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Abstract: This paper aims to obtain the best shape accuracy evaluation algorithm for silicon nitride
ceramic balls after lapping, and to extract the initial signal of the ball surface to improve the accuracy
and reliability of the algorithm. The research methods of this paper are as follows: Firstly, an analysis
of the uniform envelope of the lapping trajectory of ceramic balls is carried out to verify whether
the lapping trajectory after processing can achieve a consistent envelope on the balls’ surface. On
this basis, it is found through experiments that the standard deviation SD between the roundness
deviations of different contour sections is small. The value is maintained at approximately 0.03 µm,
and the roundness deviation can approximately replace the spherical deviation. Then the different
contour sections of the sphere are sampled by the Taylor roundness instrument. Considering the
uncertainty, the sampling points of different contour sections are averaged and used as the original
signal of the sphere surface. Then the EMD method is used to process the signal to be detected on the
sphere surface. The initial signal of the sphere surface is extracted by judging whether the number of
ripples Kc obtained by decomposition is greater than the critical value. Then the initial signal is used
as the input value of the approximation algorithm. Through the roundness deviation approximation
algorithm based on the least square method, the given minimum approximation domain range is
finely processed. The divided fine points are used as the center of the circle to intersect with the initial
signal. The maximum, minimum, and range of each circle are calculated to obtain the roundness
error based on the minimum circumscribed circle, the maximum inscribed circle, and the minimum
region method. Finally, the calculated values are compared with those obtained by the traditional
algorithm. The experimental results of this paper show that the algorithm is consistent with the
roundness error measured by the instrument, compared with the mainstream evaluation criteria. In
summary, the conclusions can be drawn as follows: Through a large number of experimental cases
and comparative experiments, the algorithm has high accuracy and reliability. The research results
of this paper have essential reference significance for accurately evaluating the shape accuracy of
ceramic balls in actual production.

Keywords: silicon nitride ceramic ball; uniform envelope of the lapping trajectory; empirical mode
decomposition method; least square method; fine processing; roundness deviation

1. Introduction

With their superior performance, ceramic ball bearings occupy a position that cannot
be ignored in many key technical fields. As a key component of the ceramic ball, its shape
contour accuracy greatly affects the performance of bearings [1–3]. As an important basis
for evaluating the rotation accuracy and interchangeability of bearings, higher spherical
error and surface waviness deviation will lead to greatly reduced rotation accuracy and life
of bearings. Therefore, how to improve the shape contour accuracy of ceramic balls and
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reduce their roundness deviation is one of the main technical difficulties and priorities in
the current research on the accuracy of ceramic ball bearings [4–8].

As shown in Figure 1, when the ceramic ball is lapping, the external device drives the
lapping disc to rotate around the Z axis with the angular velocity ωg. While the lapping
disc rotates, the ceramic ball in the track will produce an angular velocityωz that rotates
around its instantaneous rotation axis Zrot. The spatial angle between the angular velocity
ωg of the lapping disc and the angular velocity ωz of the ceramic ball is set to δ. When the
value of δ is constant, the lapping track on the surface of the ceramic ball fails to cover the
whole ball evenly, and the motion track of the lapping disc on the surface of the ball is three
concentric circles. At this time, the spherical deviation of the processed ball is large, and the
roundness of the ball is poor. When the δ assignment is a variable, the lapping trajectory
of the surface of the ceramic ball can be better enveloped in the whole ball [9,10]. At this
time, the spherical deviation of the processed ball is smaller, and the roundness of the ball
is better. The change of the spherical deviation of ceramic balls will also affect the change
of material removal during processing. In theory, it is required to increase the material
removal on the surface of ceramic balls when the spherical deviation is large and reduce
the material removal on the surface of ceramic balls when the spherical deviation is small.
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Figure 1. Ceramic ball lapping principle and spherical deviation schematic diagram. (a) Spherical
Lapping Schematic; (b) Diagram of spherical deviation.

