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Abstract: Basic oxygen furnace slag (BOFS) is a waste material generated during the steelmaking
process and has the potential to harm both the environment and living organisms when disposed
of in a landfill. However, the cementitious properties of BOFS might help in utilizing this waste
as an alternative material in alkali-activated systems. Therefore, in this study, BOFS and blast
furnace slag were activated with varying dosages of NaOH, and the fresh, physical, mechanical, and
microstructural properties were determined along with statistical analysis to reach the optimal mix
design. The test results showed that an increase in BOFS content decreased compressive and flexural
strengths, whereas it slightly increased the water absorption and permeable pores of the tested mortar
samples. On the contrary, the increase in NaOH molarity resulted in a denser microstructure, reduced
water absorption and permeable pores, and improved mechanical properties. Statistically significant
relationships were obtained through response surface methodology with optimal mix proportions,
namely, (i) 24.61% BOFS and 7.74 M and (ii) 20.00% BOFS and 8.90 M, which maximize the BOFS
content with lower molarity and improve the mechanical properties with lower water absorption
and porosity, respectively. The proposed methodology maximizes the utilization of waste BOFS in
alkali-activated systems and may promote environmental and economic benefits.

Keywords: basic oxygen furnace slag; alkali-activated mortar; response surface methodology;
statistical analysis; sodium hydroxide; optimization

1. Introduction

The utilization of waste materials has become crucial within the past decades due
to challenges in minimizing waste disposal and preventing environmental degradation.
Construction materials industries are regarded as the third-largest source of CO2 emis-
sions among industrial sectors throughout the world and account for about 10% of global
anthropogenic CO2 emissions [1]. Construction materials sectors are mostly related to
concrete manufacturing, and significantly increasing construction activities have caused
the production of cement to increase at an alarming rate. The fact that cement production
releases approximately 8 to 10% of total CO2 [2] has prompted researchers across the world
to explore substitutions for traditional cement or concrete with the purpose of minimizing
the carbon footprint and reducing environmental concerns. The increasing demand for
cement has led to the significant consumption of raw materials and CO2 emissions and
thus requires environmentally friendly alternative materials as substitutes for cement.

Slags generated by metallurgical industries are classified on the basis of (i) the iron-
making process and (ii) the steelmaking process. The ironmaking process produces blast
furnace slag, and, on the other hand, the steelmaking process results in the generation of
basic oxygen furnace slag (BOFS), electric-arc furnace slag (EAFS), and ladle slag (LS) [3].
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BOFS is one of the waste materials generated in considerable amounts during the steelmak-
ing process [4,5]. Approximately 71.9% of steel was reported to be produced via an oxygen
furnace [6], with a BOFS generation of about 100 to 200 kg per ton of steel production [7],
exemplifying the considerable amount of BOFS generation. Moreover, about 15.7 million
tons of steelmaking slag production was reported for 2018 in Europe, from which around
2.0 Mtons was reported to be disposed of as waste [8]. The disposed BOFS might be harmful
to both the environment and living organisms since it releases toxic species during the
processes of aging and the leaching of metallic compounds such as Fe2O3, Al2O3, and MgO
present in BOFS [9]. Therefore, an alternative approach should be established to efficiently
utilize generated BOFS waste.

Several studies on the utilization of BOFS in road construction, in asphalt, and as
an aggregate have been reported in the literature. However, the expansion behavior of
BOFS due to the existence of free CaO and MgO limits its application, which remains a
challenge [10]. Several attempts have been made to stabilize free lime to minimize the
expansion. Liu et al. [11] remelted and solidified raw BOFS under Ar and air atmosphere
conditions and reported that BOFS processed in air significantly stabilized the free lime
content and decreased the RO phases. Similarly, Morone et al. [12] claimed that a carbon-
ation and granulation treatment might be a reliable technique to stabilize the volumetric
instability of BOFS. In this methodology, BOFS was exposed to CO2 to allow the formation
of CaCO3 via its reaction with free CaO present in BOFS particles. BOFS, having fineness
similar to that of cement, can be used in small amounts as an additive in cement without
undermining the integrity of the cement [13]. A study by Ma et al. [14] revealed that
the compressive strength of the paste formulated with carbonated BOFS and cement was
reduced with increasing BOFS content. Lin et al. [15] studied the synergetic valorization
of BOFS and stone coal with the aim to recover metal and prepare glass ceramics. They
obtained a final modified slag, which was successfully utilized to produce glass ceramics
with a maximum bending strength of 95.83 MPa. Sun et al. [16] utilized BOFS aggregate
to replace natural limestone in a metakaolin-based geopolymer. The metakaolin-based
geopolymer concrete that completely replaced natural limestone yielded enhanced physical
and mechanical properties.

Several studies concerning the application of BOFS have been reported in the literature.
However, studies regarding the alkali activation of BOFS are still limited. Alkali-activated
materials are synthesized using aluminosilicate materials and alkaline activators [17],
which have gained significant attention from researchers. Alkali-activated materials exhibit
remarkably superior mechanical durability properties or even outperform Portland ce-
ment [17,18]. Industrial by-products or mineral admixtures such as fly ash [19,20], ground
granulated blast furnace slag (GGBFS) [21,22], metakaolin [23,24], and waste glass [25,26]
are used to produce alkali-activated materials, whose major hydration component is silica-
alumina gel [27,28].

