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Abstract: Biopolymers are polymers obtained from either renewable or non-renewable sources
and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility,
biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified
as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have
been gaining wide interest in biomedical applications such as tissue engineering, drug delivery,
imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as
emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of
the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for
various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles
employed for medical applications; this review is an attempt to explore the possibilities of using
these materials for various biomedical applications. This review highlights protein based (albumin,
gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic
(Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many
applications. The fabrication strategies of different BPn are also being highlighted. The future
perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
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1. Introduction

Nanotechnology is the study that involves designing or fabricating materials and
devices with at least one dimension of one billionth of a meter [1]. Multiple researchers
have proved the advantages of the nano-dimension over the micrometer scale owing to
the enhanced individual molecule interaction compared to the bulk [2]. Nanoparticles
are zero-dimensional nanomaterials (0D) with a size range from 10 to 1000 nm. They are
employed in many biomedical applications such as drug delivery [3], tissue engineering [4],
biosensors [5], gene delivery [6], cell imaging and labeling [7,8] because of their enhanced
surface-to-volume ratio and magnetic properties [9]. Nanoparticles have created an impor-
tant role in the advancement of therapeutic applications since they exist in the same size
range as that of proteins, and their small size and large surface help in the exposure of sur-
face functional groups that can be tailored according to the requirement [10]. Nanoparticles
obtained from biological sources are highly preferred because of their improved quality
and stability compared to metal-based nanoparticles, where most are toxic to the human
system [11]. Thus, nanoparticles can be obtained from biopolymers as a solution to the
disadvantages posed by the counter-sources [2].

Biopolymers are the polymers obtained from living organisms such as plants, animals or
microbes; they also include synthetic polymers obtained from renewable feedstock, bio-based
monomers and also fossil fuels. Biopolymers can be classified into polysaccharides, polypep-
tides and polynucleotides based on the monomeric unit of the polymer, and are available in
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abundance and used extensively in the biomedical field, such as for wound healing drug/gene
delivery, tissue engineering and cell imaging [12]. BPn appears to offer a solution to ameliorate
the environmental effects and issues in biocompatibility and biodegradability caused by syn-
thetic materials. The most important parameters that have a crucial impact on the fabrication
of BPn are the surface charge, size, stability, compatibility with the cells and degradation [13].
Albumin was the first fabricated BPn [2]. Though polymeric nanoparticles have an issue of
scaling-up and their capacity of drug loading is also comparatively low, researchers have
widely employed them and tried ways to combat the disadvantages [10]. They have favor-
able properties such as biocompatibility, good anti-oxidant and anti-bacterial properties, and
tailorable surface features [11]. BPn acquired from proteins and polysaccharides are superior
when compared to synthetic materials, as the former can be easily metabolized naturally
by the enzymes present in the digestive system, whereas the latter accumulates and leads
to the formation of toxic by-products. Protein-based BPn can be surface modified, which
can facilitate site-directed drug targeting [14,15]. One of the main limitations in employing
biopolymeric nanoparticles from proteins or nucleic acids is that they are hydrophilic, whereas
the polymers are mostly hydrophobic in nature and thus cause difficulties in drug encapsula-
tion and degradation. Therefore, the preparation of biopolymeric nanoparticles is extremely
critical [2]. Biodegradation of natural polymers occurs through biological processes, including
enzymes such as collagenase in vivo and also via non-biological processes such as hydrolysis.
It has been reported that the majority of natural polymers degrade with the help of enzymes.
Polysaccharide-based biopolymers are degraded enzymatically within the human system with
the help of enzymes such as lysozymes and amylases. Biodegradable synthetic biopolymeric
nanoparticles degrade by hydrolysis of esters or urea linkages. It is also reported that polymers
with polar groups degrade faster when compared to those with non-polar groups [16]. Table 1
shows a summary of the advantages and disadvantages of different sources of biopolymeric
nanoparticles. Surface modification of the BPn is carried out to fine-tune the properties of
the fabricated nanoparticles employed for biomedical applications. Some of the strategies
employed include physical immobilization; modifications using chemicals such as grafting
with amino, acrylate or acetyl group; and grafting induced by radiation such as ultrasonic
waves. This type of modification enables improvement of the stability and the activity of
the BPn and also aids in preventing aggregation, protecting them from any alteration [17].
BPn can be fabricated by employing different methods such as coacervation, desolvation and
electro-spray techniques without employing the use of harsh organic solvents [13]. Figure 1
shows the schematic representation of biopolymeric nanoparticles employed for various
applications. This review highlights the various biopolymeric nanoparticles employed for
biomedical applications such as tissue engineering, drug delivery and images, and the various
fabrication strategies are also discussed. The current status and the challenges in employing
them are also highlighted.

Table 1. Summary of advantages and disadvantages of various biopolymeric nanoparticles.

Polymer Advantages Disadvantages Reference

Albumin Highly abundant, biodegradable,
biocompatible, non-cytotoxic.

Immunogenic effects, very
expensive, lack of efficacy. [18,19]

Gelatin

Enhanced cell adhesion,
proliferation and cell infiltration
in the scaffolds, good stability
and biodegradability,
osteoconductive,
non-immunogenic

Low stability in normal
physiological conditions,
poor bioactivity, brittle,
fast degradation rate under
physiological conditions

[16,20]

Silk fibroin

Biocompatible, osteoconductive,
improves cell migration and
angiogenesis, good elastic
properties, moderate
degradation rate.

Low mechanical strength,
degradation of silk
releases by-products that can cause
immunogenic reactions, inability to
induce osteogenesis.

[16,20,21]
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Table 1. Cont.

Polymer Advantages Disadvantages Reference

Collagen

Low immunogenicity, enhanced
permeability properties, excellent
cell adhesion, proliferation and
differentiation properties,
biodegradable, biocompatible.

Low mechanical strength, low
structure stability, variability in
different collagen sources.

[16,20,22]

Chitosan

Mucoadhesive nature, enhanced
biocompatibility, osteoconductive,
non-toxic, promotes cell adhesion,
hemostatic potential,
biodegradable, anti-bacterial activity.

In vivo degradation rate is very
high, low mechanical strength,
cross-linkers are required to
maintain stability, solubility is less and viscosity is
high at neutral pH,
control of nanoparticle size is difficult.

[16,20,23]

Alginate

Biocompatible, biodegradable, cell
compatible, gel-forming capability,
low immunogenicity,
mimics the extracellular matrix, low
cost, ability of encapsulation.

Low mechanical properties,
degradation is questionable
sometimes, poor cell adhesion,
sterilization is difficult.

[16,20,24]

Starch
Biodegradable, low cost,
biocompatible, easily available,
good cell adhesion.

Very high viscosity, low
Mechanical properties, fragile, stability issues,
water uptake is very high,
modifying chemically can release
toxic by-products.

[16,25]

Dextran
Biocompatible, anti-thrombotic
property, good water solubility,
functionalization can be carried out easily.

High cost, non-availability, very
high permeability, encapsulated
drugs are released very fast.

[26,27]

Poly-
caprolactone

Compatible with cells, non-toxic,
cell proliferation and angiogenesis can be
controlled, good mechanical properties,
improved cellular proliferation.

Bioactivity is less, poor cellular
adhesion due to hydrophobic
surface, use of toxic solvents.

[16]

Polyvinyl
alcohol

Biocompatible, good elastic nature,
water-soluble polymer, good tensile strength,
improved flexibility, stability to various
temperatures, low cost.

Lacks cell adhesion property, in
growth of bone cells is significantly less,
very high water uptake.

[16,28,29]

Polylactic
acid

Biocompatible, cell compatible,
degradation rate is good, by-products are
non-toxic, properties can be easily tailored,
eco-friendly.

Lack of cell adhesion and
proliferation property,
expensive, brittle (elongation
at break is less than 10%),
chemically inert.

[16,30]
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2. Protein Based Biopolymeric Nanoparticles

Proteins are basically made of amino acids linked via peptide bonds, and their structure
is stabilized by means of hydrophobic interactions and hydrogen and disulphide bonds [31].
These naturally derived polymers are highly preferred because of their excellent biocom-
patibility and good degradation characteristics. There are no harmful by-products since the
degradation process is completely natural [32]; thus, the nanoparticles derived from the
protein-based biopolymers are less toxic and easy to fabricate. The surface can also be easily
tuned with respect to specific drug delivery applications [33]. A few other advantages of
employing protein-derived biopolymeric nanoparticles for biomedical applications are that
the fabrication is comparatively easier, and it has been reported to be more stable in vivo.
The size distribution can be easily controlled and the process can be scaled up [2]. The
defined primary structure in protein helps in the easy attachment of various drugs that
play a key role in therapeutic applications [13]. The secondary structure of the protein
determines the size of the proteins and also helps to fabricate nanoparticles precisely [10].
Some examples of nanoparticle-derived protein biopolymers employed for biomedical
applications include silk fibroin, albumin, gelatin and collagen, which will be discussed in
the following subsection.