In order to make the shape contour of the ceramic ball after processing more accurately
and with the surface spherical error smaller, many scholars at home and abroad have carried
out in-depth and detailed research on it. On the basis of a three coordinate measuring
machine, Wang Dongxia [11] improved the acquisition algorithm of spherical error contour
data, which effectively reduced the spherical error in the process of measurement and
evaluation. However, this study only compared the uncertainty of the MCM method
and GUM method and did not point out the specific accuracy and error of each method
in detail. Cai Zhen [12] proposed an improved algorithm based on the Cuckoo search
algorithm, with high convergence speed and accuracy. The algorithm is currently effective
in two-dimensional entities, but lacks experimental data in three-dimensional entities
(ceramic balls). Zhang Ke and Wu Yu-hou [13,14] creatively put forward the conical groove
lapping method, by improving the traditional V-groove lapping method. The experimental
results show that the spherical error of ceramic balls processed by this method is the best
when the rotation angle is controlled between 45◦ and 75◦, which basically reaches the
G5-level accuracy. Zhou Zhao-zhong et al. [15] proposed a spherical error correction model
based on the spherical error of ceramic balls. Zhang [16] established a kinematic model
based on the traditional lapping method, and analyzed the influence of the rotation angle,
angular velocity, and angular velocity of the ceramic sphere on the shape of the sphere
after processing. It is concluded that changing the above parameters during processing
can form a more uniform lapping trajectory on the surface of the sphere. This conclusion
provides a good theoretical basis for subsequent research. Zhang et al. [17] adjusted
the axis offset of the upper and lower lapping discs in the traditional lapping method,
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to reduce the spherical error and improve the shape contour accuracy. Although this
method can improve the spherical error of the sphere to a certain extent, the material
removal method is mainly two-body removal, which has a great influence on the surface
quality of the sphere. Lee RT [18,19] found that reducing the rotation angle of the sphere
during the lapping process can effectively improve the spherical error by a large number of
lapping experiments on the sphere. Meijian [20] proposed a progressive search method
based on the minimum zone sphere (MZS), to evaluate the sphericity error. Although
this method has high accuracy, the model is cumbersome, and there are many constraints
in its practical application. Shi et al. [21] proposed a whale optimization algorithm to
solve the sphericity calculation model. Although the calculation method of spherical
error has certain advantages, the results easily fall into the local extremum in the iterative
process, which affects the calculation accuracy. Damian Gogolewski [22,23] and his team
creatively proposed to evaluate the contour by combining the Fourier transform and
wavelet transform. This method has high accuracy and reliability, but there is a lack of
application examples for ceramic balls. Therefore, Ito et al. [24] measured the spherical
error of the probe tip of the coordinate measuring machine (CMM) by rotating the reference
ball. The results show that the measurement uncertainty of this method is less than 0.5 µm;
Jiang et al. [25] proposed an improved method to evaluate the spherical error based on the
traditional bee colony algorithm. The convergence accuracy of this method is high, but it is
easy to be limited to the optimal local solution.

Huang Fugui, Lei Xianqing et al. [26,27] innovatively proposed the region search
method and the grid search algorithm, based on the traditional roundness algorithm least
squares method. This kind of algorithm can avoid the complexity of solving nonlinear
equations to a large extent and the inaccuracy of sampling points in special cases. However,
this method is only applicable to the roundness deviation calculation model under the least
square method; Yue et al. [28] proposed a roundness deviation calculation method suitable
for the minimum inclusive region model. This method is based on geometric optimization.
Although it has a wide range of applications, it is only suitable for small batch roundness
deviation measurement because of its complex calculation.

As far as the current research status is concerned, there are many areas for improve-
ment in the roundness evaluation of ceramic balls by mainstream research methods. This is
mainly reflected in the following aspects [29]:

(1) In analyzing the spherical errors of ceramics, there is a lack of effective extraction of
the detection signal, which leads to the interference of other signals except for the
spherical error signal;

(2) The evaluation method of the spherical error of the ceramic ball lacks the corre-
sponding model support, and most of the existing models focus on the accuracy
optimization of the sampling points. There are few studies on the ball after lapping;

(3) At present, there is no uniform international standard for the definition of sphericity
error, and the measurement of its accuracy is usually reflected by roundness error.

Because of the problems existing in the current research, this paper takes a silicon
nitride ceramic ball as the research object. On the basis of studying the envelope of its
lapping trajectory, a new spherical deviation calculation method suitable for the ceramic
ball is proposed by combining the roundness approximation algorithm based on the least
square method with the EMD method.

2. Analysis of Trajectory Uniform Envelope on the Surface of a Ceramic Sphere

Whether the ceramic ball can form a finished product with slight spherical deviation
in the processing process depends on whether the lapping trajectory generated during
rotation can evenly envelop the ball’s surface. Therefore, this paper includes the lapping
trajectory of the sphere surface into the research scope and focuses on analyzing its influence
mechanism [30,31].

To further study the motion state of the ceramic ball lapping into a ball, the fixed
coordinate system and the revolution coordinate system of the ceramic ball in the initial
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state is considered to be converted into a local coordinate system with the center of the ball
as the coordinate origin. The initial motion coordinate system and the transformed local
coordinate system are shown in Figure 2.
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From the analysis of Figure 2, it can be seen that the fixed coordinate system [Op Xd
Yd Zd] rotates ε degree with the revolution axis as the reference to obtain the revolution
coordinate system [Op Xz Yz Zz]. After the above two coordinate systems are transformed,
the new coordinate systems are obtained as [Oz, Xd, Yd, Zd,] and [Oz, Xz, Yz, Zz,],
respectively. The new revolution coordinate system [Oz, Xz, Yz, Zz,] is obtained by rotating
ρ angle with Yz as the reference, and the rotation coordinate system of the ceramic ball is
[Oz, Xs, Ys, Zs].

Setting the rotation angle of the ceramic ball as δ, the rotation coordinate system [Oz,
Xs, Ys, Zs] is rotated by δ◦ around the rotation axis Zs of the ball, and the corresponding
coordinate system under the change of the rotation angle is [Oz, Xs, Ys, Zs].

For the lapping trajectory of the ceramic ball surface, the discrete method is used to
process it, and a model with high precision and good stability can be obtained. Specifically,
the method is to uniformly sample the lapping trajectory of the outer surface of the ceramic
ball after lapping. After determining the initial position, sampling interval, and sampling
time, all the calculated sampling coordinates are mapped to the ball’s surface to obtain the
corresponding lapping trajectory.