A few studies have been reported on the utilization of BOFS either in alkaline activa-
tion [4,29] or as a cement replacement [14]. However, the use of an alkali-activated mortar
(AAM) incorporating BOFS and GGBFS activated with an alkaline solution of sodium
hydroxide (NaOH) remains unexplored. More attention has been paid to using steelmaking
slags such as EAFS [30–33] and LS [34–38], while less attention has been paid to using
other waste products such as BOFS for AAMs. Therefore, this study primarily aimed to
propose an environmentally friendly method that efficiently utilizes BOFS generated as
waste from steel industries to potentially promote environmental benefits and address
economic problems related to waste BOFS. In the present study, the fresh, hardened, and
microstructural properties of AAM consisting of different ratios of BOFS blended with
GGBFS activated with various NaOH molarities have been investigated. The reason behind
blending GGBFS with BOFS is the pozzolanic properties of GGBFS, which is involved
in the reaction with precipitated Ca(OH)2 [32,39] produced due to free CaO present in
BOFS, and this may stabilize the volume expansion [40]. Statistical interpretation and
mathematical modeling were also performed using response surface methodology (RSM)
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to investigate the effect of the BOFS ratio and the concentration of NaOH on the investi-
gated properties. RSM is a vital tool that involves analyzing and modeling the response of
interest when it is influenced by several input parameters [41]. RSM offers an effective way
to design experimental conditions and assess the relationship between independent and
dependent variables with an aim to optimize and obtain targeted results [42]. The material
consumption and cost can be significantly minimized once a reliable prediction model for
the investigated properties of AAM is established.

2. Materials and Methodology
2.1. Raw Materials

Basic oxygen furnace slag (BOFS) and ground granulated blast furnace slag (GGBFS),
supplied by Erdemir Steel factory (Ereğli, Turkey) and Oyak Cement factory (Bolu, Turkey),
respectively, were used to investigate the various properties of AAM. BOFS was initially
dried and ground using mechanical disc grinder. Commercial NaOH with a pH value
>14.0 and a molecular weight of 40.0 was used as the alkaline activator. CEN standard
sand with particle sizes ranging between 0.08 and 2.00 mm was utilized as fine aggregate
to manufacture mortar samples. Figure 1 shows the particle size distributions of BOFS,
GGBFS, and sand. It can be observed that BOFS particles were slightly coarser compared to
those of GGBFS since the d50 and d90 of BOFS were 11.2 and 41.4 µm, and those of GGBFS
were 9.93 and 26.2 µm, respectively. The SEM images of the binders shown in Figure 2
indicate that BOFS has a rather rough surface texture compared to GGBFS, and both show a
highly angular particle shape. The specific gravities of the ground BOFS, GGBFS, and sand
were 3.01, 2.91, and 2.67, respectively. An X-ray fluorescence analysis was performed to
determine the chemical composition of the binding materials, and the results are tabulated
in Table 1. X-ray diffractometry analysis (XRD) was performed in the raw BOFS and GGBFS
to determine their crystalline phases, and the results are shown in Figure 3. The majority of
the crystalline phases present in BOFS were Ca(OH)2, C2S, C3S, Ca2Fe2O5, Ca12Al14O33,
and RO phases [4]. Moreover, GGBFS had an amorphous structure (Figure 3b), showing a
broader hump in the range between 25 and 40◦ 2θ, with crystalline phases such as SiO2,
MgCO3, and CaCO3.
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2.2. Design of Experiment, Model Efficacy Evaluation, and Mix Proportion

In this study, the commercially available Design-Expert® 11 software was implemented
to perform statistical interpretation, mathematical modeling, and the optimization of the
mix designs using RSM. RSM is considered an efficacious statistical tool that is mainly
employed for experimental design, mathematical modeling, and optimization [43]. RSM
assists in the evaluation of responses that are affected by one or more factors [44]. Face-
centered central composite design (FCCD), a subset of RSM, was used to statistically
examine the effects of the independent parameters, namely, the BOF ratio and the molarity
of NaOH, on the dependent variables: flow values, compressive strength, flexural strength,
and water absorption. The influence of each parameter and the interaction among the
variables were investigated using analysis of variance (ANOVA). A second-order regression
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model was used to determine the optimum condition of the investigated responses, as
shown in the general formula in Equation (1) [45].

Y = βo + ∑k
i=1 βiiXi +

(
∑k

i=1 βiiXi

)2
+ ∑k−1

i=1 ∑k
j=i+1 βiiXiXj +
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where Y and β represent the predicted response and regression coefficient, respectively. Xi
and Xj denote the coded terms of parameters, k denotes the number of parameters studied
in the experiment, i and j are the linear coefficient and quadratic coefficient, respectively,
and
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is the observed error.
The values of the BOFS ratio by mass of binder and NaOH molarity varied in the

ranges of 20–60% and 2–10 M, respectively. A visual representation of FCCD is shown
in Figure 4, and Table 2 depicts the actual and coded terms of the input parameters. The
BOFS ratio and NaOH molarity varied in three different levels, namely, axial or star points
(±α) = 1, corner or factorial points (±1), and the center points. A total of 13 mix proportions,
tabulated in Table 3, were obtained and consisted of 2 independent factors, 8 non-center
points, and 5 replicates at the center points. Replicates at the center are very important
since they assist in the estimation of the experimental error [45]. The water-to-binder ratio
was kept constant at 0.4 for all mixes. Similarly, the volumes of sand and paste were used
in equal amounts for each mix.
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Table 2. Face-centered central composite design for 2 factors at 3 levels.

