022, 27, 5587. [Google Scholar] [CrossRef]
- Sabarees, G.; Velmurugan, V.; Tamilarasi, G.P.; Alagarsamy, V.; Solomon, V.R. Recent Advances in Silver Nanoparticles Containing Nanofibers for Chronic Wound Management. Polymers 2022, 14, 3994. [Google Scholar] [CrossRef]
- Vishwanath, N.; Whitaker, C.; Allu, S.; Clippert, D.; Jouffroy, E.; Hong, J.; Stone, B.; Connolly, W.; Barrett, C.C.; Antoci, V.; et al. Silver as an Antibiotic-Independent Antimicrobial: Review of Current Formulations and Clinical Relevance. Surg. Infect. 2022, 23, 769–780. [Google Scholar] [CrossRef]
- Ambrožová, N.; Zálešák, B.; Ulrichová, J.; Čížková, K.; Galandáková, A. Low concentrations of silver nanoparticles have a beneficial effect on wound healing in vitro. J. Nanoparticle Res. 2017, 19, 108. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef][Green Version]
- Mannerström, M.; Zou, J.; Toimela, T.; Pyykkö, I.; Heinonen, T. The applicability of conventional cytotoxicity assays to predict safety/toxicity of mesoporous silica nanoparticles, silver and gold nanoparticles and multi-walled carbon nanotubes. Toxicol. Vitr. 2016, 37, 113–120. [Google Scholar] [CrossRef]
- Chiu, C.W.; Li, J.W.; Huang, C.Y.; Yang, S.S.; Soong, Y.C.; Lin, C.L.; Lee, J.C.M.; Sanchez, W.A.L.; Cheng, C.C.; Suen, M.C. Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors. Nanomaterials 2020, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef]
- Yan, X.; Li, S.; Bao, J.; Zhang, N.; Fan, B.; Li, R.; Liu, X.; Pan, Y.X. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance. ACS Appl. Mater. Interfaces 2016, 8, 17060–17067. [Google Scholar] [CrossRef]
- Lee, J.; Shi, Y.M.; Grün, P.; Gube, M.; Feldbrügge, M.; Bode, H.; Hennicke, F. Identification of Feldin, an Antifungal Polyyne from the Beefsteak Fungus Fistulina hepatica. Biomolecules 2020, 10, 1502. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Hoo, S.Y.; Ma, L.T.; Lin, C.; Huang, K.F.; Ho, Y.N.; Sun, C.H.; Lee, H.J.; Chen, P.Y.; Shu, L.J.; et al. Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors. Commun. Biol. 2022, 5, 454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Shi, L. A review of linear carbon chains. Chin. Chem. Lett. 2020, 31, 1746–1756. [Google Scholar] [CrossRef]
- Fazio, E.; D’Urso, L.; Consiglio, G.; Giuffrida, A.; Compagnini, G.; Puglisi, O.; Patanè, S.; Neri, F.; Forte, G. Nonlinear Scattering and Absorption Effects in Size-Selected Diphenylpolyynes. J. Phys. Chem. C 2014, 118, 28812–28819. [Google Scholar] [CrossRef]
- Consiglio, G.; Gorcyński, A.; Petralia, S.; Forte, G. Computational study of linear carbon chain based organic dyes for dye sensitized solar cells. RSC Adv. 2023, 13, 1019–1030. [Google Scholar] [CrossRef]
- Gao, Y.; Tykwinski, R.R. Advances in Polyynes to Model Carbyne. Accounts Chem. Res. 2022, 55, 3616–3630. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Tarakeshwar, P.; Fujikado, N.M.; Evraets, K.; Jones, A.K.; Meneghetti, M.; Buseck, P.R.; Sayres, S.G. Pseudocarbynes: Linear Carbon Chains Stabilized by Metal Clusters. J. Phys. Chem. C 2020, 124, 19355–19361. [Google Scholar] [CrossRef]