As an important prerequisite for the operation of the above discretization method, the
initial position of the ceramic ball is usually determined by the original coordinates of the
three contact points of the ceramic ball, the flat lapping disc, and the groove lapping disc.
For the purpose of simplifying the subsequent calculation, this paper considers merging the
above initial point coordinate model into a new matrix; the initial matrix PN is as follows:

PN =

ra cos θ ra 0
0 0 0

ra sin θ 0 ra

 (1)

The initial matrix PN is transformed into a local coordinate system centered on the
rotation axis of the sphere, and the matrix PN is obtained by rotating the ρ angle, as
shown below:

PN
′ = PNtran(u, δ

)
(2)

Among them, tran (u, δ) is defined as the coordinate change matrix of the ceramic ball,
and its mathematical model is as follows:
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tran(u, δ) =

 uxux(1− cos( δ)) + cosδ uyux(1− cos( δ)) uxuz(1− cos( δ)) + sin ρ sin δ
uxuy(1− cos( δ)) uyuy(1− cos( δ)) + cos δ uzuy(1− cos( δ))− cos ρ sin δ

uxuz(1− cos( δ))− sinρ sin δ uyux(1− cos( δ)) uzuz(1− cos( δ)) + cos δ

 (3)

In this model, u is a related determinant of the change angle ρ, and its related expres-
sion is as follows:

u = [cos ρ sinρ 0 ] (4)

On the basis of the initial position matrix PN, it is necessary to determine the an-
gular velocity of the above three contact points, respectively. According to the rele-
vant literature [32], the angular velocities ω1, ω2, and ω3 of the above points satisfy
the following relationship: 

ω1= ωbcosδ
ω2= ωbsinδ
ω3 = ωc

(5)

In the above formula, ωb is the projection of the angular velocity of the ceramic ball
ωz on the x-axis, ωc is the projection of the angular velocity of the ceramic ball on the y-axis,
and θ is the initial phase angle of the ball.

In general, the relationship between the angular velocity of the ceramic ballωz and
the angular velocity of the lapping device ω is as follows:

ωz =
(RB + RC)ω

2r(1 + sin η) cosδ
(6)

In the above formula, RB and RC are the distance from the contact point to the rotation
radius of the ball, r is the radius of the ceramic ball, and η is the groove angle of the groove.
From the angular velocity of the above three contact points in the local coordinate axis, the
angle value of each coordinate axis rotation in the unit sampling time can be derived.

αx(i) = ωz(i) cosδ(i)∆t
αy(i) = ωz(i) sinδ(i)∆t
αz(i) = −rωz(i)ωu(i) sin

(
π
2 − δ(i) + θ

)
∆t

(7)

In the above formula, αx (i), αy (i), and αz (i) are defined as the angle values of the
sphere in the unit sampling time, that is, the rotation amplitude value, which can be
expressed as matrix ∆F = (αx (i), αy (i), αz (i)). The number i is the number of trajectory
points obtained by sampling; δt is the unit sampling time of the trajectory points on the
surface of the sphere.

When the angle of rotation in the unit time is known, the rotation angle of any sampling
point can be deduced as follows:

Cx(i + 1) = αx(i)Cx(i + 1)
Cy(i + 1) = αy(i)Cy(i + 1)
Cz(i + 1) = αz(i)Cz(i + 1)

(8)

Among them, Cx (i + 1), Cy (i + 1), and Cz (i + 1) are defined as the angles of the
sampling points relative to the three reference coordinates. The corresponding matrix C
can be expressed as the real-time state of the rotation angle of the sphere in the lapping
process, which is expressed as the following formula:

C =
(
Cx(i) Cy(i) Cz(i)

)
(9)

According to the definition of the above matrix PN and the change of the rotation
angle of any sampling point, the relevant model of the trajectory coordinate PN (i + 1)
obtained by turning the ceramic ball at any angle during the lapping process is as follows:
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PN (i + 1)′ = PN(i + 1)

 uxux(1− cos( c))+ cos c uyux(1− cos( c)) uxuz(1− cos( c)) + sin ρ sin c
uxuy(1− cos( c)) uyuy(1− cos( c)) + cos c uzuy(1− cos( c))− cos ρ sin c

uxuz(1− cos( c))− sinρ sin c uyux(1− cos( c)) uzuz(1− cos( c)) + cos c

 (10)

In summary, the lapping trajectory of the surface of the ceramic ball is mainly affected
by the rotation amplitude matrix ∆F during the lapping process of the ceramic ball. It can
be found that the main influence parameter of the matrix is the rotation angle δ (i) of the
ceramic ball at any point. In order to facilitate the value and operation of the subsequent
simulation, ∆δ is expressed by the variation of the rotation angle in unit time.