Levels Factor 1
A: BOF Ratio (wt%)

Factor 2
B: NaOH Molarity (M)

−1 20 2
0 40 6
+1 60 10

The assessment of the predicted RSM models was performed based on the mean
square error (MSE), root-mean-square error (RMSE), and Nash–Sutcliffe coefficient effi-
ciency (NSE), shown in Equations (2)–(5) [46,47]. These values were determined using
experimental/observed values (OVs) and predicted values (PVs).

MSE = ∑
(PV −OV)

2

N
(2)
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RMSE =

√
∑

(PV −OV)
2

N
=
√

MSE (3)

Nt =

(
SD

RMSE

)
− 1 (4)

NSE = 1−
(

1
Nt + 1

)2
(5)

where N is the sample size, SD represents the standard deviation of the observed values,
and Nt denotes the number of times the SD is greater than RMSE. The efficiency of the
predicted RSM models can be categorized in terms of very good, good, acceptable, and
satisfactory for NSE ≥ 0.90, 0.80–0.90, 0.65–0.80, and <0.65, respectively. In addition, the
performance of a model can be categorized as very good, good, acceptable, and satisfactory
if the SD value is in the ranges of ≥3.2RMSE, 2.2RMSE–3.2RMSE, 1.2RMSE–2.2RMSE, and
<1.7RMSE, respectively [46].

Table 3. Details of experimental mix design.

Mixture ID Coded Actual Mix Proportion

A B A (wt%) B (M) BOFS (wt%) GGBFS (wt%) NaOH Molarity (M)

B0.2-2 −1 −1 20 2 20 80 2
B0.4-2 0 −1 40 2 40 60 2
B0.6-2 1 −1 60 2 60 40 2
B0.2-6 −1 0 20 6 20 80 6

B0.4-6 *

0 0 40 6 40 60 6
0 0 40 6 40 60 6
0 0 40 6 40 60 6
0 0 40 6 40 60 6
0 0 40 6 40 60 6

B0.6-6 1 0 60 6 60 40 6
B0.2-10 −1 1 20 10 20 80 10
B0.4-10 0 1 40 10 40 60 10
B0.6-10 1 1 60 10 60 40 10

A: BOFS. B: NaOH molarity. * Represents identical mix designs (5 center points).

2.3. Specimen Preparation

The mix proportions obtained from FCCD (Table 3) were used to manufacture the
AAM specimens. The mix ID, for instance, designated by B0.2-6 denotes 20% BOFS
content by mass of total binder and 6 M NaOH. The AAM mixes contained 50% sand by
volume. The alkaline solution was prepared by mixing solid NaOH flakes with tap water
in graduated cylinders, air-tightened, and left to cool under laboratory conditions prior to
mixing. The blend of BOFS and GGBFS powder was initially mixed and introduced into a
mixer bowl containing the alkaline solution, and thereafter, mixing was initiated. The sand
was gradually added, and the mixing of the mortar continued to ensure a homogeneous
mixture. The fresh mortar was used to determine the flow values and subsequently poured
into molds for specified tests. The mortar was cast into 50 × 50 × 50 mm3 cubic molds
to determine the compressive strength and water absorption and 40 × 40 × 160 mm3

prismatic molds to examine the flexural strength. The prepared samples along with the
molds were covered with a waterproof plastic sheet and kept in laboratory conditions. The
specimens were demolded after 24 h and conditioned in a humidity cabin having a relative
humidity of 55–57% and a temperature of 20–22 ◦C until tested.

2.4. Laboratory Experimental Program
2.4.1. Flow

The flow value of the fresh mortar was determined in accordance with ASTM C1437
to evaluate the workability. A minimum of four diameter readings were recorded to the
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nearest millimeter. The flow diameter of each mortar mix was calculated to the nearest 1%
using Equation (6).

Flow =
Φ

Φ0
× 100% (6)

where Φ is the difference between the average of four diameter readings and the original
base diameter, and Φo is the diameter of the original base.

2.4.2. Compressive Strength

Compressive strength tests were performed on 50 × 50 × 50 mm3 cubic mortar
samples at 28 days following ASTM C109. A minimum of three samples for each mortar
mix were tested using a universal compression machine (Alşa, Istanbul, Turkey) with a
loading rate of 900 to 1800 N/s at the specified age, and the average values were recorded.

2.4.3. Flexural Strength

A flexural strength test of the mortar specimens was performed at 28 days in accor-
dance with the ASTM C348 standard. The test was performed using a universal compres-
sion machine with a loading rate of 40 ± 5 N/s on 3 specimens for each mix, and the
flexural strength was calculated using Equation (7).

Flexural strength = 0.0028× N (7)

where N is the average of maximum loads (in N).

