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Abstract: Cohesive and adhesive bindings degrade during operation and maintenance even if
contacting materials in a manufactured laminated structure are perfectly matched at the interfaces.
Two modelling approaches for describing partially closed delaminations or imperfect contact zones,
which often occurs at the interfaces, are examined and considered. To confirm the adequateness
of the applicability of the effective spring boundary conditions for guided wave scattering by a
finite length delamination, guided wave propagation through a damaged zone with a distribution
of micro-cracks is compared with an equivalent cohesive zone model, where the spring stiffnesses
for the effective boundary conditions are calculated using the properties of the considered crack
distribution. Two kinds of local interfacial decohesion zones with an imperfect contact at the interfaces
are considered: uniform partially closed delaminations and bridged cracks. The possibility of the
employment of the effective spring boundary conditions to substitute a distribution of micro-cracks
is analysed and discussed. Two algorithms of generation of a distribution of open micro-cracks
providing characteristics equivalent to the effective boundary conditions are presented and examined.
The influence of the characteristics of a delamination on wave characteristics (eigenfrequencies,
eigenforms, transmission coefficient) is investigated for several kinds of partially closed delaminations.

Keywords: guided waves; delamination; bridged crack; effective boundary conditions; laminate;
eigenfrequency; diffraction; crack distribution; interface; damage; resonance

1. Introduction

Multi-layered laminate composite materials are now widely employed in automobiles,
marine vehicles, aircraft and other manufacturing industries since they have superior
strength, toughness, ductility and fatigue lifetime, which improve the reliability and the
durability of structures [1,2]. Even if contacting materials in a manufactured laminated
structure are perfectly matched at the interfaces, the cohesive and adhesive bindings de-
grade during operation and maintenance, which leads to the occurrence of zones with
imperfect contact. Interface damages in laminates might also arise after impacts [3–5]. The
progress of the mismatch between the material properties of different constituents leads
to the formation of micro-cracks and micro-voids at the interfaces or in the interior of the
layered composite structures [6–8]. The interface roughness increases the strength of the
joint, but since the interface is not perfectly flat, it leads to a non-uniform stress–strain state
and initiates micro-cracks and delaminations. Since laminate assemblies are increasingly
employed in engineering structures, studies related to bi-material interface fracture anal-
ysis [9] and the evaluation of accumulated damage or degradation in the early stages of
fracture are important for industrial applications [7,10]. The characteristics of ultrasonic
wave propagation are directly related to the mechanical properties of laminates [11–13]
and therefore ultrasonic methods are among the most efficient techniques in the field of
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non-destructive evaluation (NDE) and structural health monitoring (SHM) for evaluating
material degradation [14–18].

Simulation of elastic wave propagation through a fractured zone is a time-consuming
and challenging procedure since it must take into account the influence of all the inho-
mogeneities. This problem can be solved by developing efficient improved numerical
methods (e.g., [19–25]) or employing models, where the fractured zone with a distribution
of cracks is substituted by an equivalent homogeneous or inhomogeneous effective media
(e.g., [26,27]). Though some wave phenomena are not taken into account in the models
incorporating homogenisation, these models are efficient and suitable for many applica-
tions [28–30]. If inhomogeneities or uncertainties are concentrated at the interfaces in the
form of a distribution of interfacial micro-cracks or an interface roughness, the irregularities
are situated randomly in the vicinity of interfaces. To simulate the propagation of seismic
waves through rough boundaries between the layers with different physical properties,
Khachkova et al. [31] constructed statistically equivalent models with rough interfaces
and constant elastic moduli and models with random coefficients and flat interfaces, and
Shi [32] derived theoretical formulae for predicting the variance of the scattering ampli-
tude and intensity using Kirchhoff approximation for known statistical parameters of the
roughness.

Baik and Thompson [33] proposed a phenomenological approach for modelling im-
perfect contact at interfaces with micro-cracks, which is based on the substitution of a
distribution of micro-cracks by the effective spring boundary conditions (ESBCs). Hence-
forth, various investigators have derived analytical estimations for the stiffness of an infinite
damaged interface with periodic or stochastic distributions of cracks [34–40] in terms of
parameters of the crack distribution. The methods based on the employment of the ESBCs
were validated and employed for laminates with infinite damaged interfaces [13,41] and a
local partially closed delamination [42].

In this study, the applicability of the ESBCs with the relations derived for spring
stiffnesses [37,38] for simulating wave propagation in laminates with a locally damaged
interface is investigated. Two kinds of local interfacial decohesion zones with an imperfect
contact at the interfaces are considered: partially closed delaminations [42–45] and bridged
cracks [46–49]. Accurate modelling of wave scattering by an interface finite size delami-
nation crack within the framework of the linear theory of elasticity leads to the presence
of fast oscillations in the stresses and displacements near crack tips [50]. The open crack
model, where faces of a crack are assumed to be stress-free, is not valid for these kinds
of delaminations, so the cohesive zone model (CZM) can be applied [48,50]. The latter
incorporates various models for describing delaminations, including cracks where faces are
in contact near the crack tips; these are also called bridged cracks. ESBCs with non-uniform
spring stiffnesses can be introduced in terms of the CZM and linear theory of elasticity
to characterise a part of interface with the interruption of the stress and displacement
continuity, e.g., impact-induced damage.