Ceramic Ball Trajectory Envelope Simulation Analysis

From the previous establishment of the lapping trajectory model of the ball, it can be
seen that the main influencing factor of the lapping trajectory of the ceramic ball surface is
the rotation angle δ(i) of any point of the ball. Based on this, the simulation of this paper
takes the silicon nitride ceramic ball as the research object and sets the initial blank ball
diameter as D = 10 mm; the rotation speed of the lapping disc ng is 200 r/min, and the
variation range of the rotation angle of the ceramic ball ∆δ(i) is set to four groups of 0◦, 60◦,
120◦, and 180◦. The simulation time is 1000 s, and the sampling step size is 0.001. Using
MATLAB to simulate the lapping trajectory formed during the lapping of silicon nitride
ceramic balls, the corresponding simulation results are shown in Figure 3.
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It can be seen from Figure 3 that the lapping trajectory formed on the surface of the
ceramic ball is three parallel lines when the change range of the rotation angle ∆δ = 0◦,
which is due to the contact point between the ball and the lapping disc during the lapping
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process. When the variation of the rotation angle is increased to 60◦, the lapping trajectories
begin to become dense, and multiple lapping trajectories are intertwined. When the rotation
angle is further increased to 120◦, the trajectory becomes denser. When the variation range
of the rotation angle reaches 180◦, the density of the trajectory reaches the maximum. At this
time, the lapping trajectory of the sphere surface can basically envelop its surface evenly,
which means that each section of the sphere surface can achieve more effective processing.
Based on the simulation results, it can be seen that when the variation amplitude of the
rotation angle of the ceramic sphere during the lapping process is as large as possible and
the rotation angle is in a fully charged state, the surface of the sphere obtained by lapping
can basically form a more uniform lapping trajectory, that is, the shape accuracy under
different sections is basically consistent. This conclusion provides a theoretical basis for the
subsequent model establishment of ceramic ball roundness error.

3. Basic Principle of Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is the main method to solve the difficulty of
nonlinear and non-stationary signal extraction. The core of it is to decompose the detected
signal layer by layer to the intrinsic mode function (IMF) with different characteristic
vibration forms, and to screen out the signals that do not meet the functional conditions to
avoid the influence of the stacking of signal waveforms on the decomposition results. Of
course, the use of this method also has the corresponding theoretical premise [33]: (1) the
Intrinsic Mode Function (the following abbreviation is IMF) is symmetrical about the time
axis in the local range; and (2) the difference between the number of zeros and the number
of poles of the IMF is no more than one.

Usually for time series signals, the decomposition steps of the EMD method are as
follows [34–36]:

1. The collected signals are processed locally to obtain the maximum and minimum
values in a fixed range. The maximum and minimum values obtained above are
connected into upper and lower envelopes by cubic spline interpolation curve;

2. The data points corresponding to the upper and lower envelope lines obtained above
are assigned, where the upper envelope line is set to m1, and the lower envelope line is
set to m2; the mean value is then known (m1 + m2)/2. It can be seen from the relevant
literature that the difference D between the time series signal and the mean value is
an IMF, and the following formula can be obtained [37–40]:

D = x(t)−m1 + m2

2
(11)

For the difference D, it can usually be expressed as the initial Intrinsic Mode Functions
obtained by decomposing the time series signal.

However, when decomposing the signals generated in the actual processing process,
only obtaining a set of IMFs will affect the accuracy of the results. This is due to the
phenomenon of underfitting and overfitting when interpolating the envelope curve through
the cubic spline curve, resulting in multiple extreme points of the signal in the local
atmosphere. Therefore, when processing the signal, the number k of the decomposition of
the initial IMF should be increased as much as possible. After k times of decomposition,
the corresponding difference DK is expressed as the following model:

Dk−1 −mK = DK (12)

Among them, DK−1 is the difference obtained by the k − 1 decomposition, and mk is
the mean value of the envelope obtained by the k decomposition.

3. It is judged whether the difference DK obtained by K-times decomposition satisfies
the theoretical conditions of the empirical mode decomposition method mentioned
above. If it is not satisfied, the decomposition is continued until the difference DK
satisfies the condition that the IMF is established. The difference DK obtained at this
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time is the initial IMF of the first group of the signal satisfying the condition, and its
frequency is usually higher than other functions in the signal, denoted as P1(t):

P1(t) = DK (13)

4. Based on the obtained high-frequency Intrinsic Mode Functions P1(t), the correspond-
ing low-frequency Intrinsic Mode Functions Q1(t) model can be derived as follows:

Q1(t) = x(t)− P1(t) (14)

5. The m− 1 decomposition of Q1(t) is performed by steps one to five, and the mth group
of Intrinsic Mode Functions Pm(t) and Qm(t) satisfying the conditions are obtained;

6. After obtaining all IMFs that meet the conditions, the decomposition process of the
signal needs to be suspended. The relevant suspension function is as follows:

L =

t
∑
0
|DK−1(t)− DK−1(t)|

t
∑
0
|DK−1(t)|2

2

(15)

In the formula, the value of L is the execution standard of the termination condition,
and the critical value is limited to 0.2~0.3. When the signal is decomposed and when the
value is less than the critical value, the process is terminated. The signal decomposition
results are as follows:

x(t) =
m

∑
j

Pj(t) + Qm(t) (16)

In this formula, Pj(t) is the data set from the initial high-frequency IMF to the minimum
low-frequency IMF after multiple decompositions of the signal, that is, the IMF classification.
The residual error after signal decomposition is Qm(t), which is usually expressed as the
overall trend of the signal.