- Fazio, E.; Patanè, S.; D’Urso, L.; Compagnini, G.; Neri, F. Enhanced nonlinear optical response of linear carbon chain colloid mixed with silver nanoparticles. Opt. Commun. 2012, 285, 2942–2946. [Google Scholar] [CrossRef]
- Condorelli, M.; Speciale, A.; Cimino, F.; Muscarà, C.; Fazio, E.; D’Urso, L.; Corsaro, C.; Neri, G.; Mezzasalma, A.M.; Compagnini, G.; et al. Nano-Hybrid Au@LCCs Systems Displaying Anti-Inflammatory Activity. Materials 2022, 15, 3701. [Google Scholar] [CrossRef]
- Kim, H.; Tarakeshwar, P.; Meneghetti, M.; Buseck, P.R.; Sayres, S.G. Formation of Au-pseudocarbynes by self-assembly of carbon chains and gold clusters. Carbon 2023, 205, 546–551. [Google Scholar] [CrossRef]
- Okesola, B.O.; Mendoza-Martinez, A.K.; Cidonio, G.; Derkus, B.; Boccorh, D.K.; de la Peña, D.O.; Elsharkawy, S.; Wu, Y.; Dawson, J.I.; Wark, A.W.; et al. De Novo Design of Functional Coassembling Organic–Inorganic Hydrogels for Hierarchical Mineralization and Neovascularization. ACS Nano 2021, 15, 11202–11217. [Google Scholar] [CrossRef]
- Okada, S.; Fujii, M.; Hayashi, S. Immobilization of polyynes adsorbed on Ag nanoparticle aggregates into poly(vinyl alcohol) films. Carbon 2011, 49, 4704–4709. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Casciari, J.J.; Riordan, N.H.; Schmidt, T.L.; Meng, X.L.; Jackson, J.A.; Riordan, H.D. Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fibre in vitro tumours. Br. J. Cancer 2001, 84, 1544–1550. [Google Scholar] [CrossRef][Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S22; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Bisignano, C.; Ginestra, G.; Smeriglio, A.; Camera, E.L.; Crisafi, G.; Franchina, F.; Tranchida, P.; Alibrandi, A.; Trombetta, D.; Mondello, L.; et al. Study of the Lipid Profile of ATCC and Clinical Strains of Staphylococcus aureus in Relation to Their Antibiotic Resistance. Molecules 2019, 24, 1276. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gervasi, T.; D’Arrigo, M.; Rando, R.; Sciortino, M.T.; Carughi, A.; Barreca, D.; Mandalari, G. The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. Appl. Sci. 2022, 12, 4389. [Google Scholar] [CrossRef]
- Fazio, E.; Neri, F.; Patane, S.; D’urso, L.; Compagnini, G. Optical limiting effects in linear carbon chains. Carbon 2011, 49, 306–310. [Google Scholar] [CrossRef]
- Compagnini, G.; Mita, V.; D’urso, L.; Cataliotti, R.; Puglisi, O. Spectroscopic study of polyynes obtained by laser ablation in liquids. J. Raman Spectrosc. 2008, 39, 177–181. [Google Scholar] [CrossRef]
- Milani, A.; Tommasini, M.; Barbieri, V.; Lucotti, A.; Russo, V.; Cataldo, F.; Casari, C.S. Semiconductor-to-Metal Transition in Carbon-Atom Wires Driven by sp2 Conjugated End Groups. J. Phys. Chem. C 2017, 121, 10562–10570. [Google Scholar] [CrossRef][Green Version]
- Kubackova, J.; Izquierdo-Lorenzo, I.; Jancura, D.; Miskovsky, P.; Sanchez-Cortes, S. Adsorption of linear aliphatic α,ω-dithiols on plasmonic metal nanoparticles: A structural study based on surface-enhanced Raman spectra. Phys. Chem. Chem. Phys. 2014, 16, 11461–11470. [Google Scholar] [CrossRef][Green Version]