2.4.4. Water Absorption and Permeable Pore Volume

The water absorption and permeable pore volume were determined in accordance
with ASTM C 642-13, with a slight modification to the pre-drying process of the mortar
specimens. The mortar specimens were dried at 60 ◦C instead of 110 ± 5 ◦C to prevent
excessive desiccation of the binding phases caused by thermal drying [48]. The specimens
were placed in an oven at a temperature of 60 ◦C for 24 h. After removing the samples
from the oven, they were allowed to cool in a desiccator to room temperature, and the
mass (A) was measured. Subsequently, the samples were immersed in water for 48 h. After
removing the specimens from the water, excess water was removed using a towel, and
the saturated surface-dry mass (B) after immersion was recorded. The specimens were
kept in boiling water for 5 h and allowed to cool down to room temperature. The soaked,
boiled, and surface-dried masses (C) were measured, followed by the determination of the
apparent mass (D) in water. The water absorption and permeable pore volume of the AAM
specimens were determined by using Equations (8) and (9). Three specimens were used for
each batch of mortar mixes, and the average values were recorded.

Water absorption =

(
B− A

A

)
× 100% (8)

Permeable pore volume =
(

C− A
C− D

)
× 100% (9)

2.4.5. Microstructural Analysis

Alkali-activated paste specimens were prepared in plastic tubes with a volume of
50 mL to investigate the microstructural properties. The specimens in sealed tubes were
maintained in laboratory conditions at 22 ± 2 ◦C. The samples were soaked in acetone
to stop the hydration reactions at the test age and kept for analysis. A scanning electron
microscopy (SEM) test was performed on slices cut from the selected paste samples at
28 days using a Zeiss EVO® LS 10 SEM instrument (Carl Zeiss Microscopy GmbH, Jena,
Germany) equipped with energy-dispersive X-ray spectroscopy (EDS) to analyze the
surface morphology and determine reaction products.
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An XRD analysis was performed on the raw precursors with a PANalytical X’Pert
PRO diffractometer instrument (Malvern Panalytical Ltd., Malvern, United Kingdom) to
distinguish the crystalline patterns in the powder precursor samples.

3. Results and Discussion
3.1. Fresh, Hardened, and Microstructural Properties
3.1.1. Flow

The variations in the flow of the fresh AAM mixes corresponding to their BOFS ratios
and NaOH molarities are depicted in Figure 5, where the error bars indicate the standard
deviation (SD). The flow values of the fresh mortar mix should be greater than 50%, which
can be considered the minimum value for ease of molding [49]. The flow values of fresh
AAM mixes varied in the range between 50 and 81%, and the fresh mortars were easily
cast into the molds. The flow values of the AAM incorporating 20, 40, and 60% BOFS were
obtained in ranges from 61 to 74%, 55 to 81%, and 50 to 77%, respectively. The lowest flow
value was found in the mix incorporating 60% BOFS activated with 6 M NaOH, whereas
the mortar mix containing 40% BOFS and 10 M NaOH corresponded to the highest flow
value. It can be observed (Figure 5) that the increase in the molarity of NaOH consistently
improved the flowability of the AAM mixes. The higher concentration of NaOH might have
improved the dissolution of precursors, which subsequently resulted in more dissolved
binders and hence enhanced the flow values [50]. Figure 5 shows that the effect of BOFS
on the flow values of the mixes was inconsistent. In the case of 2 M NaOH, the flow was
reduced from 61% to 50% when the BOFS ratio increased from 20% to 60%. On the other
hand, with an increase in molarity, the flow remained constant or slightly increased as the
BOFS ratio increased. The results indicate that the negative effect of BOFS on the flowability
is compensated by a higher NaOH molarity, which improves the workability of the mixes.
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Figure 5. Flow values of AAM mixes (green is 10 M).

3.1.2. Compressive Strength

Figure 6a shows the compressive strength results (the error bars indicate SD) and their
variations with different BOFS ratios and NaOH molarities of the AAM samples at 28 days.
The compressive strength of AAM specimens incorporating 20, 40, and 60% BOFS varied
between 14.6 and 29.8 MPa, 12.1 and 21.7 MPa, and 10.0 and 12.8 MPa, respectively. It can
be noticed that the compressive strength of the mortars consistently decreased with an
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increase in the BOFS ratio. Ismail et al. [48] also verified that the compressive strength of
AAM containing GGBFS progressively decreased with the increasing GGBFS ratio. BOFS
is generally recognized to be less reactive [51], and its higher inclusion level might have
resulted in reduced compressive strength. In addition, the lower amounts of SiO2 and
Al2O3 in BOFS might have resulted in the reduced formation of strength-giving reaction
products when used in higher quantities.
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Figure 6. (a) Compressive strength and (b) relative compressive strength of specimens in comparison
with 6 M.

On the other hand, the increase in NaOH molarity improved the compressive strength
up to a certain limit, after which it decreased. The compressive strength of mortar specimens
synthesized with 6 M NaOH outperformed both 2 and 10 M irrespective of the BOFS content.
The reason behind the decrease in the compressive strength of samples containing 10 M
NaOH might be due to the higher NaOH concentration, which might have hindered the
reaction process due to the existence of surplus hydroxide ions and consequently reduced
aluminosilicate gel precipitation [52]. Another reason might be the lack of silicates [53]
required to equivalently react with excess hydroxide ions for the same group of samples.