2.1. Albumin

Albumin belongs to the family of globular proteins and acts as a carrier protein for
endogenous or exogenous compounds. It is widely employed for treating a variety of
diseases—especially cancer [34]. Researchers have tested the potential of albumin in various
products and clinical trials. Albumin can be easily obtained from plants, animals and human
beings. Ovalbumin, bovine serum albumin (BSA) and human serum albumin (HSA) are the
three commonly used albumins for biomedical applications [35]. The main advantages of
employing albumin are that it has good compatibility with human cells, it does not induce
toxicity, and at the same time is also biodegradable and does not cause any adverse immune
reactions. Thus, albumin is a very good candidate for fabricating nanoparticles. Various
proteins that are expressed in a higher range in the tumor cells, such as secreted proteins
acidic and rich in cysteine (SPARC), easily and very effectively bind to albumin [18]. A study
has been performed where albumin nanoparticles were employed for the simultaneous
delivery of two drugs, ibrutinib (IBR) and hydroxychloroquine (HCQ), for the treatment
of glioma. Drug-loaded human serum albumin (HSA) nanoparticles were prepared by
ultrasonication method. HCQ, as an inhibitor, blocks autophagosome degradation. IBR
has a major role in glioma treatment by suppressing the malignant tumor growth but
faces disadvantages such as poor bioavailability and drug exposure in the brain cells were
found to be very limited. To overcome this, drug delivery using albumin nanoparticles
was facilitated. The mean size of the drug-loaded HAS nanoparticles was found to be
160.1 ± 0.7 nm. The encapsulation efficiency (%) and the drug loading capacity (%) were
found to be 97.2 ± 1.8 and 3.96 ± 0.06, respectively. The biodistribution analysis showed
that the presence of HAS nanoparticles resulted in an increased accumulation (5.59 times
higher than free drug) of IBR drug in the tumor. The fabricated drug-loaded nanoparticles
showed high cytotoxicity against C6-luc cells in CCK-8 assay and apoptosis assay. In vivo
analysis in mice showed that IBR-HCQ-HAS nanoparticles stayed for a prolonged time
when compared to IBR-HAS nanoparticles. Thus, these results were found to be very
promising for the treatment of glioma [36]. In another reported study, abaloparatide (ANPs)
was encapsulated in bovine serum albumin nanoparticles by desolvation process, stabilized
in chitosan by the self-assembly process, and then made into a nanofiber scaffold for bone
tissue engineering applications. Electrospinning was carried out to fabricate polymeric
nanofibers from a mixture of polycaprolactone (PCL), n-hydroxyapatite (n-HAp), aspirin
(ASA) and abaloparatide. The schematic illustration of the synthesis of abaloparatide
encapsulated in bovine serum albumin nanoparticles and the fabrication of electro spun
nanofibers loaded with two drugs is depicted in Figure 2.
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Figure 2. Schematic illustration of (A). Synthesis of chitosan stabilized BSA nanoparticle by desolva-
tion approach; (B). Fabrication of PCL-based electro-spun nanofiber loaded with nano-hydroxyapatite,
abaloparatide loaded BSA nanoparticle and aspirin. (Reproduced with permission from [37]; Copy-
right 2022, Elsevier).

The size range of the chitosan–abaloparatide nanoparticles was found to be 289 ± 34 nm.
The scanning electron microscopy (SEM) images of the nanofiber matrix showed that they
have irregular pore structures for the diffusion of oxygen and nutrients. In vitro release
studies have shown that drug release was fast in the nanofibers with two drugs when
compared to the one with a single drug. The ANPs/ASA/PCL/HA nanofiber scaffold
showed that the release of the drug was slow because of the hydrophilicity and degradation
characteristics. Cell adhesion was studied with the help of MC3T3-E1 and the morphology
was observed by SEM, as reported in Figure 3.
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Figure 3. SEM images of MC3T3-E1 adhered on the nanofibrous scaffold after 2 days. (A) PCL/HA;
(B) ASA/PCL/HA; (C) BSANps/PCL/HA; (D) ANPs/PCL/HA; (E) ANPs/ASA/PCL/HA The
arrows indicate lamellipodia and cell outlines. (Reproduced with permission from [37]; Copyright
2022, Elsevier).

From Figure 3, we understand that the cells have properly spread on the nanofi-
brous scaffold and show fusiform morphology. Thus, the results of the dual drug-loaded
nanofibers with chitosan-stabilized bovine serum albumin nanoparticles show excellent
physical and chemical properties, good degradation rate, enhanced cell compatibility
and osteogenic activity [37]. A study reported by Thangavel et al. used indocyanine
green–paclitaxel encapsulated in human serum albumin nanoparticles that were function-
alized with hyaluronic acid, as a ligand for drug delivery with image guiding capability
directed to CD44 non-small cell lung cancer (NSCLC). The drug release analysis showed
that paclitaxel was released more efficiently at pH 6.6 due to the acidic nature of the tumor
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micro-environment. Only 30% of the drug was released at pH 7.2 (blood circulation) af-
ter 46 h. The paclitaxel nanoparticles showed good anticancer activity against A549 and
H299 cell lines; thus, image guided drug delivery was found to be very efficient without
compromising the anticancer treatment efficiency [38]. Khella et al. studied the anti-tumor
activity of MCF-7 and Caco-2 cell lines using carnosic acid encapsulated in bovine serum
albumin nanoparticles. The results of the experiment showed excellent drug loading ability
and the best release profile. Enhanced anti-tumor activity was found in both the cell lines;
apoptosis results showed that the MCF-7 and Caco-2 cells were arrested at the G2/M phase
(10.84% and 4.73%, respectively) [39]. One of the studies demonstrated the use of dex-
amethasone encapsulated in bovine serum albumin nanoparticles for enhanced anti-
inflammatory activity in rats; a bimodal release of the drug and a significant anti-inflam-
matory activity was reported [40].

2.2. Gelatin

Gelatin is a natural biopolymer derived from animal collagen with favorable properties
such as low cost, biocompatibility and biodegradability, that is derived from the hydrolysis
of animal collagen [41,42]. Gelatin-based nanoparticles (GNPs) are very promising for a
variety of biomedical applications such as tissue engineering and drug delivery because
of their properties, such as easy availability, offering great stability and long-time storage
in vivo [14]. GNPs have also been widely employed for treating brain disorders since
they can cross the blood–brain barrier, and various properties such as mechanical proper-
ties, thermal and swelling behavior changes with respect to the amphoteric properties of
gelatin [41]. Different cross linkers can be added to modify the physiochemical properties
of gelatin nanoparticles [31]. A study reported the use of gelatin nanoparticles conjugated
with polyethylene glycol for the simultaneous delivery of two drugs, doxorubicin and
betanin, for cancer treatment. The particle size of the nanoparticles was found to be 162 nm.
The encapsulation efficiency and the loading capacity was 82% and 20.5%, respectively.
High cell cytotoxicity was observed after 48 h against the MCF-7 cancer cell line when two
drugs were given rather than the individual drug, as depicted in Figure 4.
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Figure 4. Cell toxicity results of MCF-7 cell line after treating them with individual and a combination
of drugs encapsulated in gelatin nanoparticles. (DOX—doxorubicin; BET—betanin). (Reproduced
with permission from [43]; Copyright 2019, Elsevier).

Cellular uptake results, as shown in Figure 5, revealed that high cellular uptake was
witnessed with the nanoparticle-encapsulated drugs rather than the free form of the drug,
proving that the nanoparticles have the ability to escape the endocytosis process.