The aim of this study is to confirm the adequateness of the applicability of the ESBC
estimations obtained in [37] for wave scattering by a finite size delamination and investigate
wave scattering by partially closed delaminations. To this end, guided wave propagation
through a damaged zone with a distribution of micro-cracks is compared with an equivalent
CZM model, where the spring stiffnesses for the ESBCs are calculated using the properties
of the considered crack distribution according to [37,51]. Carpinteri et al. [52] proposed a
model where a damaged zone consists of a macro-crack and multiple micro-cracks ahead
of the macro-crack tips, so that it corresponds to a bridged crack. Therefore, a similar CZM
model with the ESBCs is also applied and validated for bridged cracks. Statistical modelling
techniques are used to create models of distributed micro-cracks or bridge cracks. For this
purpose, algorithms of the generation of a distribution of open micro-cracks providing
characteristics equivalent to the ESBCs are presented and examined.

The wave scattering by delaminations described by the ESBCs has been modelled
employing the boundary integral equation method (BIEM) [53,54], the semi-analytical



Materials 2023, 16, 2415 3 of 21

hybrid approach (SAHA) based on the BIEM [55] and the finite element method (FEM).
The main advantage of the BIEM and the SAHA is its semi-analytical nature, which
allows calculation of the resonance frequencies, analysis of the wave energy trapping and
localisation, simulation of separate Lamb wave mode excitation, scattering and conversion
due to damage [56]. Guided wave transmission through a damaged zone is compared
employing two considered approaches. The possibility of the employment of the effective
boundary conditions to substitute a distribution of micro-cracks at higher frequencies is
demonstrated. The effectiveness of the EBSCs for modelling crack distribution for in-plane
wave motion is shown considering complex-valued eigenfrequencies and guided wave
transmission in a laminate structure with a partially closed delamination of finite length.

2. Mathematical Models of Interface Delamination

This section consists of three parts. First, two approaches applied here to model
partially delaminated zones are discussed in detail: distribution of open micro-cracks and
the EBSCs. The latter includes mathematical formulation of the corresponding boundary
conditions and terms used. Next, the aspects of the simulation of two classes of delamina-
tion (a uniform partially closed delamination and a bridged crack) for the two approaches
are explained. Finally, two algorithms of generation of a distribution of open micro-cracks
providing characteristics equivalent to the ESBCs are described. The introduced models
are examined and compared in Section 4.

2.1. Models of Partially Closed Delaminations

Following Perelmuter [57], two kinds of damaged zones or partially closed delami-
nations as illustrated in Figure 1 are considered in this investigation. Imperfect or weak
interface, where the fracture process zone is assumed at the whole interface of two contact-
ing materials, is the first kind of damage considered here [58,59]. The term weak interface is
often employed to simulate the whole interface, whereas the prolonged zones, but of finite
length, are called imperfect interfaces. Another one is the so-called bridged or cohesive
crack, where the fracture process zone is assumed as a part of a delamination and the
bridged zone can be comparable to the length of the flaw without ligaments and with the
perfect contact outside a certain area considered as a delamination [52,60,61].

Figure 1. Different classes and mathematical models of delaminations considered in this study.

The two approaches to model two kinds of delaminations (bridged cracks and imper-
fect interfaces) are examined here, see Figure 1. In the first approach, a delamination is
assumed to be a distribution of open micro-cracks. In the second approach, the distributed
spring model with varying stiffness in a general case is employed. The latter is formulated
as ESBCs

τ(x) = κ(x) · [u](x), x ∈ Ω̃, (1)
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where the traction vector τ = {σ11, σ12} composed of normal and tangential stresses is
assumed to be proportional to the crack opening displacement (COD) [u] in a certain
damaged area Ω̃.

In this study, a plain-strain problem for a laminate with a finite length part of an
interface being damaged is considered. For simplicity, let us consider wave motion in
a two-layered elastic waveguide V = ∪2

j=1V(j) consisting of two sub-layers made of
dissimilar materials of total thickness H. Materials of the elastic layers of thicknesses hj
are characterised by the mass density ρj, Young’s moduli Ej and Poisson’s ratios νj, where
j = {1, 2}. The damaged zone Ω̃ = {|x1| ≤ b, x2 = −h1} is situated at the interface
x2 = −h1 between the sub-layers. Since a uniform partially closed delamination as well
as a bridged crack are considered, a general statement of the problem is formulated and
the damaged zone might be split into two parts (see Figure 2): two bridged zones with
varying bond stiffness ΩB = {b− ∆b ≤ |x1| ≤ b, x2 = h1} situated near the tips of the
delamination and the remaining part Ω̃ \ΩB, where a uniform bond stiffness is assumed
(it also includes the case of an open crack with stress-free faces).