4. Ceramic Ball Roundness Deviation Extraction Based on EMD
4.1. Analysis of the Signal Composition of the Outer Surface of the Ceramic Ball

The composition of the signal to be measured on the outer surface of the ceramic
ball obtained by the actual lapping process is more complex. According to the current
mainstream academic research point of view, it can be divided into the following two
categories [41]:

1. Surface geometric accuracy error: As shown in Figure 4, the error is mainly caused by
different lapping parameters set in the machining process. According to the collected
signal frequency, it can be divided into high-frequency signal error, intermediate-
frequency signal error, and low-frequency signal error. The high frequency-signal
refers to the surface roughness error of the sphere, the intermediate-frequency signal
refers to the waviness error of the outer surface of the sphere, and the low-frequency
signal refers to the shape error of the sphere contour;

2. Measurement accuracy error: This error is mainly caused by external factors such as
the accuracy of the measuring instrument, the accuracy of the measuring method,
and the reliability of the measuring environment. It is usually manifested as a high-
frequency signal interference error during the sampling process.
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The roundness deviation of the ceramic ball is the main form of contour shape error,
which is different from roughness error and waviness error. The signal frequency is mainly
low-frequency, which is difficult to achieve by general signal extraction methods. The
empirical mode analysis method can better reflect the frequency characteristics of the signal.
Based on this, this paper uses the empirical mode analysis method to extract the roundness
deviation signal of the ceramic ball.

4.2. Ceramic Ball Roundness Deviation Extraction Process

It can be seen from the previous article that the extraction of the roundness deviation
of ceramic balls is based on the empirical mode analysis method. The specific process is
as follows:

1. The collected signals of the outer surface of the ceramic ball are sorted and output
as the original sequence T(t). The empirical mode decomposition method is used to
decompose it into a series of IMF state functions with high-frequency, intermediate-
frequency, and low-frequency characteristics. The low-order IMF state function in
the decomposition result is the high-frequency part of the original signal, such as
the surface roughness signal error of the ceramic ball and the measurement accuracy
error, etc. The Intrinsic Mode Function between the low order and the high order is
the intermediate-frequency part of the original signal, such as the surface waviness
error signal of the ceramic ball. The remaining high-order Intrinsic Mode Function
is the high-frequency part of the original signal, which is mainly the form deviation
signal of the ceramic ball;

2. The number of waveforms of the decomposed signals is used as the main criterion to
calculate the number of waveforms Kc of each Intrinsic Mode Function. Usually, the
number of cycles T can be determined by calculating the zero-frequency component
Zj(t) of the signal and the number of intersections n of the IMF, specifically, the
number of waveforms Kc = n/2. For any Intrinsic Mode Functions, its zero-frequency
component Zj(t) is expressed as follows:

Zj(t) =
m

∑
j=1

Pj(t) (17)

where Pj(t) is the data set of the high-frequency to low-frequency IMF after the signal
decomposition mentioned above, m is the number of signal sampling points in the decom-
position process, and the number of intersections between the zero-frequency component
and the IMF is usually an integer.

Compared with the target contour shape error signal, the waviness error signal and
the roughness error signal belong to the middle- and high-frequency part in the outer
surface detection signal of the ball, and the number of corresponding waveforms Kc is
far greater than the number of roundness deviation signals. According to the relevant
literature [41], the waviness error signal of the material surface after lapping usually has
three manifestations; the number of waveforms Kc is 5, 15, and 45, respectively. In order to
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improve the accuracy of roundness deviation signal extraction, the waviness error signal
with Kc value of 15 is set as the critical signal of accuracy error interference. The IMF with
Kc greater than or equal to this value is the interference error that should be stripped. The
remaining signal wave with Kc less than this value is the IMF containing the target form
deviation signal.

3. The form deviation signal of the ceramic ball is obtained by reintegrating the extracted
IMF and the residual signal error Qm (t). The roundness deviation of the ceramic ball
can be solved by applying the formula.

The specific steps and pseudo-code of the above ceramic ball roundness deviation
extraction method are as follows (Figure 5); the programming language used is MATLAB:
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5. Ceramic Ball Roundness Approximation Algorithm
5.1. Roundness Deviation Model under Least Square Method

Under normal circumstances, there is a specific error between the outer contour circle
and the ideal circle of the ceramic ball obtained by lapping, and it can be seen from the
previous section that the shape accuracy of different sections of the ceramic ball obtained by
the full change of the rotation angle is close to the same. Based on this, after using the EMD
method mentioned above to extract the roundness error signal of the ball, it is proposed to
use the contour section method for analysis. Specifically, the processed ball is cut along
the axis, and the actual circle and the theoretical circle under the same cross-section are
observed. The minimum distance between the two concentric circles is the roundness
deviation [42].

At present, the calculation methods for the sphere mainly include (1) minimum zone
method, (2) least square method, (3) minimum circumcircle method, and (4) maximum
inscribed circle method [43]. In order to avoid the complexity of the model and the low
accuracy of the predicted results, this paper uses the least square method to analyze
the sphere.