Figure 6b compares the relative compressive strength of the AAM mixes with 2 and
10 M NaOH to that of the mixes activated with 6 M NaOH. The AAM mixes containing 20,
40, and 60% BOFS had 50.9, 44.3, and 21.7% lower compressive strength compared to the
mixes with 6 M NaOH, respectively. Similarly, the compressive strength slightly decreased
by 9.6, 8.7, and 2.0% in the AAM mixes with 10 M containing 20, 40, and 60% BOFS ratios,
respectively, compared to the mortar mixes activated with 6 M NaOH. It can be further
noticed that the reduction in compressive strength in 2 and 10 M AAM is lower in the mixes
with higher contents of BOFS.

3.1.3. Flexural Strength

The flexural strength results of the AAM specimens with various replacement ratios
of BOFS and NaOH molarities at 28 days are depicted in Figure 7a (the error bars indicate
SD). The flexural strength of AAM samples consistently decreased upon the addition of
BOFS (reduction in GGBFS), which is consistent with the compressive strength results. The
flexural strength for the AAM mixes containing 20, 40, and 60% BOFS varied between
2.9 and 7.0 MPa, 2.2 and 6.6 MPa, and 1.7 and 5.7 MPa, respectively. The maximum
flexural strength (7.0 MPa) was achieved in the AAM mix incorporating 20% BOFS with
10 M NaOH, whereas the mix with 60% BOFS and 2 M NaOH had the minimum flexural
strength (1.7 MPa). From the results, it is worth noting that the flexural strength of the
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AAM samples significantly improved with the increase in NaOH molarity, which provided
a denser microstructure, as verified by the SEM micrographs.
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Figure 7. (a) Flexural strength and (b) relative flexural strength of specimens in comparison with 6 M.

The relative flexural strength of AAM samples containing 2 and 10 M ranged between
−31.4% and −57.4% and between 64.0% and 46.2% respectively, in comparison with the
specimens activated with 6 M NaOH, as shown in Figure 7b.

3.1.4. Water Absorption and Volume of Permeable pores

The water absorption and volume of permeable pores of AAM mixes are illustrated
in Figure 8, where the error bars indicate SD. Figure 8a shows that the inclusion of BOFS
moderately increased the water absorption. This observation can be attributed to the
reduced GGBFS content. GGBFS has a slightly finer particle size (see Figure 1) than BOFS,
which might have assisted in filling the pores and consequently resulted in lower water
absorption [54]. On the contrary, the increase in NaOH molarity significantly reduced
the water absorption at all replacement ratios of BOFS. The water absorption of mortar
mixes with lower NaOH molarity (2 M) was in the range between 6.1 and 7.3%, whereas
the samples activated with 10 M NaOH varied between 2.4 and 2.5%. The higher water
absorption values of mortar mixes with a lower alkaline concentration can be attributed
to the higher volume of permeable pores and vice versa. Similar observations were also
reported by [55,56], in which the increase in the concentration of the NaOH activator
decreased the water absorption values.

The increment in NaOH molarity induced a significant reduction in the volume of
permeable pores, whereas this value slightly increased with the increase in the BOFS ratio
(Figure 8b). The trend observed in the volume of permeable pores was similar to that in the
water absorption of the AAM specimens. The volume of permeable pores varied between
6.3 and 13.8%, 6.4 and 14.2%, and 6.6 and 16.0% for the AAM samples containing 20, 40,
and 60% BOFS, respectively. For the mortar specimens activated with 2, 6, and 10 M, the
volume of permeable pores ranged between 13.8 and 16.0%, 9.5 and 10.8%, and 6.3 and
6.6%, respectively. The volume of permeable pores was the lowest (6.3%) in the mortar
specimens formulated with 20% BOFS and 10 M, and it was the highest (16.0%) in samples
composed of 60% BOFS activated with 2 M NaOH.

3.1.5. SEM-EDS Analysis

SEM imaging was conducted on the corresponding selected alkali-activated pastes of
B0.2-6, B0.6-2, and B0.6-6 at 28 days to study the effect of the BOFS ratio and NaOH molarity
on the microstructural features. The SEM micrographs along with the EDS results of the
paste samples are shown in Figure 9. The EDS analysis showed the abundant presence
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of Si, Ca, and Na elements, as well as Mg and Fe elements in lower amounts, which may
indicate the formation of hydrated reaction products such as C-A-S-H and N-A-S-H. The
SEM images show that B0.6-2 had a distinctive morphology compared to B0.6-6, and B0.6-2
exhibited a more porous structure than B0.6-6, which might have contributed to the increase
in water absorption and permeable pore volume. Figure 9a,c reveals that for the same
NaOH molarity, a lower BOFS ratio yielded a denser microstructure. The same was also
noticed when comparing Figure 9b,c, where an increase in NaOH molarity at a constant
BOFS ratio reduced the voids. These observations are in line with the mechanical test
results, as an increase in NaOH molarity and an increase in the GGBFS ratio generally
improved the compressive and flexural strengths.
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Figure 8. (a) The variation in the water absorption and (b) volume of permeable pores of
AAM specimens.