The combination of the drugs encapsulated in gelatin nanoparticles showed excellent
apoptotic activity. Thus, the multi-drug nanocarriers facilitate a new horizon to develop an
enhanced treatment strategy for cancer [43]. A study reported by Yang et al. fabricated zole-
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dronic acid (ZOL)-encapsulated gelatin nanoparticles integrated into a titanium scaffold for
treating osteoporosis-based defects. The in vitro results showed enhanced osteoblast differ-
entiation when ZOL concentration was 50 µmol L−1. The in vivo studies in osteoporotic
rabbits showed improved bone growth and osteogenesis [44]. One study reported the use
of gold nanoparticles conjugated with gelatin nanoparticles for the purpose of bioimaging
as well as a drug delivery system. The size of the nanoparticles was found to be 218 nm and
showed no toxicity up to 600 µg mL−1. The imaging of the nanoparticles in the skin tissue
was carried out by using confocal laser scanning microscopy (CLSM), achieving a depth
profile of 760 µm [45]. Gelatin nanoparticles were enteric coated to encapsulate 5-amino
salicylic acid for oral drug delivery for the treatment of ulcerative colitis in one study. The
nanoparticles’ size ranged from 225 to 250 nm and were found to be spherical in nature.
The administration of nanoparticles reduced mast cell infiltration and also maintained
the colon tissue architecture. A significant reduction in the inflammatory markers such
as TNFα, COX-2, IL1-β and nitrate levels was observed. The encapsulated drug showed
enhanced therapeutic efficiency when compared to the free drug [46].
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2.3. Silk Fibroin

Silk fibroin is a natural biopolymer obtained from the cocoons of Bombyx mori made of
5507 amino acid residues. The most important features that make silk fibroin an outstanding
material for biomedical applications are its good biocompatibility with humans, very high
mechanical strength and favorable biodegradable properties. It also helps to promote cell
adhesion and proliferation. They can be used in various forms, such as films, hydrogels,
fibers, spheres, mats, sponges and scaffolds, and are widely used in many applications
such as wound healing; cancer therapy; drug delivery; and bone, skin and cartilage
regeneration [47–49]. The controlled degradation rate and excellent biocompatibility of
silk fibroin make it an excellent candidate for making nanoparticles [50]. In the nanoscale,
silk fibroin shows improved physiochemical, mechanical and biological properties [51]. In
one reported study, curcumin was encapsulated in silk fibroin nanoparticles for treating
cancer; the therapeutic efficiency of the drug was enhanced by loading in a nanocarrier.
The size of the nanoparticles ranged from 155 to 170 nm. The in vitro cytotoxicity assays
revealed that the nanoparticles greatly reduced the viability of carcinogenic cells, and high
cytotoxicity was seen more in neuroblastoma cells than hepatocarcinoma cells. The drug
curcumin was found to be fluorescent when it was loaded into silk fibroin nanoparticles
and not in the free state. The drug-loaded nanoparticles showed excellent anti-tumor
and anti-oxidant activity [52]. Shen et al. developed a scaffold made of sodium alginate
and silk fibroin loaded with silk fibroin nanoparticles for improving hemostasis and cell
adhesion. The nanoparticles were obtained by the self-assembly process. The addition of
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nanoparticles to the scaffold system improved the compression strength, and reduced the
degrading rate. The nanoparticles were found to be spherical and uniform in size. The
cell adhesion and cell proliferation of L929 cells and HUVECs were studied by using a
Live/Dead assay kit (Figure 6). It was found that at the end of 5 days, the cells showed
proper adhesion, spreading, migration and proliferation. A greater number of cells were
grown on the composite scaffold with silk fibroin nanoparticles (NP) when compared to
the one without them (PM).
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Another study reported the use of simvastatin loaded into silk fibroin nanoparticles
for the purpose of bone regeneration. The nanoparticles were found in the size range of
174 ± 4 nm and were spherical in morphology. A sustained drug release profile was seen for
about 35 days. The in vitro cell studies revealed that the nanoparticles improved cell adhesion
and proliferation, and also showed good alkaline phosphatase activity [54]. Rahmani et al.
investigated the use of silk fibroin nanoparticles for the delivery of 5-fluoro uracil for the
treatment of cancer. The size of the nanoparticles was found to be 286.7 nm and the loading
efficiency was 52.32%. High loading efficiency and slow release of the drug were observed [55].
Doxorubicin and PX478 were co-loaded into silk fibroin nanoparticles that were functionalized
with folic acid for the purpose of treating multi-drug-resistant tumors. The cellular uptake was
increased and this nanoparticle combination significantly downregulated multiple genes to
overcome multi-drug resistance. The lysosomal escape was achieved quickly, and doxorubicin
could quickly enter the cells and kill the drug-resistant cells [56].

2.4. Collagen

Collagen is a structural biopolymer that is found abundant in the human body. It
is the major part of the extracellular matrix and is found in tendons, ligaments, cartilage
and skin [57,58]. Collagen has been widely employed in biomedical applications due to
its properties such as biocompatibility, biodegradability, favorable gelling and surface
behavior [59,60]. Nano collagen has an outstanding potential when compared to three-
dimensional collagens in helping to withstand heavy loads with minimum tension due to
the high surface-to-volume ratio [61]. The nanocollagen has notable properties, such as high
contact area, reduced toxicity, easily sterilizable, increased retention of cells, and decreased
effects of toxicity from the by-products as a result of degradation. They can be found in
various forms, such as sheets, films, sponges, fibers, pellets, disks and nanoparticles [62,63].
One study reported the use of collagen nanoparticles from marine sponges fabricated by
the process of alkaline hydrolysis. Estradiol–hemihydrate was loaded into the nanoparticle
and the drug loading was found to be 13.1%. Prolonged drug release and improved drug
absorption by the cells were observed. Thus, the presence of collagen nanoparticles facilitates
exciting ways of drug delivery [64]. Appropriate cross-linking strategies have to be chosen
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to tailor the properties of collagen according to the intended application. The stability and
degradation characteristics can be altered when the surface features are altered [31].

2.5. Elastin

Elastin is a natural biopolymer found in elastic fibers, especially in the extracellular
matrix of skin, lungs, heart and blood vessels [65]. One of the main properties of elastin
is that it can retain its original shape and insolubility even after stretching [66]. They
are not always biocompatible and are very much difficult to alter. Thus, soluble elastin-
like peptides are fabricated for a wide variety of biomedical applications [67]. Elastin
nanoparticles have been employed as a nanocarrier for delivery drugs and genes and
have proven to be very effective. The ability of elastin nanoparticles to self-assemble and
respond to varying temperatures has allowed them to be employed for various therapeutic
applications. The properties of the elastin nanoparticles can be tailored according to the
intended application [14,67,68]. One study reported the use of elastin nanoparticles for
the delivery of bone morphogenic proteins (BMPs). Poly (L-valine-L-proline-L-alanine-L-
valine-L-glycine) pentapeptide is an elastin-like polymer where the central glycine molecule
is replaced by alanine. A total of 94% of the BMP was successfully encapsulated into
elastin-like polymer nanoparticles. The in vitro assays revealed that they are non-toxic and
compatible with C2C12 cells [69]. Kim et al. reported a study where α-elastin nanoparticles
were fabricated for protein delivery applications. The nanoparticles were grafted with
polyethylene glycol to improve the colloidal stability; they were in the size range from
330 ± 33 nm. A sustained release of encapsulated insulin and bovine serum albumin (BSA)
was observed for 72 h. The thermoresponsive nature enables the fabricated nanoparticles
to be employed for a wide variety of drug delivery and tissue engineering applications [70].
The summary of protein based biopolymeric nanoparticles is given in Table 2.

Table 2. Summary of protein-based biopolymeric nanoparticles.

Protein Overall Composition Application Key Findings of the Study Reference

Albumin
Human serum albumin + ibrutinib
and hydroxychloroquine
(nanoparticles)

Co-drug delivery
system for treatment
of glioma

Improved bioavailability
Prolonged survival time in
in vivo treated mice
High cytotoxicity against
C6 cells

[36]

Albumin

Bovine serum albumin +
abaloparatide + aspirin +
polycaprolactone + hydroxyapatite
(nanofibrous scaffold)

Bone regeneration

Improved degradation rate
Slow drug release
Enhanced compatibility
Improved bone regeneration

[37]

Albumin

Human serum albumin (HSA) +
indocyanine green (ICG) +
paclitaxel (PTX) + hyaluronic acid
(nanoparticles)

Image-guided
drug delivery

Efficient drug release in the
tumor environment
Efficient anti-cancer activity

[38]

Albumin Bovine serum albumin +
carnosic acid

Anti-tumor activity of
breast cancer and
colon cancer.

Enhanced loading activity
Improved release profile
of the drug
Enhanced anti-tumor activity
Upregulation of GCLC gene and
downregulation of BCL-2 and
COX-2 gene.

[39]

Albumin Bovine serum albumin + silymarin +
curcumin + chitosan

Muco-inhalable drug
delivery system

Significant reduction of
interleukin-6 and
c-reactive protein
Efficient anti-viral activity in
in vitro COVID-19 experiment

[71]
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Table 2. Cont.