- Arutyunyan, N.R.; Kononenko, V.V.; Gololobov, V.M.; Obraztsova, E.D. Resonant Effects in SERS Spectra of Linear Carbon Chains. Phys. Status Solidi B 2018, 255, 1700254. [Google Scholar] [CrossRef]
- Pan, B.; Xiao, J.; Li, J.; Liu, P.; Wang, C.; Yang, G. Carbyne with finite length: The one-dimensional Sp Carbon. Sci. Adv. 2015, 1, e1500857. [Google Scholar] [CrossRef][Green Version]
- Kucherik, A.; Arakelian, S.; Vartanyan, T.; Kutrovskaya, S.; Osipov, A.; Povolotskaya, A.; Povolotskii, A.; Man’shina, A. Laser-induced synthesis of metal–carbon materials for implementing surface-enhanced Raman scattering. Opt. Spectrosc. 2016, 121, 263–270. [Google Scholar] [CrossRef]
- Marabotti, P.; Peggiani, S.; Vidale, A.; Casari, C.S. Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances. Chin. Phys. B 2022, 31, 125202. [Google Scholar] [CrossRef]
- Rance, G.A.; Khlobystov, A.N. Nanoparticle-nanotube electrostatic interactions in solution: The effect of pH and ionic strength. Phys. Chem. Chem. Phys. 2010, 12, 10775. [Google Scholar] [CrossRef] [PubMed]
- Kutrovskaya, S.; Chestnov, I.; Osipov, A.; Samyshkin, V.; Sapegina, I.; Kavokin, A.; Kucherik, A. Electric field assisted alignment of monoatomic carbon chains. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Y.; Liang, X.; Xu, J.; Lee, C.; Liang, Q.; Tao, P.; Deng, T. Dispersion stability of thermal nanofluids. Prog. Nat. Sci. Mater. Int. 2017, 27, 531–542. [Google Scholar] [CrossRef]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef][Green Version]
- Selvamani, V. Stability Studies on Nanomaterials Used in Drugs. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–444. [Google Scholar] [CrossRef]
- Forte, G.; D’Urso, L.; Fazio, E.; Patanè, S.; Neri, F.; Puglisi, O.; Compagnini, G. The effects of liquid environments on the optical properties of linear carbon chains prepared by laser ablation generated plasmas. Appl. Surf. Sci. 2013, 272, 76–81. [Google Scholar] [CrossRef]
- Cataldo, F.; Ravagnan, L.; Cinquanta, E.; Castelli, I.E.; Manini, N.; Onida, G.; Milani, P. Synthesis, Characterization, and Modeling of Naphthyl-Terminated sp Carbon Chains: Dinaphthylpolyynes. J. Phys. Chem. B 2010, 114, 14834–14841. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Webster, T.J.; Seil, I. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767. [Google Scholar] [CrossRef][Green Version]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study. J. Nanomater. 2015, 2015, 1–8. [Google Scholar] [CrossRef][Green Version]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Perito, B.; Giorgetti, E.; Marsili, P.; Muniz-Miranda, M. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution. Beilstein J. Nanotechnol. 2016, 7, 465–473. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tripathi, N.; Goshisht, M.K. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Appl. Bio Mater. 2022, 5, 1391–1463. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef][Green Version]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Korshed, P.; Li, L.; Liu, Z.; Wang, T. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells. PLoS ONE 2016, 11, e0160078. [Google Scholar] [CrossRef]