3.2. Analysis of Variance and Regression Model Equations

The experimental results of flow, compressive strength, flexural strength, and water
absorption were analyzed using RSM to determine the effects of the BOFS replacement
ratio and NaOH molarity. The ANOVA results for the investigated properties are presented
in Table 4. The coefficient of determination (R2) values were considered to examine the
precision of the predicted quadratic models. A greater R2 (close to unity) denotes a desirable
and reasonable relationship between the predicted and actual values [57]. It can be noticed
that the R2 values of the analyzed responses were 0.95, indicating efficient predictive models.
The R2 values for flow, compressive strength, flexural strength, and water absorption were
found to be 0.97, 0.95, 0.95, and 0.99, respectively. Furthermore, the significance of the model
terms was evaluated using the probability (p-value) at a 95% confidence interval level. A
p-value lower than 0.05 shows that the model or model terms are statistically significant.
The p-values for flow, compressive strength, flexural strength, and water absorption models
were calculated as <0.0001, 0.0002, 0.0002, and <0.0001, respectively, which indicated that
all models were statistically significant. The model terms B and AB were significant for
flow values, whereas all model terms (A, B, AB, and B2) were statistically significant, except
quadratic term A for compressive strength. Similarly, only linear terms A and B were
significant for flexural strength, while for water absorption, all model terms (both linear
and quadratic) were significant.
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In addition, the ratio of Fischer variation (F-value), which measures the variation in the
data about its mean value, was also considered to validate the obtained response models.
The higher the F-value is than 1.00, the more reliable the model [58]. The F-values for
flow, compressive strength, flexural strength, and water absorption were 43.26, 25.76, 28.70,
and 458.72, respectively. Even though B and AB were statistically significant, the model’s
higher R2 value of 0.97, lower p-value < 0.0001, higher F-value of 43.26, and insignificant
lack of fit (LOF) statistically validated the flow model. It is worth noting that the p-value
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(0.0012) of LOF is significant for water absorption, but it did not invalidate the analyzed
model since the R2 value was about 0.99, implying that 99% of the total variability was well
explained by the predicted model. The greater R2 values, lower p-values, higher F-values,
and insignificant LOF (except water absorption) described the adequacy of the predicted
quadratic models for all investigated properties.

Table 4. ANOVA results of the analyzed responses.

Response Source SS DF MS F-Value p-Value

Flow

Model 796.31 5 159.26 43.26 <0.0001 *

SD = 1.92
R2 = 0.97

AP = 22.33

A: BOFS ratio 12.56 1 12.56 3.41 0.1073
B: Molarity 733.28 1 733.28 199.18 <0.0001 *
AB 49.00 1 49.00 13.31 0.0082 *
A2 1.41 1 1.41 0.38 0.5562
B2 0.04 1 0.04 0.01 0.9191
Residual 25.77 7 3.68
Lack of fit 20.73 3 6.91 5.49 0.0668
Pure Error 5.038 4 1.259
Cor. Total 822.08 12

Compressive
strength

Model 424.03 5 84.81 25.76 0.0002 *

SD = 1.81
R2 = 0.95

AP = 15.82

A: BOFS ratio 215.28 1 215.28 65.39 0.0001 *
B: Molarity 84.75 1 84.75 25.74 0.0014 *
AB 23.86 1 23.86 7.25 0.0310 *
A2 0.11 1 0.11 0.03 0.8584
B2 83.16 1 83.16 25.26 0.0015 *
Residual 23.04 7 3.29
Lack of fit 18.85 3 6.28 6.00 0.0581
Pure Error 4.190 4 1.047
Cor. Total 447.07 12

Flexural
strength

Model 27.76 5 5.55 28.70 0.0002 *

SD = 0.44
R2 = 0.95

AP = 17.46

A: BOFS ratio 1.70 1 1.70 8.77 0.0211 *
B: Molarity 25.88 1 25.88 133.74 <0.0001 *
AB 0.00 1 0.00 0.00 0.9825
A2 0.01 1 0.01 0.07 0.7957
B2 0.12 1 0.12 0.61 0.4614
Residual 1.35 7 0.19
Lack of fit 0.19 3 0.06 0.22 0.8757
Pure Error 1.160 4 0.290
Cor. Total 29.12 12

Water
absorption

Model 27.53 5 5.51 458.72 <0.0001 *

SD = 0.11
R2 = 0.99

AP = 67.46

A: BOFS ratio 1.00 1 1.00 83.34 <0.0001 *
B: Molarity 25.83 1 25.83 2152.05 <0.0001 *
AB 0.29 1 0.29 24.29 0.0017 *
A2 0.10 1 0.10 8.59 0.0220 *
B2 0.15 1 0.15 12.52 0.0095 *
Residual 0.08 7 0.01
Lack of fit 0.08 3 0.03 51.52 0.0012 *
Pure Error 0.002 4 0.001
Cor. Total 27.62 12

*: Significant; SS: summation of squares; Cor. Total: corrected total summation of squares; DF: degree of freedom;
MS: mean square; AP: adequate precision.

Furthermore, the adequate precision (AP) values for flow, compressive strength,
flexural strength, and water absorption were found to be 22.33, 15.82, 17.46, and 67.46,
respectively. The AP values for all responses were greater than 4, which is desirable and
supports that the developed quadratic models can be efficiently utilized for navigating
the defined design space by FCCD. The actual regression equations for all investigated
responses, in terms of both significant and insignificant influencing terms, are expressed by
quadratic Equations (10)–(13).