Protein Overall Composition Application Key Findings of the Study Reference

Albumin Bovine serum albumin +
poly-L-lysine + graphene oxide Bone regeneration

Controlled release of BMP-2
(14 days)
Improved matrix mineralization
Enhanced Alkaline phosphatase
(ALP) activity

[72]

Gelatin Gelatin + concanavalin-A + cisplatin Drug delivery for
cancer therapy

Enhanced cellular uptake of
nanoparticles
Enhanced reactive oxygen species
and apoptosis in cancer cells

[73]

Gelatin Gelatin methacrylol nanoparticles
+ rhodamine Cell imaging

Improved cell viability and cell
proliferation in vitro
Superior cell compatibility
Enhanced cellular uptake
Improved fluorescent properties

[74]

Gelatin Amino cellulose + polycaprolactone
+ gelatin nanoparticles Rheumatoid arthritis

Reduction in swelling and
inflammation in rats.
Maintaining cartilage and bone
tissue architecture.
Reduction of
inflammatory markers

[75]

Gelatin Gelatin + indocyanine + doxorubicin Breast cancer treatment

Improved drug release
Suppressed the tumor growth
in vivo
Enhanced degradation of matrix
metalloproteinase-2

[76]

Gelatin
Polyethylene glycol grafted gelatin
nanoparticles + doxorubicin
+ betanin

Cancer therapy

Enhanced cellular uptake
Cell apoptosis induced in MCF
cells; Controlled drug
release observed

[43]

Silk fibroin Curcumin + silk
fibroin nanoparticles Cancer therapy

Enhance anti-tumor activity
Improved anti-oxidant activity
Curcumin was found to be
fluorescent when encapsulated

[52]

Silk fibroin Silk fibroin + sodium alginate + silk
fibroin nanoparticles (scaffold) Wound healing

Improved cell adhesion
Enhanced hemostasis
Improved platelet adhesion
Excellent biocompatibility and
improved cell adhesion
and proliferation

[53]

Silk fibroin Silk fibroin + simvastatin
(nanoparticles) Bone regeneration

Sustained release profile
Improved ALP production
Enhanced production of
osteoblast cells

[54]

Silk fibroin Silk fibroin + 5 fluorouracil
(nanoparticles) Drug delivery Improved loading efficiency

Slower release of the drug [55]

Silk fibroin Silk fibroin nanoparticles
+ PX478 + doxorubicin

Reverse
multi-drug resistance

Increased cellular uptake
Downregulation of genes-MDR1,
VEGF and GLUT-1

[56]

Silk fibroin Silk fibroin + tamoxifen
(nanoparticles) Breast cancer

The particle size was found to be
186.1 nm
Encapsulation efficiency was
found to be 79.08%
Biphasic release profile was
observed

[77]
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Table 2. Cont.

Protein Overall Composition Application Key Findings of the Study Reference

Collagen Collagen + estradiol–hemihydrate Transdermal
drug delivery

Enhanced drug loading capacity
Increased sustained drug release
Improved drug absorption

[64]

Elastin Elastin-like polymeric nanoparticles
+ bone morphogenic protein Drug delivery system

Improved
encapsulation efficiency
Compatible with C2C12 cells

[69]

Elastin α-elastin + methoxy polyethylene
glycol + BSA/Insulin Protein delivery

Encapsulation at low
temperatures with
simple mixing
Sustained release for 72 h
The nanoparticles are of normal
size distribution

[70]

Elastin Elastin-like recombinamers +
docetaxel + RGD peptide Drug delivery system

High yield of 70%
Monodispersed
nanoparticles-40 nm
Very much effective against
breast cancer cell line

[78]

3. Polysaccharide Based Polymeric Nanoparticles

Polysaccharides are long carbohydrate molecules made of monosaccharide units that
keep repeating and are linked by glycosidic bonds. Some examples of polysaccharides
include chitosan, alginate, dextran, starch, heparin and hyaluronic acid. These naturally
derived biopolymers form the main constituent of the extracellular matrix. The main
advantages of polysaccharides are that they are highly stable, compatible with human cells
and have favorable degradable properties. Carbohydrate-based nanoparticles, along with
immobilization techniques, help in improving biocompatibility. Due to their small size
and high surface-to-volume ratio, nanoparticles have wide applications, such as delivering
drugs, proteins and nucleic acids. Polysaccharide-based nanoparticles can be fabricated by
various methods and the properties can be tailored by modifying the structure according
to the intended application [2,10,13,15]

3.1. Chitosan

One of the most important cationic biopolymers employed for various biomedical
applications is chitosan. This hetero polymer is made of N-acetyl-D-glucosamine, which
is an acetylated unit, and D-glucosamine, which is a deacetylated unit linked by β-1,4
linkages. It is a hydrophilic biopolymer with the ability to open tight junctions of the cell
membranes that are degraded by the presence of enzymes such as lysozymes, proteases
and lipases [10,79]. The positive charge of the chitosan nanoparticles is due to the presence
of amine groups that has the ability to adhere to the negatively charged mucosal mem-
brane and aid in the release of the encapsulated drugs in a sustained manner. A complex
formation is induced by the electrostatic interactions along with hydrogen bonding and
hydrophobic interactions, and thus, the mucoadhesive property of the chitosan nanoparti-
cles are highly exploited for oral drug delivery applications. The nanoparticles also have
cell compatibility in both in vitro and in vivo models [80]. The bioavailability and stabil-
ity issues are overcome with the surface modification of the chitosan nanoparticles. The
chitosan nanoparticles show improved bioavailability, increased specificity and reduced
toxicity, and the properties vary with size. Due to all these properties, they are employed in
applications such as nanomedicine, biomedical and pharmaceutical industries [81]. They
can be fabricated by a variety of methods such as emulsification, precipitation, ionic or
covalent cross-linking, solvent diffusion method and solvent evaporation [82,83]. Dev
et al. fabricated chitosan nanoparticles along with Poly lactic acid for encapsulation of the
anti-HIV drug called Lamivudine; the nanoparticles were found to be around 300 nm and
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the drug encapsulation efficiency was 75.4%. They were found to be non-toxic to mouse
fibroblast cells (L929 cells) [84]. Hydrophilic drugs such as 5-fluorouracil and leucovorin
have been encapsulated in chitosan nanoparticles for the treatment of colon cancer. The
drug-loaded nanoparticles were in a wide size range of 34–112 nm. The drugs loaded into
the nanoparticles initially had a burst release followed by a continuous and constant release
of the drugs. Encapsulation efficiency and the drug loading capacity of the drugs were
found to be very efficient because of the strong interaction between the biopolymer and
the drugs [85]. Chitosan nanoparticles were incorporated into the silk fibroin hydrogel
scaffolds for the repair of cartilage defects. The incorporation of tumor growth factor
(TGFβ) and bone morphogenic protein (BMP) was carried out to repair the articular defects.
Enhanced cell viability, cytocompatibility and chondrogenesis was observed [86]. Cur-
cumin was encapsulated into chitosan nanoparticles and finally incorporated into nanofiber
mats containing polycaprolactone and gelatin. The nanoparticles were in the size range of
278 ± 60 nm. The encapsulation efficiency and the drug loading capacity were found to be
93 ± 5% and 4.2 ± 0.2%, respectively. Drug release of the nanocomposite was observed up
to 240 h. The cell compatibility of the nanocomposite was studied with the help of human
endometrial stem cells (EnSCs), as indicated in Figure 7.
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Figure 7. (A) Scanning electron microscopy images of human endometrial stem cells attached in PCL,
PCL/gelatin and PCL/gelatin/chitosan nanoparticles/curcumin-loaded fibrous mats for 24 h and 72 h;
(B) Results of cellular growth obtained through MTT assay. (Vertical bars: standard deviations;
* p-value < 0.05) (Reproduced with permission from [87]; Copyright 2020, Elsevier).

Higher cellular growth was found in the PCL/gelatin/chitosan nanoparticles/curcumin
nanofiber mats. An increase in cell adhesion and proliferation of the nanofiber mats was
observed at the end of 72 h. The hybrid composite was found to be biocompatible, as
observed through MTT assay.