The least square circle involved in this paper, as one of the current mainstream spheri-
cal evaluation methods, is widely used in precision measurement equipment with high
reliability, good accuracy, and fast convergence [44]. In essence, the least square circle is
used as the evaluation standard to calculate the sum of squares of the minimum distance
between each position point on the measured outer contour and the least square circle. The
premise of this method is to control the least square circle, that is, the circle as an ideal circle
should conform to the minimum principle [45,46].

It can be seen from Figure 6 that the point OL is the center of the least squares circle,
and its coordinate is (ηa, ra); ci is the actual measured contour point, and its corresponding
coordinate in polar coordinates is (ηi, ri); rmax and rmin are the radius values of the circle
passing through the maximum and minimum points to be measured with the point OL as
the center. The center coordinates of the above polar coordinates are transformed into the
corresponding values in the rectangular coordinate system, and the coordinates of OL are
(xa, yb), where a and b are the center coordinates of the ideal contour; a and b satisfy the
following relations, respectively: 

xa = 2
n

n
∑

i=1
ri cos ηi

yb = 2
n

n
∑

i=1
ri sin ηi

(18)
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The specific mathematical model of this method is as follows:{
∆Emin = Min|rmax − rmin|
rp = ecos(ηi − β)+

√
∆rp2 − (esin(η − β))2 (19)

The meanings of each symbol in the above formula are as follows: ∆Emin is defined as
the roundness error of the sphere; e is the distance from the center of rotation O(x,y) to the
center of least squares OL(xa,yb); rp is the distance from any point on the actual contour
line to the center of the sphere OL; β is the initial angle between rp and the polar axis; and
∆rp represents the distance deviation value in the model, which is defined as follows:

∆rp = rp − (a cos ηi + b sin ηi
)

(20)

By integrating the above formulas, the mathematical model of the least squares round-
ness error is as follows:

∆Emin = Max

∣∣∣∣∣ecos(ηi − β)+

√
(rp − (( 2

n

n
∑

i=1
ri cos ηi) cos ηi + ( 2

n

n
∑

i=1
ri sin η) sin ηi))

2
− (esin(ηi − β))2

∣∣∣∣∣
−Min

∣∣∣∣∣ecos(ηi − β)+

√
(rp − (( 2

n

n
∑

i=1
ri cos ηi) cos ηi + ( 2

n

n
∑

i=1
ri sin ηi) sin ηi))

2
− (esin(ηi − β))2

∣∣∣∣∣
(21)

5.2. The Specific Process of the Algorithm and Its Implementation

Since the center of the least squares model involves a nonlinear solution, the solution
is more complicated. The current mainstream linearization method is to evenly distribute
the sampling points and take the number as an even number. The obtained center O (Px0,
Py0) is as follows:

px0 = 1
n

n
∑

i=1
Xi

py0 = 1
n

n
∑

i=1
Yi

(22)

The above center model is only suitable for the roundness evaluation of the whole
circle. The center deviation is large when the sampling points are not round and the
distribution is not uniform. Based on this, three points A (Px1, Py1), B (Px2, Py2), and C
(Px3, Py3) with roughly uniform distribution in the effective sampling points are selected
for initial fitting, and the center O (Px0, Py0) of the circle is used as the reference center as
shown below:

Px0 =
(Py1−Py2)(Py1Py2+Px3

2)+(Py2−Py2)(Py2Py3+Px1
2)−(Py1−Py3)(Py3Py1+Px2

2)
2Py1(Px3−Px2)+2Py2(Px1−Px3)+2Py3(Px2−Px1)

Py0 =
(Px1−Px2)(Px1Px2+Py3

2)+(Px2−Px3)(Px3Px2+Py1
2)−(Px1−Px3)(Px1Px3+Py2

2)
2Px1(Py3−Py2)+2Px2(Py1−Py3)+2Px3(Py2−Py1)

(23)

The center of the circle determined by the above formula is set as the search center
of the algorithm, and an initial limited area of the circular section of the ceramic ball with
a radius of R is created. The limited area is refined. Specifically, n lines passing through
the center of the circle and equally dividing the initial area are first made and then n
concentric circles are made with R − R/n as the radius. The intersection point of the two is
the algorithm approximation point. The corresponding approximation region is shown in
Figure 7.
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The size of R is judged by the least square method. In this paper, the value of the least
square roundness error is used as the specific value of R. The circular approximation region
is minimized and divided many times. The polar angle of the divided minimum region is
τi, and the polar diameter is R/n. The coordinate Ox (xi, yi) of the height refinement point
can be expressed as the following mathematical model:

xi = (x0 + R/n)cos(nτi)
yi = (y0 + R/n)Rsin(nτi)

(24)

Assuming that the measured points on the surface of the measured sphere are Pi (Xi,
Yi), the distribution and number of measured points are not limited. Taking the center of
the reference circle as the search center, the appropriate search area size and search step are
determined. Taking the points to be searched in these areas as the center of the circle, the
maximum radius Rmax, the minimum radius Rmin, and the radius range ∆R in each area
are calculated.