Flow = +60.8630− 0.1921A + 0.9226B + 0.0438AB− 0.0018A2 + 0.0076B2 (10)
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Compressive strength = +7.4843− 0.0759A + 6.2761B− 0.0305AB− 0.0005A2 − 0.3429B2 (11)

Flexural strength = +2.7718− 0.0405A + 0.3670B− 0.0001AB + 0.0002A2 + 0.0129B2 (12)

Water absorption = +6.9300 + 0.0020A− 0.5587B− 0.0034AB + 0.0005A2 + 0.0146B2 (13)

where A and B represent the BOFS ratio and NaOH molarity, respectively.

3.3. Perturbation and Normal Probability Plots

The perturbation plot explains the influence of independent variables on the response
at a particular point [59]. The BOFS ratio formed a slight curvature, showing its low
sensitivity to the flow and water absorption properties, as shown in Figure 10a,d, respec-
tively. The observation from the perturbation plot (Figure 10b) implies that the effect of
NaOH molarity was more sensitive to the compressive strength due to the formation of a
sharp curvature compared to that of BOFS content. The formation of this sharp curvature
indicates that NaOH molarity enhances the compressive strength up to a certain molarity.

However, both the BOFS ratio and NaOH molarity seemed to form linear straight
lines (Figure 10c) for flexural strength. Figure 11 presents the normal plots of the resid-
ual values for all responses, which aided in defining the appropriateness of the model.
Figure 11a–c show that the flow values, compressive strength, and flexural strength residual
plots formed straight lines, which satisfied the plot of the studentized residual against
the normal percentage of probability; the exception was water absorption, which showed
comparatively scattered data points (Figure 11d).

3.4. Predicted vs. Actual Plots

The predicted values compared to the actual values of the investigated properties
are shown in Figure 12. The predicted values were very close to the actual values of flow,
compressive strength, flexural strength, and water absorption. However, a few points were
not on the line for compressive and flexural strengths, as shown in Figure 12b,c. On the
other hand, the consistency of the predicted and experimental flow values was higher
compared to compressive and flexural strengths since very few points were dispersed
far from the line, as confirmed in Figure 12a. The predicted values of water absorption
(Figure 12d) were found to be more consistent with and closer to the experimental values
compared to the other responses, which can also be confirmed by the maximum R2 value
of 0.99. Nevertheless, the predicted and experimental values followed linear trends for
each response and thus verified the reliability and prediction of the response models.

3.5. Contour and 3D Response Surface Plots of the Responses

Figure 13 illustrates the 3D response surface and its corresponding contour plot for
the response flow of the AAM samples, and it shows a slight curvature with the BOFS
ratio. The alteration of NaOH molarity was more sensitive to the flowability for the
selected range of BOFS content. The distorted contours observed in Figure 14 imply
that there is less interaction between independent variables. However, the curvature
seen along the molarity axis denotes the possible optimal value for NaOH molarity. The
curvature of the 3D response surface graph shown in Figure 15 depicts that the NaOH
molarity more markedly influenced the flexural strength compared to the BOFS ratio.
Figure 16 visualizes the variation in the response surface and contour plots with the
BOFS ratio and NaOH molarity, in which the contours are slightly curved, denoting
comparatively fewer interactions between the independent variables for water absorption.
The bluish section (Figure 16) provides the preferred water absorption values for the studied
mortar specimens.
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3.6. Predictive Performance of the Derived RSM Models

The predictive efficiency of the models obtained by RSM defined by FCCD was
classified based on NSE, SD, and RMSE values, and the results are tabulated in Table 5. In
terms of NSE criteria, the RSM models were categorized as very good for predicting flow,
compressive strength, flexural strength, and water absorption since their corresponding
NSE values were greater than 0.90. Water absorption had the maximum NSE value (1.00),
followed by flow (0.97), flexural strength (0.96), and compressive strength (0.95). It has
been previously reported that higher efficiency and goodness of fit are directly related
to lower MSE and RMSE [60]. The lower MSE and RMSE values for water absorption
imply the appropriate efficiency of the predicted RSM models, which is also consistent
with the corresponding NSE value of 1.00. Furthermore, all responses were categorized
as very good based on the SD and RMSE specifications, as the corresponding SD values
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of the responses were greater than 3.2RMSE. The obtained results and model efficiency
classification clearly suggest that the predicted RSM models can be accurately used to
navigate the defined design space to estimate the flow, compressive strength, flexural
strength, and water absorption of the AAM samples.
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3.7. Optimization and Experimental Validation