3.2. Alginate

Alginate is one of the most important anionic biopolymers obtained from seaweeds
such as brown algae. They are linear and are made of units of α-L-guluronic acid and β-D-
mannuronic acid linked by 1,4 glycosidic linkages. The presence of carboxyl and hydroxyl
groups in their structure facilitates easy modification according to the intended application.
It can be transformed into any form, such as nanoparticles, hydrogels, microparticles and
porous scaffolds. The ability of alginate to form gels without the addition of any toxic
substance at normal conditions has enabled it to be used in a wide variety of therapeutic
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applications. It is also very easily available, not toxic, and has favorable cell compatibility
and biodegradable properties. Alginate nanoparticles are fabricated by means of pre-
gelation with calcium; they are widely being explored in the field of tissue engineering,
regenerative medicine, wound healing, biosensors, genetic transfection and environmental
applications. The nanoparticles show improved biocompatibility, degradation properties
and also mucoadhesiveness properties; they are combined with other polymers to modulate
their physiochemical, mechanical and biological properties [13,31,88–90]. A study reported
the use of alginate nanoparticles along with an antibiotic called polymyxin B sulphate to be
one of the layers for the biomembrane designed for wound healing. The biomembranes
showed low toxicity and were found to be biocompatible with the fibroblast cells; the
in vivo analysis showed promising outcomes [91]. Alginate nanoparticles, along with
chitosan, were employed for the delivery of the drug called nifedipine. The nanoparticles
had an average diameter of 20 to 50 nm. The drug release was found to be pH responsive,
i.e., the percentage of the drug varies with respect to the pH. Initial burst release followed by
continuous controlled release was observed. Fick’s diffusion was found to be the reason for
the drug release [92]. Curcumin diethyl disuccinate was encapsulated in chitosan/alginate
nanoparticles for anti-cancer therapy. A sustained release profile of the drug and improved
bioavailability was observed. The drug was found to be stable when exposed to digestive
fluids. The main mechanism behind the release of the drug was found to be diffusion.
It was found that the cellular uptake was enhanced and showed cytotoxicity against the
HepG2 cell line [93]. Zohri et al. reported a formulation where chitosan and alginate
nanoparticles were used as a non-viral vector for gene delivery applications and optimized
using the D-optimal design. The nanoparticles were found to be compatible with cells and a
transfection efficiency of 29.9% was observed [94]. One study reported the sustained release
of the drug esculentoside from chitosan/alginate nanoparticles that were embedded in a
collagen/chitosan scaffold for the treatment of burn wounds. The highest encapsulation
efficiency of 78.20% was observed. The composite scaffold showed good anti-inflammatory
activity. The in vitro assays showed that M2 macrophages were activated, which promoted
quick healing of the burn wounds. The in vivo evaluation of the nanocomposite in the burn
wounds also showed promising results (Figure 8).
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Figure 8. Images of the healing of burn wounds after transplantation with the blank Collagen/chitosan
scaffold, 5 µg drug–chitosan/alginate nanoparticles @ collagen/chitosan scaffold, 10 µg drug-
chitosan/alginate nanoparticles @collagen/chitosan scaffold, and blank collagen chitosan scaffold
with 5 µg drug at days 0, 3, 7, 14, and 21 (Reproduced with permission from [95]; Copyright 2023,
American Chemical Society).
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Drug concentrations in the nanocomposite scaffold showed better healing properties
than the blank scaffold. The wound was almost completely healed at the end of day 21 [95].

3.3. Starch

Starch is a natural, biodegradable biopolymer obtained from various plants such as
potato, wheat, rice or corn, and it is made of amylose and amylopectin. It is widely em-
ployed for biomedical applications such as tissue engineering or wound healing. It is easily
available since it is the second most abundant biomass present on the earth. The impor-
tant favorable characteristics that make them a suitable candidate for various applications
are that they have swelling characteristics, rheological properties, degradable properties,
solubility and biocompatibility. Starch-based nanoparticles are used as fillers with other
polymer matrices and help to improve the various physiochemical and mechanical properties.
Studies also have reported that starch-based nanoparticles increase encapsulation efficiency.
They can be fabricated by a variety of methods such as precipitation, micro fluidization
and enzyme hydrolysis, homogenization and emulsification. They have enhanced absorp-
tive capacity and biological penetration rate and are thus employed as carriers to deliver
bioactive compounds [10,13,96–99]. One study reported that CG-1521 was encapsulated in
starch nanoparticles for the treatment of breast cancer. Improved therapeutic index and
bioavailability were reported due to the presence of nanoparticles. The release rate of the
drug was reduced and the cytotoxicity was enhanced towards the MCF-7 cell line. Cell cycle
arrest and apoptosis were witnessed in the MCF cell line in in vitro study. The drug delivery
of the drug was found to be promising without interfering with the mechanism of drug
action [100]. Curcumin was loaded onto starch nanoparticles derived from green bananas.
The nanoparticles were found to be about 250 nm in size and the encapsulation efficiency was
found to be 80%. More controlled release of curcumin was observed because of the strong
hydrogen bond interaction [101]. Starch nanoparticles grafted with folate and biotin for the
delivery of Doxorubicin and siRNA. A high amount of cytotoxicity was observed against
the A549 cell line (human lung cancer cell line). The lowest amount of cell proliferation
was observed and the mechanism behind cellular uptake was found to be either clathirin or
caveolae-mediated [102]. A nano-based drug delivery system was designed by using starch
nanoparticles conjugated with aptamer loaded with para coumaric acid for the treatment of
breast cancer. The nanoparticles were found to be less agglomerated and the particle size was
found to be 218.97 ± 3.07 nm. The encapsulation efficiency was found to be 80.30 ± 0.53%.
Rapid and burst release of the drug was observed for the initial five hours. Higher cytotoxicity
was observed towards MDA-MB-231 cells [103]. Triphala Churna, an ayurvedic drug, was
encapsulated in starch nanoparticles for the purpose of releasing various drugs and bioactive
compounds. The nanoparticles were in the size range of 282.9 nm. Improved fast drug release
was observed at pH 7.4, and enhanced drug encapsulation was observed. The anti-oxidant
and anti-bacterial results of the drug-loaded starch nanoparticles showed promising results.
The drug showed improved activity and the mechanism of the drug was not altered though
it was encapsulated in starch nanoparticles [104]. Methacrylated starch-based nanoparticles
have been employed as hydrogels by photopolymerization. Dense and stiff hydrogels that are
compatible with human cells were fabricated and reported in a study by Majcher et al. The
shear modulus was found to be increased by at least five times [105].

3.4. Dextran

Dextran belongs to a family of microbial polysaccharides obtained from lactic acid
bacteria (LAB) and their enzymes in the presence of sucrose. This exopolysaccharide is
linked by D glucose units majorly by α-1,6 bonds. The physio–chemical properties vary
with respect to the strain producing it. The favorable rheological, thermal properties,
biocompatibility and biodegradability, enable dextran to be employed in a lot of appli-
cations. Dextran has been employed in biomedical applications such as wound healing,
tissue engineering, imaging and as drug carriers. The ability of dextran nanoparticles to
form a stable backbone has shown promising results to be employed as a nano drug car-
rier [106,107]. One study reported the use of the anticancer drug doxorubicin encapsulated
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in carboxymethyl dextran nanoparticles for cancer treatment. The nanoparticles were in
the size of 242 nm and had an encapsulation efficiency of greater than 70%. Rapid release
of the drug was observed initially. In vitro assays revealed that the fabricated nanoparticles
showed higher cytotoxicity towards the SCC7 cancer cell line. A high anti-tumor effect
was exhibited from the drug-loaded nanoparticles [108]. A dextran nanoparticle of about
13 nm was crosslinked with Zirconium (Zr-89) to be used as a positron emission tomogra-
phy (PET) imaging agent for the purpose of imaging macrophages. The half-life was found
to be 3.9 h, and they primarily imaged only the tissue macrophages and not the white
blood cells. The in vivo imaging results showed that the tumoral uptake was very high
and was able to surpass the reticuloendothelial system [109]. Acryloyl crosslinked dextran
dialdehyde (ACDD) nanoparticles grafted with glucose oxidase for the fabrication of a
pH-responsive insulin delivery system. A controlled release of insulin of 70% was observed
in the artificial intestinal fluid conditions for 24 h. In the presence of glucose, the release
was found to be 90% under artificial intestinal fluid conditions. The mechanism behind the
release of the drug was found to be non-Fickian diffusion [110]. Butzbach et al. reported a
study where photosensitizer was encapsulated in spermine and acetyl-modified dextran
nanoparticles and grafted with folic acid on the surface that is specifically expressed in
the tumor cells. Cellular uptake against He-La KB cells and cytotoxicity induced by light
were observed [111]. Another study reported the use of dextran nanoparticles conjugated
with acitretin for the treatment of psoriasis-like skin disease. A low dosage of the drug
does not induce and side effects. In vitro results showed that keratinocyte proliferation
was enhanced. The mechanism behind that was that the STAT-3 phosphorylation was
efficiently inhibited [112]. Cerium oxide nanoparticles were coated with dextran for use as
a contrast agent in the gastrointestinal tract and bowel diseases. Enhanced imaging in the
inflammation sites. No toxicity was observed and was protective against oxidative damage.
The oral dose (>97%) was cleared after 24 h [113]. In another study, dextran nanoparticles
were cross-linked with colon-specific oligoester that responds to enzymes was fabricated.
5-Fluoro uracil was encapsulated in the dextran nanoparticles for the treatment of cancer.
The nanoparticles were in the size range of 237 ± 25 nm. The encapsulation efficiency of
the drug was found to be 76%. The drug was found to release only in the presence of the
enzyme dextranase. 75% of the drug was released up to 12 h of incubation. The dextran
nanoparticles were found to be compatible with the HCT116 colon cancer cell line and were
found to be cytotoxic in the presence of the enzyme dextranase [114]. The summary of the
polysaccharide based polymeric nanoparticles is given in Table 3.