According to the values of the maximum radius Rmax, the minimum radius Rmin, and
the radius range ∆R obtained by the above calculation, the above values calculated in the
n2 regions of the sphere refinement are compared by different evaluation criteria. The
following results can be obtained:

(1) The minimum value of the maximum radius value Rmax in each region is the minimum
circumscribed circle radius of the ceramic ball, which is set to RCmax. At this time, the
search point in the region is the center of the minimum circumscribed circle, and the
corresponding minimum radius value is set to RCmin. According to the evaluation
standard of the minimum circumscribed circle method, the error value EC1 at this
time is known;

(2) The maximum value of the minimum radius value Rmin in each region is the maximum
inscribed circle radius of the ceramic ball, which is set to Rimin. At this time, the search
point in the region is the maximum inscribed circle center, and the corresponding
maximum radius is set to Rimax. According to the evaluation standard of the maximum
inscribed circle method, the error value EC2 is known at this time;

(3) The range ∆r of the radius value in the approximation area is calculated and compared,
and the minimum value is the minimum value of the contour of the measured circle.
The error value EC3 can be known from the corresponding minimum zone evaluation
method standard.

The calculation formulas of the above roundness error calculation results in EC1, EC2,
and EC3 are as follows: 

EC1 = RCmax − RCmin
EC2 = Rimax − Rimin
EC3 = min{∆R}

(25)
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Comparing the values of EC1, EC2, and EC3, the minimum value is selected as the
roundness error calculation result of this algorithm.

To avoid the low accuracy of the calculated results and the possibility of locally optimal
solutions, the constraint accuracy α is considered, which is defined as the deviation between
the minimum value of the radius range of each search point in the approximation area
and its adjacent value. The selection of this value should be based on the value of the least
squares roundness error as the standard R, which usually satisfies the relationship of R/n2.

The above calculation is realized by MATLAB, and the specific implementation process
and pseudo-code are as follows (Figure 8):
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Procedure  approximation (t, n, I, emd; float); 

var temp,t,n:integer; 

//input emd 

//output min{EC1, EC2, EC3} 

begin 

for t:=1 to n − 1 do 

while(t = 1000) 

ηi:=rand(0,pi/2); β:=rand(0,pi/2); 

x0 = ଵ

௡
∑ 𝑋௜

௡
௜ୀଵ ; y0 = ଵ

௡
∑ 𝑌௜

௡
௜ୀଵ ; 

x = c1; y = c2; r = c3; 

e = ඥ(𝑥଴ − 𝑥)ଶ + (𝑦଴ − 𝑦)ଶమ ; 
2

p
2

pcos( )+ (esin( ))ir re         
p p i i( cos + sin )r r a b    

max minmin MinE r r   

for n = 1 to n − 1 do 

while (n = i) 

R = ΔEmin; τi = 360/n; R/n; 

𝑥௜ = (𝑥଴ + 𝑅/𝑛)cos(𝑛𝜏௜) 

𝑦௜ = (𝑦଴ + 𝑅/𝑛)𝑅sin(𝑛𝜏௜) 

slove RCMax、RCMin、RiMax、RiMin 

if Abs(RCMax-RCMin) ≤ α 

Abs(RiMax-RiMin) ≤ α 

Abs(min{ΔR}) ≤ α 

Slove EC1、EC2、EC3; 

Ecmin = min{EC1, EC2, EC3}; 

else  return n = i + 1 

end; 

end; 

Figure 8. Algorithm flow chart and related pseudo-codes. Figure 8. Algorithm flow chart and related pseudo-codes.

6. Experimental Verification and Algorithm Accuracy Analysis
6.1. Experimental Design

Based on the spherical approximation algorithm of ceramic balls mentioned above, to
verify its accuracy, this paper uses silicon nitride ceramic balls as the main research object.
The number of samples participating in the experiment is divided into 10 groups. Each
group of samples is processed under the condition of sufficient change of rotation angle.
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The sample is repeated for 6 times of the diameter measurement to take the average value,
and the corresponding specification parameters are shown in Tables 1 and 2 [47]. Taking
12 cross-sections for each sample, the Taylor Hobson roundness instrument is used to
measure the roundness and uniformly sample the outer surface distribution of the contour
of each cross-section. The filtering method used for roundness measurement is Gaussian
filtering. The cut-off value of the filter is 1~15 upr, while the equal angle sampling does not
use the filter. The measuring probe type is Φ 2 mm. The specific sampling flow chart is
shown in Figure 9.

Table 1. Performance parameters of silicon nitride ceramic ball.

Mechanical Property Parameter Value

Density/(g·cm–3) 3.2 × 103

Elastic Modulus/Gpa 310
Hardness/HRC 94
Poisson’s ratio 0.26

Fracture toughness/(MPa·m–2) 7.0
Compressive strength/Pa 420

Thermal expansion coefficient/(10–6·K–1) 3.0 × 106

Table 2. Experimental sample specifications.

Serial Number Diameter Accuracy Grade

1 10.043 G3
2 10.111 G3
3 6.832 G3
4 6.721 G3
5 8.327 G3
6 8.683 G3
7 5.365 G5
8 5.874 G5
9 3.691 G5
10 3.116 G5
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Figure 9. Sample measurement flow chart. (a) silicon nitride ball; (b) Taylor roundness instrument;
(c) The selected section schematic diagram.