H

h
1

h
2

x
1

x
2

V (1)

V (2)
W

BRIDGED ZONES

∆b∆b

2b

Figure 2. Two-layered laminate with a strip-like damaged zone including possible bridged zones.

2.2. Distribution of Open Cracks

For the first kind of delamination, which is partially closed delamination, an imperfect
interface is assumed in all domain Ω̃ = [−b, b]. According to the first approach, this
damaged zone is substituted by the set of interfacial open micro-cracks ∪M

m=1Ωm, both
stochastically and periodically arranged. For a random distribution of micro-defects, it
is assumed that the appearance of a crack at any point of the interface has a uniform
distribution. The second approach involves weakening the contact between the edges of
the crack in this zone and the degree of weakening is the same on Ω̃, which corresponds to
the constant spring stiffness (3).

The first approach for modelling a damaged zone evaluates the damage as a distri-
bution of cracks. In this case, the damaged area Ω̃ is covered by M intervals of lengths
2am corresponding to open cracks Ω(m) ∈ Ω̃ (Ω(m) ∩Ω(m′) = ∅, m 6= m′), where stress-free
boundary conditions are employed

σi2(x) = 0, x ∈ Ω(m),

while perfect contact zones are assumed in the remaining uncracked part Ω̃ \ ∪M
m=1Ω(m).

Therefore, the crack density C for the damaged area Ω̃ can be introduced as the ratio of
length of the damaged part to lengths of the whole damaged region, i.e.,

C =
M

∑
m=1

am

2b
.

2.3. Effective Spring Boundary Conditions

The EBSCs in the form (1) can be used to substitute an array of open cracks (stochastic
or periodically distributed). Therefore, a relation for introducing the ESBCs instead of
modelling all the cracks Ω(m) in the distribution is introduced in the second approach
considered here. For an in-plane problem with strip-like micro-cracks, the stiffness ma-
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trix κ is diagonal, while tangential (κ11) and normal (κ22) stiffnesses are equal [37], i.e.,
κ11 = κ22 = κ. Therefore, the damage in the form of a partially closed delamination can be
modelled using ESBCs with non-zero stiffnesses

σi2(x1) = κ(x1)[u](x1), x1 ∈ [−b; b]. (2)

Stiffness value κ(x1) is assumed to be spatially dependent, which allows one to
describe both uniform partially closed delaminations and bridged cracks.

2.3.1. Uniform Partially Closed Delamination

According to [51], the stiffness value κ(x1) in (2) is a constant value if an infinite
interface with an array of randomly distributed cracks of various lengths is considered.
Since the appearance of a crack at any point in the interface is equiprobable, the crack
density C is also assumed to be a constant value. By constant density, we also mean the
condition that in any chosen finite domain at the interface, the ratio of the cumulative
damaged zone to the domain considered is independent of the particular domain chosen.
As a result, the stiffness value κ is expressed via the crack density C, material properties
(Young’s moduli Ej and Poisson’s ratios νj) as well as the first and the second raw moments
of the crack size distribution (a and a2 respectively):

κ ≡ 2
π C

(
1− ν2

j−1

Ej−1
+

1− ν2
j

Ej

)−1

· a

a2
= σκ · a

a2
· 1

C
. (3)

2.3.2. Bridged Crack

If some presuppositions for the crack distribution are used, then it makes sense to
assume that the crack density C depends on the spatial coordinate x1, for example, if the
probability of the appearance of a larger crack in a certain sub-domain of the interface
increases. In this way, the stiffness in (2) depends on the spatial variable x1 and the relation
for spring stiffness can be rewritten as follows for the class of bridged cracks considered in
the present investigation [51]:

κ(x1) =

 σκ · a

a2
· 1

CB(x1)
, b− ∆b ≤ |x1| ≤ b,

0, |x1| < b− ∆b,
(4)

Employing representation (4), the stiffness as a function of spatial coordinate x1 is
explicitly defined in terms of the crack density of micro-cracks C(x1), which is also spatially
dependent and defined in ΩB. To simulate delamination of the second kind related to
impact-induced damages, spring stiffness is assumed to be zero in the centre and tending
to infinity (corresponds to perfect contact) near the crack tips. Therefore, it is natural to
assume gradual closure in the vicinity of the tips.

Here, we consider two functional relationships CB(x1) providing the same behavior
near crack tips as proposed by Goldstein and Perelmuter [61], Perelmuter [62], who pro-
posed describing bridged cracks. If C(x1) is a hyperbolic function introduced as follows

CB(x1) = CBL(x1) =
(1− η)(b− ∆b) b

∆b · |x1|
+ 1− (1− η) b

∆b
, (5)

the nearly hyperbolic increase in spring stiffness (4) near crack tips is achieved. To provide
the force distribution in accordance with the square root law, the following relation is used
for crack density:

CB(x1) = CBS(x1) =

√
1− η2

∆b

√
η2∆b

1− η2 + b− |x1|. (6)
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Here, η is a small positive number regulating value of stiffness at the tips (η = 10−4 in
the numerics presented in this study). For both functions, crack density at the edges of the
bridged zone is chosen to have

CB(±b) = η, CB(±b∓ ∆b) = 1,

which gives the following values for stiffness:

κ(±b) = σκ · a

a2
· η−1, κ(±b± ∆b) = σκ · a

a2
.