Table 3. Summary of polysaccharide-based polymeric nanoparticles.

Polysaccharide Overall Composition Application Key Findings of the Study References

Chitosan Chitosan + polylactic
acid + lamivudine Drug delivery

Drug release was found to be
higher when higher percentage
was loading
The nanoparticles were found to
be non-toxic to the L929 cell line
The degradation rate increases
with respect to pH

[84]

Chitosan Chitosan + 5-fluorouracil
and leucovorin Drug delivery

Improved encapsulation
efficiency and drug
loading capacity
Release profile can be modulated
by changing the parameters

[85]

Chitosan Chitosan + ellagic acid Oral cancer therapy

Particle size was found to be 176
nm; Encapsulation efficiency
was found to be 94 ± 1.03%.
Sustained release of the drug
was observed. Cytotoxicity was
observed in KB cell line

[115]
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Table 3. Cont.

Polysaccharide Overall Composition Application Key Findings of the Study References

Chitosan Chitosan + tetracycline+
gentamycin + ciproflaxin Drug delivery

Superior antibacterial properties;
improved physiochemical and
mechanical properties; greater
penetration of nanoparticles
observed in the fiber

[116]

Chitosan Chitosan + 5-fluorouracil Drug delivery

Negative binding energy makes
it energetically suitable; high
drug loading capacity; reduced
toxicity and increased reactivity

[117]

Chitosan Chitosan + dexamethasone Drug delivery

Particle size ranged from 277 to
289 nm; Drug release increased
up to 8 h and was constant upto
48 h. Mild cytotoxicity was
observed against L929, HCEC
and RAW 264.7 cells. Effective
anti-inflammatory activity
against RAW macrophages

[118]

Chitosan Chitosan + sodium alginate +
polyvinyl alcohol + rosuvastatin Drug delivery

Enhanced mechanical properties
of the hydrogel film. The size of
the nanoparticles ranged
between 100–150 nm.
Encapsulated drug was released
within 24 h. High cell viability of
fibroblast cells observed after
72 h of incubation

[119]

Alginate Alginate + rifampicin/isoniazid/
pyrazinamide/ethambutol

Anti-tuberculosis
drug carrier

High drug encapsulation
ranging from 70 to 90%.
Improved bioavailability
of the drugs
Promising in vivo results

[120]

Alginate
Chitosan + alginate
nanoparticles + curcumin
diethyl disuccinate

Drug delivery

Enhanced stability; good
bioavailability; improved
cellular uptake; cytotoxicity
against Hep G2 cell line.

[93]

Alginate
Chitosan oligosaccharide +
alginate nanoparticles
+ astaxanthin

Drug delivery

Encapsulation efficiency and
drug loading capacity were
found to be 71.3% and 6.9%.
Exhibited stability in acidic,
alkaline and ultraviolet light.
Sustained drug release was
observed. Improved
bioavailability and
anti-oxidant activity.

[121]

Alginate Chitosan + alginate
nanoparticles Gene delivery

Particle size of 111 nm; no
toxicity observed; transfection
efficiency of 29.9%

[94]

Alginate Chitosan + alginate
nanoparticles + esculentoside Wound healing

Enhanced healing rate;
improved anti-inflammatory
activity; Sustained drug release
rate

[95]

Starch Starch nanoparticles + citric acid
(nanocomposite) -

The size of the nanoparticles
ranged from 50 to 100 nm.
Improved storage modulus and
glass transition temperature.
Decrease in water
vapor permeability

[122]
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Table 3. Cont.

Polysaccharide Overall Composition Application Key Findings of the Study References

Starch Starch + CG-1521 Breast cancer treatment

Slow release of the drug;
Improved cytotoxicity towards
MCF-7 cell line. Cell cycle arrest
was induced and apoptosis was
seen in MCF-7 cells

[100]

Starch Starch nanoparticles + curcumin Drug delivery
Enhanced encapsulation
efficiency (80%)
Controlled release observed

[101]

Starch Starch nanoparticles +
doxorubicin + siRNA Cancer therapy

Low cell proliferation; enhanced
cytotoxicity against A549 cell
line; decreased expression of
IGFR 1 protein

[102]

Starch Starch nanoparticles + para
coumaric acid Breast cancer

Increased cytotoxicity towards
MDA-MB-231 cells; burst release
observed initially; enhanced
encapsulation efficiency

[103]

Starch Starch nanoparticles +
triphala churna Drug delivery system

Enhanced encap-
sulation efficiency
Improved anti-bacterial and
anti-oxidant activity; initial drug
release was found to be very fast

[104]

Dextran Dextran nanoparticles
+ doxorubicin Cancer therapy

Enhanced anti-tumor effect; high
cytotoxicity towards SCC7
cancer cell line; improved
encapsulation efficiency

[108]

Dextran Zirconium-89 labeled dextran
nanoparticles In vivo imaging

Enhanced tumor uptake; half-life
of 3.9 h. Targets only tissue
macrophages

[109]

Dextran Dextran nanoparticles
+ glucose oxidase Insulin delivery

Controlled release of insulin
-90% under artificial intestinal
fluid conditions;
mechanism—Non-
Fickian diffusion

[110]

Dextran Dextran nanoparticles + acitretin Treatment of psoriasis
skin disease

Average size of 100 nm;
sustained release of 80%.
Enhanced proliferation level of
keratinocytes; improved
inhibition of
STAT-3 phosphorylation

[112]

Dextran Carboxymethyl dextran
nanoparticles + Cy-5 labeling Retinoblastoma

Enhanced ocular bioavailability;
more affinity toward
ocular tumor

[123]

Dextran Dextran nanoparticles + Cerium
oxide nanoparticles

CT contrast
imaging agent

Oxidative stress protection; no
toxicity observed; majority of the
drug released in 24 h

[113]

4. Synthetic Biopolymeric Nanoparticles

This type of biopolymer is either obtained by modifying the natural polymers or
by chemically synthesized from the monomers in such a way that they do no leave any
toxic by product. It can be either obtained from renewable feedstock or from fossil fuels.
They are more advantageous than natural polymers and are employed in a variety of
applications because of their stability and flexibility. They also facilitate controlled release,
non-immunogenic and can be easily cleared from the body. One of the disadvantages of
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synthetic biopolymers are that they lack cell adhesion sites and chemical modifications
are required to improve their property. Some examples of synthetic biopolymers include
polycaprolactone (PCL), Polylactic acid (PLA), Polyvinyl alcohol (PVA) and Polyethylene
glycol (PEG), which are widely being studied for various biomedical applications. The
nanoparticles synthesized out of them have improved properties such as biocompatibility,
biodegradability and stability. The higher surface-to-volume ratio enables higher reactiv-
ity and a capability to easily modify the functional groups and, thereby, the governing
properties [124].