- Pandey, J.K.; Swarnkar, R.K.; Soumya, K.K.; Dwivedi, P.; Singh, M.K.; Sundaram, S.; Gopal, R. Silver Nanoparticles Synthesized by Pulsed Laser Ablation: As a Potent Antibacterial Agent for Human Enteropathogenic Gram-Positive and Gram-Negative Bacterial Strains. Appl. Biochem. Biotechnol. 2014, 174, 1021–1031. [Google Scholar] [CrossRef]
- Sportelli, M.; Izzi, M.; Volpe, A.; Clemente, M.; Picca, R.; Ancona, A.; Lugarà, P.; Palazzo, G.; Cioffi, N. The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics 2018, 7, 67. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell. Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef] [PubMed]
Sample | Electrophoretic Mobility (cm/Vs) |
---|---|
Ag | −2.4 × 10 |
LCC | −1.3 × 10 |
Ag@LCC 3:1 | −3.0 × 10 |
Ag@LCC 1:3 | −1.0 × 10 |
Complexes | E | E | f | Main Contribution to the Transition | |
---|---|---|---|---|---|
H→L+10 (0.21) | |||||
Ag@C–H | −63.12 | 0.00 | 427 | 0.37 | H→L+9 (0.19) |
H-4→L+2 (0.12) | |||||
H→L+9 (0.25) | |||||
Ag@C–H | −60.52 | 2.60 | 422 | 0.43 | H→L+12 (0.24) |
H-4→L+11 (0.11) | |||||
Ag@C–H | −56.91 | 3.61 | 414 | 0.48 | H→L+9 (0.34) |
H→L+10 (0.12) | |||||
H→L+12 (0.25) | |||||
Ag@C–H | −51.63 | 5.28 | 409 | 0.30 | H→L+9 (0.19) |
H-4→L+7 (0.11) | |||||
Ag | 401 | 0.23 | H-4→L+1 (0.18) | ||
H-3→L+2 (0.15) | |||||
H–C–H | 259 | 5.87 | H-1→L+1 (0.51) | ||
H→L (0.49) | |||||
H–C–H | 240 | 4.93 | H-1→L+1 (0.51) | ||
H→L (0.49) | |||||
H–C–H | 220 | 3.91 | H-1→L+1 (0.47) | ||
H→L (0.46) | |||||
H–C–H | 201 | 2.79 | H-1→L+1 (0.37) | ||
H→L (0.36) |
Strain | Ag NPs | LCCs | Ag@LCCs 3:1 | Ag@LCCs 1:3 |
---|---|---|---|---|
Mean MIC (µg/mL) | ||||
E. coli ATCC 10536 | 25 | NA | 12.5 | 12.5 |
S. aureus ATCC 6538 | 50 | NA | 50 | 50 |
P. aeruginosa ATCC 9027 | 50 | NA | 50 | NA |
Mean MBC (µg/mL) | ||||
E. coli ATCC 10536 | 25 | - | 12.5 | 12.5 |
S. aureus ATCC 6538 | 50 | - | >50 | >50 |
P. aeruginosa ATCC 9027 | 50 | - | >50 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsaro, C.; Condorelli, M.; Speciale, A.; Cimino, F.; Forte, G.; Barreca, F.; Spadaro, S.; Muscarà, C.; D’Arrigo, M.; Toscano, G.; D’Urso, L.; Compagnini, G.; Neri, F.; Saija, A.; Fazio, E. Nano-Hybrid Ag@LCCs Systems with Potential Wound-Healing Properties. Materials 2023, 16, 2435. https://doi.org/10.3390/ma16062435
Corsaro C, Condorelli M, Speciale A, Cimino F, Forte G, Barreca F, Spadaro S, Muscarà C, D’Arrigo M, Toscano G, D’Urso L, Compagnini G, Neri F, Saija A, Fazio E. Nano-Hybrid Ag@LCCs Systems with Potential Wound-Healing Properties. Materials. 2023; 16(6):2435. https://doi.org/10.3390/ma16062435
Chicago/Turabian StyleCorsaro, Carmelo, Marcello Condorelli, Antonio Speciale, Francesco Cimino, Giuseppe Forte, Francesco Barreca, Salvatore Spadaro, Claudia Muscarà, Manuela D’Arrigo, Giovanni Toscano, Luisa D’Urso, Giuseppe Compagnini, Fortunato Neri, Antonina Saija, and Enza Fazio. 2023. "Nano-Hybrid Ag@LCCs Systems with Potential Wound-Healing Properties" Materials 16, no. 6: 2435. https://doi.org/10.3390/ma16062435