An example of the variation of the spring stiffness κ(x1) and the crack density CB(x1)
for the two functions considered in this study (hyperbolic and square-root laws) are de-
picted in Figure 3. The employment of (5) and (6) allows for simulating partially closed
delaminations with a bridged zone, where the crack faces interaction (fracture process
zones) near the crack tips and adhesion forces are applied at the crack faces restraining the
crack opening [62]. In this case, the micro-defect distribution corresponds to the presence
of a central crack in |x1| ≤ b− ∆b and an array of cracks in ΩB with decreasing length
when approaching crack tips.

S
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lg
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ck
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en
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ty
, 
C

0

k
max

0

1

k
min

0 ∆b−∆b
x
1

−b b

Square-root
Hyperbolic

Uniform partially closed delamination

Bridged crack

0 ∆b−∆b
x
1

−b b

(a) (b)

Figure 3. Spring stiffness distribution κ(x1) (a) and the crack density C(x1) (b) for the considered
kinds of partially closed delaminations.

2.4. Algorithm of Open Micro-Crack Distribution Generation
2.4.1. Partially Closed Delamination with Constant Crack Density (Uniform)

To simulate a partially closed delamination using crack distribution, an algorithm
for the generation of the parameters of open micro-cracks Ω(m) in the damaged area Ω̃ is
needed. For uniform partially closed delamination, a constant crack density C is assumed.
In other words, the appearance of a micro-crack is equiprobable at any point in Ω̃. At the
first step, a set of M sample points χm uniformly distributed over the damaged zone
Ω̃ = [−b, b] is generated. These points are employed to initialise the appearance of open
micro-cracks in a certain interval. Since the algorithm for uniform distribution assumes



Materials 2023, 16, 2415 7 of 21

that the crack density C is constant, the lengths of micro-cracks am are defined so that the
cumulative length of the cracks is equal to C · 2b:

a1 =

(
χ1 + χ2

2
+ b
)
· C;

am =
χm+1 − χm−1

2
· C, m = 2, M− 1

aM =

(
b− χM−1 + χM

2

)
· C.

(7)

Then the coordinates for crack tips of the cracks Ω(m) = {bl
m ≤ x1 ≤ br

m, x2 = −h1}
are evaluated as follows:

bl
1 = χ1 (1− C)− b · C;

bl
m = χm (1− 1

2
C) + χm+1 ·

1
2

C, m = 2, M

br
m = χm+1 (1−

1
2

C) + χm ·
1
2

C, m = 1, M− 1

br
M = χM (1− C) + b · C

(8)

Figure 4 demonstrates several examples of the generation of an array of open micro-
cracks via the present algorithm for three dissimilar values of the crack density C. For all
cases, 81 micro-cracks have been generated in the damaged area Ω̃.

Figure 4. Examples of generated crack distributions for uniform partially closed delaminations with
various densities: C = 0.2 (a), C = 0.5 (b), C = 0.8 (c).

The Kolmogorov–Smirnov test shows that the crack widths am fit the beta distribution
B(α, β) with parameters

α =
ā
(
ā− ā2 − σ̂2

a
)

σ̂2
a

,

β =
(ā− 1)

(
ā− ā2 + σ̂2

a
)

σ̂2
a

,

defined in terms of the mean

ā =
1
M

M

∑
m=1

am

and the estimate of variance of a sample {am}

σ̂2
a =

1
M− 1

M

∑
m=1

(am − ā)2.
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An example illustrating how crack lengths are distributed is shown in Figure 5, where
a histogram of crack widths for a single generation along with solid and dashed lines
corresponding to the kernel density estimate and the theoretical density function are
depicted. The kernel density estimate with a smoothing parameter h > 0 is defined
as follows:

f̂h(x) =
1

Mh

M

∑
m=1

K
( x− am

h

)
.

Here, K(x) is a kernel function satisfying conditions

K(x) ≥ 0

and ∫ +∞

−∞
K(x)dx = 1.

The routine geom_density in the R language has been employed to approximate the
distribution density via the kernel smoothing method. The values of the parameter in the
beta distribution for the example demonstrated in Figure 5 has been estimated as α = 2.21
and β = 27, 564. The estimated β is rather large, and corresponds to the higher probability
of the appearance of smaller cracks (less than average) being larger than the probability of
the appearance of cracks larger than average.

D
en

si
ty

, 
 ×

1
0

3

0 0.30.20.1
0

10

20

Beta distribution B(α,β)

Generation

Crack width a, mm

Figure 5. Histogram of crack width a.