4.1. Polycaprolactone Nanoparticles

Polycaprolactone (PCL) is a polymer that is biodegradable and belongs to the family
of aliphatic polyesters, and is fabricated by using the polymerization technique using a
monomer and an initiator. It is widely used in many biomedical applications such as
tissue engineering, wound healing and drug delivery because of its favorable features such
as biocompatibility, biodegradability, bioresorbability and rheological properties. PCL is
also approved by the Food and Drug Administration (FDA). It is used to deliver multiple
drugs and also further includes peptides, proteins and bioactive molecules for various
therapeutic applications. The degradation of PCL takes about 2 to 3 years and the by-
product is also metabolized by the body [125–128]. The drugs have been encapsulated in
PCL nanoparticles to improve the bioavailability, specificity and the therapeutic index [129].
One study reported the encapsulation of carboplatin in PCL nanoparticles for the purpose
of intranasal delivery. The drug-loaded nanoparticles were fabricated by a double solvent
evaporation method. They were in the size of 311 ± 4.7 nm. The encapsulation efficiency
was found to be 27.95 ± 4.21%. The drug release profile showed a biphasic pattern where
there was an initial burst release followed by controlled continuous release. In vitro analysis
exhibited an increased cytotoxicity activity against human glioblastoma cells—LN229 cell
line. Nasal perfusion studies performed in situ in Wistar rats showed that the absorption
capacity of the drug was higher in the case of an encapsulated drug rather than a free
drug [130]. PCL, along with Tween 80, was fabricated into nanoparticles and used for
loading the drug docetaxel for the purpose of cancer therapy. The nanoparticles were
found to be spherical in shape and about 200 nm in diameter. 10% of the drug was
encapsulated and nearly 35% got released in a period of 28 days. This combination showed
high cellular uptake and exhibited enhanced cytotoxicity towards the C6 glioma cancer
cell line [131]. Geranyl cinnamate was encapsulated in PCL nanoparticles to improve
its stability and prevent it from thermal degradation. They were fabricated by solvent
evaporation method and the particles were found to be spherical with a size of 177.6 nm.
The drug-loaded nanoparticles showed stability for 60 days. The drug release occurs
only in the presence of an external trigger, such as oil phase or an enzyme to degrade
the polymer matrix [132]. Hybrid nanoparticles made of PCL and hydroxyapatite were
fabricated to improve osteogenesis. Enhanced cell proliferation and differentiation was
observed. A low amount of cell cytotoxicity was reported. Osteogenic markers such as Run
x-2 and osteopontin were moderately expressed and sialoprotein was highly expressed
after 10 days [133]. Hao et al., reported a study where PCL nanoparticles was grafted with
polyethylene glycol and loaded with indocyanine green and 5-fluorouracil for the treatment
of skin cancer. This system was integrated with a hyaluronic acid microneedle system. The
cell proliferation of A431 and A375 was very well inhibited. The whole system showed an
enhanced photothermal effect. Controlled release of the drug and its promising anti-tumor
ability was reported [134]. Dorzolamide was encapsulated on to PCL nanoparticles coated
with chitosan for ocular drug delivery. The size and the encapsulation efficiency of the
nanoparticles were found to be192.38 ± 6.42 nm and 72.48 ± 5.62%. Drug release was
found to be a biphasic patter with an initial burst release for 2 h followed by a sustained
release for 12 h. Improved permeation rate and mucoadhesive behavior when compared to
the control group. Histopathology analysis revealed that they were completely safe to use
and did not induce any toxicity [135]. PCL nanoparticles were grafted with polyethylene
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glycol and were used to load the drug Cabazitaxel for the treatment of colorectal cancer.
Improved bioavailability and biocompatibility were reported. Enhanced drug loading
capacity, anti-tumor effect and stability were observed [136]. PCL nanoparticles were
employed for the simultaneous delivery of two drugs such as Paclitaxel and IR780, for the
treatment of ovarian cancer. The nanoparticles were found to have a high drug-loading
capacity and the release of the drug was facilitated by the presence of light. They specifically
target ovarian cancer cells and accumulated the drug in an in vivo mouse model [137].

4.2. Polylactic Acid Nanoparticles

Polylactic acid (PLA) is an FDA-approved biodegradable polymer derived from
sources such as corn starch and sugarcane. It is linear and lipophilic in nature and can be
obtained from the polycondensation of a monomer called lactic acid. The only degradation
product, lactic acid, is either metabolized or eliminated via urine. It is widely used for
biomedical applications such as tissue engineering, wound healing, implants and as drug
delivery carriers. The disadvantage is that it has poor stability in heat and is very brittle.
PLA nanoparticles are fabricated to encapsulate drugs or used as a filler in other polymer
matrices. The nano form of PLA improves the stability and reactivity [124]. One study
reported the use of PLA nanoparticles to encapsulate quercetin for therapeutic applications.
The drug-loaded nanoparticles were prepared by the solvent evaporation method. The
drug was loaded to improve the stability, permeation rate and solubility. The size of the
particles was found to be 250 ± 68 nm and the encapsulation efficiency to be 40%. The
drug release pattern was found to be initially burst followed by sustained release of the
drug. The enhanced anti-oxidant activity was reported [138]. Rifampicin was loaded
into PLA nanoparticles for the treatment of anti-bacterial actions. They were fabricated
by nanoprecipitation method and a two phase drug release was observed. Enhanced
antibiotic delivery was reported [139]. Enrique Niza et al., fabricated polyethylene imine
coated PLA nanoparticles loaded with a bioactive compound called Carvacrol for enhanced
anti-bacterial and anti-oxidant activity. The size and the encapsulation efficiency of the
nanoparticles was found to be 100 nm and 30%. Burst release of 15% of the drug followed by
sustained drug release at the end of 8 h. Enhanced anti-microbial activity and stability was
reported [140]. Berberine is an anti-cancer drug that was loaded into PLA nanoparticles by
using coaxial electrospray technique for sustained drug release. The size of the fabricated
nanoparticles was found to be 265 nm and the encapsulation efficiency was found to be
81%. High cell cytotoxicity and cellular uptake was reported against HCT116 cell line [141].
PLA nanoparticles was used to encapsulate two drugs daunorubicin and glycyrrhizic acid
for simultaneous delivery to treat leukemia. Enhanced encapsulation and loading capacity
were observed. Improved drug uptake and further facilitated an increase in apoptosis
rate [142]. A novel drug delivery system was designed for the treatment of cancer using
PLA nanoparticles loaded with PLX4032 which is an anti-cancer drug. Enhanced loading
efficiency and the cancer cells were destroyed. This theranostic device was used for the
purpose of cancer treatment [143].

4.3. Poly Vinyl Alcohol Nanoparticles

Poly vinyl alcohol (PVA) is a water soluble polyhydroxy polymer that is semi-crys-
talline and can be obtained from polyvinyl acetate by hydrolysis reaction. They are widely
employed for biomedical applications because of their properties such as low cost, compat-
ibility with cells, highly elastic in nature and has tensile strength that matches with that
of the articular cartilage. The disadvantages are that it has very less growth of osteoblast
cells since it lacks self-adhesion sites [16,144,145]. PVA nanoparticles can be fabricated by
techniques such as nanoprecipitation or by emulsion technique. The nanoparticles enable
widely in cancer treatment by delivering the drug to the tumor site because of the leaky
vessels. PVA nanoparticles aid in improving the bioavailability and the stability of the
loaded drug [146]. Zinc oxide/PVA nanoparticles were fabricated by sol–gel method for
the purpose of reducing the level of glucose. The nanoparticles were found to be spherical
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in shape and varying amounts of polyvinyl alcohol had an impact on the photocatalytic
activity. The in vivo analysis also showed promising results of reduced glucose levels in rats
affected with diabetes [147]. Bovine serum albumin was encapsulated in polyvinyl alcohol
nanoparticles for the purpose of delivering peptides. The nanoparticles were fabricated
by water in an oil emulsion technique and the diameter of the particles were found to be
675.56 nm. The encapsulation efficiency of the drug was 96.26%. The release of the protein,
governed by the diffusion process, was held in a sustained manner that lasted up to 30 h.
The stability of the drug was raised when it was loaded onto polymeric nanoparticles [148].
The summary of the synthetic biopolymeric nanoparticles is given in Table 4.

Table 4. Summary of synthetic bio polymeric nanoparticles.

Synthetic Biopolymer Overall Composition Application Key Findings of the Study References

Polycaprolactone Polycaprolactone
nanoparticles + carboplatin Intra nasal delivery

Size- 311.6 ± 4.7 nm; Biphasic
pattern of drug release-initial
burst release followed by slow
and controlled release. Cytotoxic
towards human glioblastoma
cell line. Better nasal absorption
than free drug

[130]

Polycaprolactone Polycaprolactone + Tween
80 + docetaxel Cancer therapy

Enhanced cellular uptake;
Improved cytotoxicity against
C6 glioma cells; 35% of the drug
released in 28 days.

[131]

Polycaprolactone Polycaprolactone
nanoparticles + paclitaxel Cancer therapy

Enhanced encapsulation
efficiency; the size was found to
be 140 nm. Cell viability reduced
against SKOV-3 cell line

[132]

Polycaprolactone
Polycaprolactone
nanoparticles
+ α-tocopherol

-

Decrease in encapsulation
efficiency, particle size when the
ultrasonication time
was increased.

[149]

Polycaprolactone Polycaprolactone
+ hydroxyapatite Bone tissue engineering

Enhanced cell proliferation and
differentiation; Moderate
expression of markers such as
Runx-2 and osteopontin. High
expression of sialoprotein at the
end of 10 days.

[133]

Polycaprolactone Polycaprolactone +
chitosan + dorzolamide Ocular drug delivery

Biphasic pattern of drug release;
Enhanced drug permeation rate;
Improved mucoadhesion; It was
found to be non-cytotoxic and
safe to use.

[135]

Polylactic acid Polylactic acid + quercitrin Therapeutic effect

Size- 250 ± 68 nm; encapsulation
efficiency −40%; drug release
-burst release followed by
sustained release. Enhanced
anti-oxidant activity.

[138]

Polylactic acid Polylactic acid + rifampicin Antibacterial activity Biphasic drug release; Improved
antibiotic efficiency [139]

Polylactic acid
Polylactic acid +
polyethylene imine coating
+ carvacrol

Anti-oxidant and
Antibacterial activity

Enhanced anti-oxidant and
antimicrobial activity.
Improved stability rate

[140]
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Table 4. Cont.