In this part of the study, numerical optimization was performed using the multi-
objective optimization technique, as this method assists in optimizing several responses
concurrently [61,62]. The optimal values of the independent parameters (A: BOFS ratio;
B: NaOH molarity) were determined by setting the optimization targets, namely, optimization-
1, in which the goals of all parameters were within the range, and optimization-2, where
compressive strength and flexural strength were maximized, water absorption was min-
imized, and the remaining parameter goals were within the range. The optimal values
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of BOFS and NaOH molarity in optimization-1 were found to be 24.61% and 7.74 M, re-
spectively, whereas BOFS content and NaOH molarity were calculated as 20.00% and 8.90
M, respectively, in optimization-2, and their corresponding values of dependent variables
are illustrated in Table 6. The outcome of multi-objective optimization was assessed by
the desirability value (dj), which can be computed using the geometrical mean of each
response’s desirability, as expressed in Equation (14) [63].
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The dj value ranges between 0 and 1, where 1 represents the ideal response and
0 denotes an undesirable response. The desirability of optimization-1 and optimization-2
was found to be 1.00 and 0.920, respectively. The predicted optimized mix proportions
of optimization-1 and optimization-2 were experimentally investigated three times, and
the average values were noted to validate the appropriateness of the response models
and optimization results. In addition, the error between the predicted and experimental
results was calculated by using Equation (15). The results of the optimization study are
tabulated in Table 6. Similarly, the graphical representation of the independent factors



Materials 2023, 16, 2357 18 of 23

and the responses are presented through the optimization ramp shown in Figure 17. In
both optimization-1 and optimization-2, the experimental values were comparable to the
predicted values, with errors ranging between 0.57 and 1.43%, 0.87 and 1.56%, 2.05 and
0.31%, and 2.58 and 6.20% for flow, compressive strength, flexural strength, and water
absorption, respectively.

D = (dr1

1 × dr1

1 × . . . . . .× drn

n )
1
n (14)

where ri and n represent the importance level for each objective function di and the total
number of responses considered, respectively.
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Table 5. The goodness-of-fit assessment of response models.

Response SD MSE RMSE NSE Nt Outcome

Flow 8.28 1.98 1.41 0.97 4.88 Very good
Compressive strength 6.10 1.77 1.33 0.95 3.58 Very good
Flexural strength 1.56 0.10 0.32 0.96 3.83 Very good
Water absorption 1.52 0.01 0.08 1.00 17.87 Very good
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Table 6. Multi-objective optimization of the mix design and response.

Dependent and
Independent Factors

Optimization
Goal Desirability Predicted

Values
Experimental

Values SD Error (%)

Optimization-1

A: BOFS ratio (%) In range 1.000 24.61
B: Molarity (M) In range 7.74
Flow In range 70.97 72.00 1.41 1.43
Compressive strength In range 27.53 27.77 1.54 0.87
Flexural strength In range 5.48 5.37 0.05 2.05
Water absorption In range 3.18 3.10 3.18 2.58

Optimization-2

A: BOFS ratio (%) In range 0.920 20.00
B: Molarity (M) In range 8.90
Flow In range 72.91 73.00 1.29 0.57
Compressive strength Maximize 29.02 29.48 2.04 1.56
Flexural strength Maximize 6.31 6.33 0.50 0.31
Water absorption Minimize 2.74 2.58 0.10 6.20
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Figure 17. Ramp diagram of multi-objective optimization for (a) optimization-1 and (b) optimization-2.

In optimization-1, the BOFS content was higher, and NaOH molarity was lower;
however, these values were reversed in optimization-2. On the other hand, optimization-1
can be considered efficient in terms of a higher amount of BOFS utilization with a lower
dosage of the activator, whereas optimization-2 can be appropriate to achieve higher flow,
greater compressive and flexural strengths, and lower water absorption. Considering
the optimization study, the predicted response models were appropriate and suitable to
navigate the defined design space since the experimental and predicted results were well
correlated and thus validated the obtained response models.

Error (%) =

∣∣∣∣1− Predicted value
Experimental value

∣∣∣∣× 100% (15)

4. Conclusions

The present study aimed to propose the efficient utilization of BOFS generated as waste
to potentially promote environmental benefits. The properties of mortar mixes synthesized
with different ratios of BOFS and GGBFS activated with NaOH were investigated. RSM
was employed to statistically interpret and optimize independent and dependent variables.
The following conclusions are outlined based on the experimental and statistical study:

• The compressive strength of AAM samples activated with 6 M NaOH reached about
30 MPa and was superior to those activated using 2 and 10 M. In addition, increasing
the BOFS content consistently decreased the compressive strength and flexural strength
of AAM samples.
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• The water absorption and permeable pore volumes of AAM samples significantly
decreased with an increase in NaOH molarity, whereas they slightly increased with an
increase in the BOFS ratio.

• The SEM observations revealed that increasing the NaOH molarity and reducing
the BOFS ratio resulted in a denser microstructure, which is in agreement with the
physical and mechanical test results.

• The ANOVA results revealed that the obtained response models were accurate and
statistically significant. The proposed quadratic models can be appropriately used to
predict the response by navigating the defined design space by FCCD.

• The optimal mix proportions of BOFS and NaOH molarity were found to be 24.61%
and 7.74 M (optimization-1) for the efficient utilization of BOFS with a lower NaOH
concentration. In addition, the optimal mix design of 20.00% BOFS and 8.90 M NaOH
(optimization-2) performed better in achieving higher flow, greater compressive and
flexural strengths, and lower water absorption.

• The proposed methodology can promote environmental benefits by utilizing BOFS to
produce alkali-activated mortars. This method may also address the economic and
environmental issues due to the disposal of BOFS. Furthermore, this study might also
create awareness among steel manufacturers that are involved in BOFS generation by
visualizing its commercial importance in construction.
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