Further, the damaged zone [−b, b] is considered as a uniform partially closed crack
with the constant spring stiffness determined according to (3). To verify the properties of
the generated set of open micro-cracks, the one-way ANOVA ranks test (the Kruskal–Wallis
test) was carried out for a sample of crack sizes split into four groups with respect to x1
values. It is a non-parametric method with the null hypothesis assuming the equality of the
medians of all groups. For 1000 crack generations, null hypothesis testing was performed:
the null hypothesis was rejected with the confidence level 0.99 for 12% of the considered
generations. Therefore, one can conclude that the algorithm consistently generates arrays
of micro-cracks with a constant density in the domain Ω̃ under consideration. Figure 6
shows the distribution of the spring stiffness coefficient for the crack density C = 0.8, also
calculated using data from 1000 generations of crack arrays. The analysis showed that
the most comparable distribution among standard statistical distributions is the Weibull
distribution, but the Kolmogorov–Smirnov test rejects this hypothesis with the confidence
level 0.99.
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Figure 6. Histogram and the corresponding empirical density function of the spring stiffness κ

calculated at M = 81.

2.4.2. Bridged Delamination

The bridged crack considered in the present study includes a single central macro-crack
dominating over micro-cracks, which are defined using an algorithm analogous to the one
described in Section 2.4.1. The set of initialisation points of micro-cracks {χm, m = 1, M} is
generated as a sample from a uniform distribution over the interval [b− ∆b, b]. The crack
density function at the interval [b−∆b, b] is introduced as a piece-wise continuous function

C(x1) =


f (χ1), x1 ∈ [b− ∆b, c1),

f (χm), x1 ∈ [cm−1, cm), m = 2, M− 1,

f (χM), x1 ∈ [cM−1, b],

(9)

where cm are the midpoints of the intervals [χm, χm+1]. Accordingly, the crack widths are
calculated via formulae similar to (7), but with the constant stiffness specified according
to (9):

a1 =
(

χ1+χ2
2 + b

)
· C(x1);

am = χm+1−χm−1
2 · C(x1), m = 2, M− 1

aM =
(

b− χM−1+χM
2

)
· C(x1).

(10)

This algorithm of the generation of a distribution of width allows to avoid crack
intersections. The same algorithm is used to generate cracks in the domain [−b,−b + ∆b],
corresponding to the left bridged zone of the delamination.

Two examples of an array of micro-cracks generated in accordance with the algorithm
described above with the use of hyperbolic and square-root laws of crack density for
simulating bridged cracks are depicted in Figure 7. An internal flaw occupying interval
[−∆b, ∆b] is shown here as a thick white line, whereas micro-cracks Ω(m) situated in the
left bridged zone [−b,−b + ∆b] are shown as thin white intervals. One can see that the two
laws lead to various proportions between larger and smaller cracks. Histograms demon-
strated in Figures 8 and 9 show crack width distributions a in bridged zone ∆b = 10 mm.
These figures illustrate the fact that the hyperbolic law provides more smaller cracks
compared to the square-root law.
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Figure 7. Examples of generated crack distributions for bridged cracks at b = 20 mm, ∆b = 10 mm,
η = 10−4: hyperbolic law (a) and square-root law (b).

D
en

si
ty

, 
 ×
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15

Crack width a, mm

Figure 8. A typical example of histogram and the empirical density function of generated crack width
distributions a in bridged zones (b = 20 mm, ∆b = 10 mm, η = 10−4) for hyperbolic law.
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Figure 9. A typical example of histogram and the empirical density function of crack width distribu-
tions a in bridged zones (b = 20 mm, ∆b = 10 mm, η = 10−4) for square-root law.

3. Mathematical Model of a Laminate with an Interface Delamination

Let us consider steady-state motion of a two-layered waveguide of thickness H with
an interface damage Ω̃ of width w with the angular frequency ω = 2π f described in
Section 2.1. Both approaches employed to simulate damaged zones can be described by
the same boundary condition (2). In the case of ESBCs, spring stiffness is calculated via (4)
along with (5) or (6). Distributions of cracks can also be described by (2) if stiffness value
interchanges are stress-free and boundary conditions are continuous, i.e.,

κ(x1) =

{
0 x ∈ Ω(m),
∞, x ∈ Ω̃ \⋃M

m=1 Ω(m).
(11)

Two configurations are considered: damaged waveguide with and without two piezo-
electric wafer active transducers (PWATs) acting as an actuator and as a sensor. Rectangular
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PWATs mounted at the upper surface of the waveguide occupy, respectively, domains V̂(a)

and V̂(s). The PWATs are assumed to be of the same length a and thickness d, being situated
at the same distance from the damage Ω̃ with centres of PWATs located 200 mm from each
other (see Figure 10). The PWATs are assumed to be made of the same piezoelectric material
with the mass density ρ̂ and the tensors of elastic, piezoelectric and dielectric constants
Ĉijkl , êkij and ε̂ik, respectively.

H

h
1

h
2

x
1

x
2

V (1)

V (2)

V (a) V (s)

V Q

W
~

Figure 10. Geometry of the problem: multi-layered waveguide with a distribution of open cracks.