Synthetic Biopolymer Overall Composition Application Key Findings of the Study References

Polylactic acid Polylactic acid + berberine Drug delivery system

Technique: coaxial electrospray;
high cellular uptake; cell
cytotoxicity against HCT116 cell
line; slow release profile of the
drug was reported

[141]

Polylactic acid
Polylactic acid +
daunorubicin +
glycyrrhizic acid

Leukemia
Inhibited leukemia cells;
enhanced drug uptake;
improved apoptosis rate

[142]

Polyvinyl alcohol ZnO + polyvinyl
alcohol nanoparticles Treatment of diabetes

Exhibited photocatalytic activity
In vivo analysis reported lower
glucose level

[147]

Polyvinyl alcohol
Bovine serum
albumin + polyvinyl
alcohol nanoparticles

Delivery of proteins

High drug loading capability;
drug release up to 30 h
controlled by diffusion process;
Enhanced stability of the
loaded drug

[148]

5. Fabrication of Biopolymeric Nanoparticles

The fabrication of the biopolymeric nanoparticles can be either by top-down or bottom-
up approaches. The synthesis technique greatly influences the size and the poly-dispersity
index of the nanoparticles. An appropriate fabrication process is chosen by considering the
required features of the polymeric nanoparticles. Some of the fabrication techniques em-
ployed for biopolymeric nanoparticles, such as emulsification, precipitation, coacervation
and spray deposition are discussed in the following section [150]. The fabrication strategies
of biopolymeric nanoparticles are schematically represented in Figure 9.
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5.1. Emulsification

This method involves the formation of droplets in the nano range when the aqueous
and the organic phase are mixed together in a ratio 2:1. The aqueous phase is usually made
of water and a surfactant that is hydrophilic. The organic phase is made of a surfactant
that is lipophilic, oils obtained from plants and a solvent that can dissolve in water. They
can be either water in water (W/W) or water in oil emulsion (W/O) phase. The W/W
phase is employed for fabricating hydrogel-based protein or polysaccharide nanoparticles,
and an additional crosslinking, such as treatment using transglutaminase or acidification
for the internal phase, can be employed. The W/O emulsion phase helps to fabricate
nanoparticles that are stable with a high yield. The nanoparticles fabricated usually have
high drug loading capacity and entrapment efficiency. The solvent in the organic phase can
be removed by using the evaporation technique. One of the main disadvantages in this
technique is employing and removing the organic solvent since the residues in the end can
lead to toxicity [13,150,151].

5.2. Desolvation

Desolvation is also known as anti-solvent precipitation and is widely employed for the
fabrication of biopolymeric nanoparticles from proteins as well as polysaccharides. Solute
precipitation is facilitated when the quality of the solvent employed for dissolving the
polymer is reduced. Factors such as pH, the concentration of the cross-linking agent (e.g.,
glutaraldehyde), and ionic strength can be optimized to control the size of the particles.
The solvents include water, supercritical CO2 or any organic solvent. The driving force
behind the formation of nanoparticles is the imbalance in the interactions between the
solute, solvent and anti-solvent. This method is highly preferred since this method does
not use high-end equipment and is of low cost [2,13,150,152,153].

5.3. Coacervation

This method is similar to the phase separation technique, where there is a separation
of the polymer-rich and low-polymer-content phases. The rich polymer phase, known as
coacervates, is formed when oppositely charged biopolymers interact that can facilitate the
encapsulation of the active ingredient. The solvents usually employed include acetone or
ethanol. The fabricated nanoparticles are usually stabilized by adding cross-linking agents
such as glutaraldehyde. The factors that have to be noted to control the particle size are the
molecular weight and the quantity of the polymer. The main drawbacks of the method are
that they have low stability and controlling the size of the biopolymeric nanoparticles is
very critical [2,13,154,155].

5.4. Spray Deposition

The spray deposition method is also known as electrohydrodynamic atomization,
which employs the generation of droplets that are charged as a result of the atomization
process by the application of an electrical field. The nanoparticles are dried on the substrate
and are strongly bonded. No particular surfactant or template is required for the process.
The size of the nanoparticles is altered by the variation in the voltage supply, charge, flow
rate, and the distance between the substrate and the needle. This method is highly preferred
for the fabrication of biopolymeric nanoparticles, especially drug nanocrystals, since there
is no alteration in the biological properties [2,11,13,156].

5.5. Microfluidics

Biopolymeric nanoparticles can be synthesized by using microfluidic technology with
the aid of micro-reactors that have inner dimensions of less than 1 mm. These microreactors
are similar to lab-on-chip devices and are usually made of polymers such as polydimethyl
siloxane (PDMS) or glass. They can be either single-phase or multi-phase flow systems. The
mechanism behind the formation of polymeric nanoparticles in the microfluidic channel
is usually the self-assembly or nanoprecipitation method. The main advantages of this
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technique being employed for polymeric nanoparticle formation is that they have high
reproducibility, low reagent requirement and enhanced control of experimental parameters.
The disadvantages of the technique include the design of microfluidic channel being very
complex, and there are chances that the nanoparticles can diffuse through the polymeric
matrix and cause clogging in the channel [157–159].

6. Challenges and Future Perspective

Biopolymeric nanoparticles are widely employed for a wide variety of biomedical
applications such as tissue engineering, drug delivery systems, imaging and sensor systems
for theranostic kits. The properties such as degradability, cell compatibility, improved
stiffness and strength makes them very much suitable for various applications [13]. This
field is gaining high interest and is reflected in terms of publications by researchers. They are
either being patented or in the process of being commercialized. For example, the product
Ecosphere® from the company Ecosynthetix, in 2008, developed starch nanoparticles for
adhesive purposes owing to its higher surface-to-volume ratio and improved reactivity [99].
Biopolymeric nanoparticles are used in the treatment of cancer owing to their selective
tumor-targeting ability. The properties can be tuned appropriately and are supposedly
the most suitable candidate for biomedical applications. The high surface-to-volume
ratio enhances the molecules’ association and facilitates a high drug encapsulation rate.
Surface modification of the biopolymeric nanoparticles can be carried out to improve
the circulation time and immunogenic properties. A more efficient drug delivery system
can be designed with combined therapeutic and diagnostic for the treatment of various
diseases [89]. Some polysaccharide and protein-based biopolymers, such as alginate and
bovine serum albumin, have mucoadhesive nature and the small size makes penetration to
the target size easier [160]. Focusing on this direction helps to bring in various technological
advances in the biomedical sector. One of the main challenges to employing these for
biomedical applications is nanoparticle toxicity. There are no standard assessment methods
for nanoparticle toxicity. The nanoparticles can accumulate over time in the system and
cause side effects. The toxicity differs with the dose and the time of exposure. Though
multiple products exist in the market containing nanoparticles, a scientific gap exists
since there are no strict regulations. Thus, proper regulatory measures are required when
nanoparticles are being dealt with for medical applications. Upscaling the technology
or commercialization also plays a key role and remains to be a challenge. Currently,
researchers are highly focused on biopolymeric nanoparticles to be employed for biomedical
applications with improved efficiency and reduced toxicity [4,13,161,162].

7. Conclusions

The use of biopolymeric nanoparticles has proven to be economical, environmentally
friendly and promising in the technical aspect for a wide range of applications, especially
in the medical domain. A lot of research work is going on employing protein, polysac-
charide and synthetic-based biopolymer systems owing to their positive features such as
biocompatibility and biodegradability. Nanotechnology is highly blooming in the 21st
century and nanoparticles have the innate ability to be modified according to the required
application. Biopolymeric nanoparticles are found to be highly stable and show improved
biocompatibility, degradation rate and surface reactivity. It is very critical and important
to produce biopolymeric nanoparticles of favorable size and properties to be employed
in fabricating novel drug delivery systems for sustained drug release. The choice of the
nanoparticle depends on the application and the properties can be tuned according to the
intended application. Surface modification of the biopolymeric nanoparticles aids in the
enhancement of the circulation time and prevents immunogenic reactions. This review
focused on the various biopolymeric nanoparticles fabricated for biomedical applications
such as drug delivery, imaging and tissue engineering. The important fabrication tech-
niques, along with the challenges and the future perspective in this domain, were also
discussed. The initial stage for the development of the biopolymeric nanoparticles requires
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expensive instruments and up-scaling the technology is also challenging. Thus, future
researchers should focus on this and on ways to make sure that the nanoparticles do not
induce bioaccumulation in the human system. It is also necessary to develop nanoparticles
with enhanced efficacy. A deep and clear understanding of nanoparticle–immune system
interaction and the elimination from the human system is an important concern and must
be addressed in the future.
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