For time-harmonic motion with the angular frequency ω = 2π f , the displacement
vector uj = {u1j, u2j} obeys the Lame equation

1− νj

1− 2νj
∇ · ∇uj −

1
2
∇×

(
∇× uj

)
+

(1 + νj) ρj

Ej
ω2uj = 0 (12)

in each sub-layer of the laminate. Hooke’s law relates the components of the stress tensor
σik and the displacement vector u. The governing equations for the PWATs with the tensors
of elastic, piezoelectric and dielectric constants Ĉijkl , êkij and ε̂ik and mass density ρ̂ can be
written in terms of the displacement vector û and the electric potential φ̂ [63]:

Ĉijkl
∂2ûk

∂xl∂xj
+ êkij

∂2φ̂

∂xk∂xj
+ ρ̂ω2ûi = 0, (13)

êikl
∂2ûk

∂xl∂xi
− ε̂ik

∂2φ̂

∂xk∂xi
= 0. (14)

At the side boundaries Ŝ(j)
D of PWATs V̂(j) without electrodes, zero electric displace-

ments are assumed
D̂(j)

1 (x) = 0, x ∈ Ŝ(j)
D , j = {a, s} (15)

At the lower surfaces of the PWATs Ŝ(j)
0 , the electrode is grounded so that

φ̂(x, t) = 0, x ∈ Ŝ(j)
0 , j = {a, s}. (16)

A given voltage ϕ0 is applied at the actuator’s electroded upper surface Ŝa
φ:

φ̂(x) = ϕ0, x ∈ Ŝa
φ. (17)

The unknown electric potential ϕ at the upper electroded surface Ŝs
φ of the sensor is

constant and can be determined using the following boundary conditions:

φ̂(x) = ϕ, x ∈ Ŝs
φ,

Q̂(û, φ̂) =
∫
Ŝs

φ

D̂2(x)dS = 0, (18)
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where Q̂(u, φ) is electric charge. Moreover, the continuity of the displacement and the
traction vectors in the contact areas and stress-free boundary conditions at the outer
boundaries are assumed. If the eigenfrequencies are calculated, the PWATs are not included
in the model and stress-free boundary conditions in the contact areas are utilised.

4. Numerical Analysis

The aim of this study is to compare the wave propagation characteristics estimated us-
ing two different approaches for modelling the interface damaged zone.
Therefore, the results of the numerical analysis of the wave motion of a damaged multi-
layered laminate, the geometry of which is depicted in Figure 10, is provided in this section.
It should be mentioned that eigenfrequencies fn of a damaged laminate have been cal-
culated without PWATs to have only eigenfrequencies related to the delamination itself.
To solve the formulated boundary value problem for an unbounded laminate with dam-
aged interface, the SAHA [55] and the FEM have been applied. A model, where perfectly
matched layers have been employed to simulate an infinite waveguide, has been built
in COMSOL Multiphysics 6.0 (COMSOL AB, Stockholm, Sweden). To verify numerical
results, the calculations have also been provided the SAHA and the results have been
compared with the FEM.

For the numerics below, the damaged zone of total length w = 2b = 40 mm in a two-
layered laminate composed of two elastic layers (aluminium and steel) of h1 = h2 = 2 mm
thickness was chosen. The material properties of elastic and piezoelectric materials are
given in Tables 1 and 2. The PWATs are of 10 mm length and 0.2 mm thickness.

Table 1. The material properties.

Material
Poisson’s

Ratio,
ν

Young’s
Modulus,
E (GPa)

Density
ρ (kg/m3)

Aluminium 0.33 70 2700
Steel 0.17 74 7900

Table 2. Material properties of PWATs.

Material
Elastic

Constants (GPa)
Piezoelectric

Constants (C/m2)
Dielectric Constants

10−9(F/m)
Density
(kg/m3)

Piezoeletric Ĉ1111 = 120 ê211 = −7.24 ε̂11 = 9.12 7800
material Ĉ1112 = 67.1 ê212 = 13.77 ε̂22 = 7.55

PWTs Ĉ2222 = 94.2 ê112 = 11.91
(PIC 155) Ĉ1212 = 22.3

Since two approaches to modelling a partially closed delamination are employed,
some parameters for boundary conditions (3) or (4) must be estimated prior to providing
simulations employing the EBSCs. Thus, for a uniform partially closed delamination,
the crack density C was first chosen to generate a crack distribution. Then, values a
and a2 were calculated for the generated crack distribution with a given crack density
C. The value denoted σκ depends on material properties only and σκ = 36.25 TPa for
the aluminium/steel pair. Thus, spring stiffness κ equals 2.174, 0.335 and 0.128 PPa,
respectively, for the crack density C =0.2, 0.5 and 0.8. A similar procedure performed
for bridged cracks gives κ(±b∓ ∆b) = 5 PPa/m and κ(±b∓ ∆b) = 5.987 PPa/m for the
hyperbolic and the square-root laws, respectively.

4.1. Uniformly Partially Closed Delamination

At first, let us consider wave scattering by a uniform partially closed delamination
modelled using the ESBCs with a constant crack density in the damaged part of the interface
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Ω̃. The uniform distribution of cracks or periodic array of M open micro-cracks of length
Cw/M mm, which also corresponds to the uniform distribution, is situated at the interface
and the stiffness is calculated according to (3).

Figures 11–15 demonstrate the eigenfrequencies and the corresponding eigenforms
|u|(x1, x2) calculated for the first eigenfrequencies fn situated near the real axis (Im f = 0)
in the complex frequency plane f for a uniform partially closed delamination of length
w = 40 mm if the crack density C = 0.5 and C = 0.8. Here, eigenforms for random and
periodic crack distributions with the same crack density C are compared with eigenforms
for damage modelled via the ESBCs. The eigenfrequencies and eigenforms calculated for a
random distribution and for the ESBCs are in better agreement with each other compared
to a periodic array. It should also be noted that the second eigenfrequency for C = 0.5 and
the third eigenfrequency for C = 0.8 corresponding to the trapping and wave localisation
in the vicinity of the damaged zone were not found numerically for periodic array in the
frequency range f ∈ [0, 400] kHz.

Figure 11. Eigenforms |u|(x1, x2) related to eigenfrequencies f1 for a uniform partially closed delami-
nation of length w = 40 mm with the crack density C = 0.5 modelled as an array of stochastically (b)
and periodically (c) distributed cracks and via the ESBCs (a).

Figure 12. Eigenforms |u|(x1, x2) related to eigenfrequencies f2 for a uniform partially closed delami-
nation of length w = 40 mm with the crack density C = 0.5 modelled as an array stochastically (b)
and via the ESBCs (a).
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Figure 13. Eigenforms |u|(x1, x2) related to eigenfrequencies f1 for a uniform partially closed delami-
nation of length w = 40 mm with the crack density C = 0.8 modelled as an array of stochastically (b)
and periodically (c) distributed cracks and via the ESBCs (a).

Figure 14. Eigenforms |u|(x1, x2) related to eigenfrequencies f2 for a uniform partially closed delami-
nation of length w = 40 mm with the crack density C = 0.8 modelled as an array of stochastically (b)
and periodically (c) distributed cracks and via the ESBCs (a).

Figure 15. Eigenforms |u|(x1, x2) related to eigenfrequencies f3 for a uniform partially closed delami-
nation of length w = 40 mm with the crack density C = 0.8 modelled as an array stochastically (b)
and via the ESBCs (a).
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The analysis of eigenfrequency values given in Figures 11–15 shows that the real parts
of eigenfrequencies increase with the increase in the spring stiffness value κ.
To investigate the influence of spring stiffness, eigenfrequency dependency fn(κ) was
calculated, which is demonstrated in Figure 16. One can see that stiffness value affects
sufficiently eigenfrequencies only for κ > 1010 Pa/m, whereas the eigenfrequencies and the
corresponding eigenforms for κ < 109 Pa/m almost fully coincide with the case of open
crack of the same length. The imaginary parts of most eigenfrequencies increase with κ
growth, which is also in agreement with the results of Eriksson [64] for partially closed
circular delaminations in an elastic space. For stiffness values κ > 1013 Pa/m, which might
be associated with a crack distribution with realistic parameters in accordance with the
assumptions made for introducing EBSCs [37], real parts of all eigenfrequencies become
greater than 200 kHz.

Figure 16. Eigenfrequencies fn(κ) with imaginary part |Im fn| ≤ 2 kHz of the laminate with an
interfacial uniform partially closed delamination of length w = 40 mm modelled using ESBCs.

The stiffness influence is investigated considering Lamb wave transmission sensed
by the PWAT behind the damaged zone, i.e., voltage ϕ( f ) sensed by PWAT at the surface
is analysed. Figure 17 depicts the frequency dependencies of κ+( f ) for a laminate with
interfacial damaged zone of length w = 40 mm modelled as an array stochastically (dash-
dotted lines) and via the ESBCs (thin solid lines) at three different values of crack density C.
Moreover, voltage measured in a laminate without damage is exhibited as a thick solid line.
At low frequencies below 100 kHz, the measured voltage is almost the same for all kinds
of damage. In the frequency range f ∈ [100, 300] kHz, only the scattering by the severest
damage at C = 0.8 causes a significant difference with the undamaged state, while the
observed difference in ϕ value for C = 0.5 and C = 0.2 is not so essential. The measured
voltage differs significantly for C = 0.8 and C = 0.5 at higher frequencies larger than the
third cut-off frequency ( f ≥ 400 kHz). Two approaches provide very similar results except
C = 0.8 at f ≥ 400 kHz, which can be explained by the assumptions made during the ESBC
derivations. Indeed, the ESBC model has some limitations and it is weakly applicable for the
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severest damage when neighbouring cracks interact with each other and higher frequencies,
i.e., for large values of the crack density C and the frequency f .
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Figure 17. Voltage |ϕ|( f ) sensed by PWAT at the surface of the two-layered laminate with interfacial
damaged zone of length w = 40 mm modelled as an array stochastically (dash-dotted lines) and via
the ESBCs (thin solid lines) at lower (a) and higher (b) frequencies.

4.2. Bridged Crack

To analyse the influence of adhesion or bridged zones near the crack tips for bridged
cracks, eigenfrequencies of delamination modelled via relations (4) and (11) were computed,
respectively, for crack distribution and employing ESBCs. Figure 18a exhibits the eigen-
frequencies for a bridged crack of length w = 40 mm with bridged zones of ∆b =10 mm
width modelled employing two approaches and two laws (hyperbolic and square-root).
One can see that the four eigenfrequencies are situated quite close to each other (the relative
difference is smaller than 1–2%); the eigenforms, which are not provided in the paper, are
also almost the same for the four considered models of delaminated zones. It should also
be noted that the eigenfrequencies estimated using the same approach are situated closer
to each other.

Figure 18b demonstrates the dependence of the real part of eigenfrequencies fn(w) of
an open crack on its length. To compare with the case of bridged crack, the eigenfrequencies
calculated for the bridged crack as described in the previous paragraph are also shown in
Figure 18b, where markers show the open crack length with the best fit to eigenfrequencies
of the corresponding bridged crack. A good agreement between a bridged crack and an
open crack of length smaller than 2b is observed for all the four considered cases, but the
estimated open crack length corresponding to close values of fn is different, the estimated
length varies from 20.2 mm to 20.5 mm. It should be noted that eigenfrequencies of a
bridged crack do not perfectly fit the eigenfrequencies of any open crack.
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Figure 18. Eigenfrequencies fn(w) of the laminate with an open crack (a) and eigenfrequencies fn

of the laminate with an interfacial bridged crack of length w = 40 mm with two bridged zones of
∆b = 10 mm modelled as an array of cracks and via the ESBCs using the hyperbolic and square-root
laws (b).

Sensor voltage ϕ( f ) measured at the second PWAT was analysed for the same four
bridged cracks and for an open crack of w = 20.4 mm width in the same manner as for
uniform partially closed delaminations, cf. Figure 17. The voltage at the sensor for the
considered case of bridged cracks is sufficiently different from the voltage for undamaged
laminate, see Figure 19. The results for the four models of bridged cracks and for an open
crack are quite similar for lower frequencies below 120 kHz except the frequency ranges near
eigenfrequencies (resonance peaks are somehow shifted from each other). At the higher
frequencies larger than the third cut-off frequency ( f ≥ 400 kHz), the discrepancy between
the five considered models increases, but the plots ϕ( f ) are still qualitatively similar.
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Figure 19. Voltage ϕ( f ) sensed by PWAT at the surface of the laminate with interfacial bridged crack
of length w = 40 mm (∆b = 20 mm) modelled as an array of open micro-cracks and via the ESBCs at
lower (a) and higher (b) frequencies.

5. Discussion

The cohesive and adhesive bindings degrade during operation and maintenance, even
if contacting materials in a manufactured laminated structure are perfectly matched at the
interfaces. Therefore, the analysis of the dynamic behavior of partially damaged interfaces
between elastic materials is of significant importance, especially for damage identification
in composite materials and bonded joints using ultrasonic waves [65]. The configuration
and optimisation of guided wave-based NDT/SHM systems for damage detection requires
sufficient computational resources, especially when partially closed delaminations are to
be taken into account and identified.

In this paper, it is demonstrated that the effective spring boundary conditions proposed
by Baik and Thompson [33] and specified in [37,38] for an infinite number of micro-cracks
at the whole unbounded interface can be efficiently applied for simulation of various distri-
butions of interfacial micro-cracks situated in a finite part of an interface. The possibility
of the employment of the EBSCs has been demonstrated for two kinds of local interfacial
decohesion zones: uniform partially closed delaminations and bridged cracks.

The authors suppose further extension of the techniques and approaches developed in
this investigation. To reduce the computational costs, an effective model is proposed and
validated here for in-plane problems, but the approaches can be applied and developed
for the three-dimensional problems employing relations for spring stiffnesses derived
by Lekesiz et al. [39], Golub and Doroshenko [40], Lekesiz et al. [66], Golub et al. [67].
Thus, Zhang et al. [68] proposed an ultrasonic method providing an accurate crack evalua-
tion and reconstructing a shape of an open crack and the employment of such procedures
along with the EBCSs might be further extended to be also efficient for the identification of
bridged cracks and zones with imperfect contact.

In addition, the EBSCs and can be employed for modelling partially closed delamina-
tions in carbon fibre reinforced polymer composites made of anisotropic/orthotropic layers,
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which have increasingly become the material of choice for design of the main load carrying
components in advanced structures over recent decades. An experimental validation of
the theoretical results presented in this study could be provided using the fabrication
techniques employed in [13,69] to manufacture laminates with damaged interfaces.
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