6.2. Uncertainty Analysis

Based on the above experiments, in the actual measurement process, due to the
influence of external ambient temperature, instrument measurement accuracy, offset, and
tilt in the sampling process on the measurement results, it is necessary to analyze the
uncertainty of this experiment. In order to ensure the accuracy and reliability of the
analysis, this paper uses the GUM method to evaluate the uncertainty.
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Taking the original signal measurement value shown in Figure 6 as the research object,
the uncertainty of each sampling point is calculated, and the main factors affecting the
synthetic uncertainty u0 of each sampling point of the original signal are analyzed. The
specific process steps are as follows:

(1) Considering the operation error in the measurement process, the coordinate measure-
ment of each sampling point is repeated 10 times, that is, m = 10, and the correspond-
ing uncertainty u1 is obtained as follows;

(2) According to the relevant technical documents, the maximum allowable deviation
of the instrument is 0.02 µm, that is, the standard deviation σ is 0.02 µm, so that
the measured value of the sampling point obeys the normal distribution, and the
corresponding confidence factor K is 1.96. The uncertainty u2 caused by the error of
the instrument‘s own indication is usually related to the standard deviation σ, and
the confidence factor K as follows:

u2 =
σ

K
(26)

(3) In the process of sampling the outer surface of the sphere by the instrument, the uncer-
tainty is caused by temperature u3 = 0 because the external environment temperature
is basically kept constant at 20 ◦C;

(4) In the actual sampling process, the probe basically does not produce offset and tilt, so
the uncertainty caused by this item is u4 = 0;

(5) The above uncertainty is combined, and the corresponding combined single-point
uncertainty formula is as follows:

u =
√

u1
2 + u22 + u32 + u4

2 (27)

(6) For the center of the ceramic sphere, the uncertainty generated in the detection process
can usually be expressed by the following model:{

uxa =
xa√

m
uyb =

yb√
m

(28)

(7) Due to the large number of sampling points set in this paper, the difference εab be-
tween uxa and uya of the center of the circle will be infinitely reduced to approximately
zero in the actual measurement process, and the combined standard uncertainty uc
formed on this basis is as follows:

uc
2 =

(
∂∆Emin

∂xa
uxa

)2
+
(

∂∆Emin
∂yb

uyb

)2
+ 2 ∂∆Emin

∂xa

∂∆Emin
∂yb

εabuxayb +
(

∂∆Emin
∂ηmax

uηmax

)2

+
(

∂∆Emin
∂rmax

urmax

)2
+
(

∂∆Emin
∂ηmin

uηmin

)2
+
(

∂∆Emin
∂rmin

urmin

)2 (29)

6.3. Analysis of Experimental Results

The roundness deviation Ec of the 12 cross-section profiles corresponding to each of
the above 10 samples was detected by the Taylor roundness tester. Each cross-section was
repeatedly sampled 10 times, and the mean value was taken as the roundness error value
Ec under the cross-section. On this basis, the differences between the roundness of each
cross-section were compared, to verify whether the roundness of the different cross-sections
of the finished ball processed by the ceramic ball under the condition of a sufficient change
of the rotation angle during the lapping process was close to the same.

Each experimental sample fully considers the impact of uncertainty in the measure-
ment process, and the results are shown in Figure 10.

From the experimental results shown in Figure 10 above, it can be seen that the
roundness deviation of different cross-sections selected by the same ceramic ball sample
is basically close, and the corresponding standard deviation SD value is basically stable
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at approximately 0.03 µm, that is, the roundness error value fluctuates less, and the data
concentration degree is higher. This shows that the accuracy of different cross-section
shapes selected by the same ceramic ball sample tends to be consistent, which undoubtedly
proves the results of the previous simulation part; the larger the rotation angle variation
of the ceramic ball during the lapping process, the more sufficient the spin motion during
the lapping process and the more consistent processing effect can be achieved on each
surface of the ball, so as to ensure the reliability of the contour shape signal detected under
different sections.
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tions of Sample 3; (d) The EC values under different cross sections of Sample 4; (e) The EC values 
under different cross sections of Sample 5; (f) The EC values under different cross sections of Sample 
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From the experimental results shown in Figure 10 above, it can be seen that the 
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is basically close, and the corresponding standard deviation SD value is basically stable at 
approximately 0.03 µm, that is, the roundness error value fluctuates less, and the data 
concentration degree is higher. This shows that the accuracy of different cross-section 
shapes selected by the same ceramic ball sample tends to be consistent, which undoubt-
edly proves the results of the previous simulation part; the larger the rotation angle vari-
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culated average signal is used as the original signal of the outer contour of the ceramic 
ball, as shown in Figure 11 below. 

Figure 10. Comparison of roundness deviation of ceramic balls under different samples and different
sections of the same sample. (a) The EC values under different cross sections of Sample 1; (b) The
EC values under different cross sections of Sample; (c) The EC values under different cross sections
of Sample 3; (d) The EC values under different cross sections of Sample 4; (e) The EC values under
different cross sections of Sample 5; (f) The EC values under different cross sections of Sample 6;
(g) The EC values under different cross sections of Sample 7; (h) The EC values under different cross
sections of Sample 8; (i) The EC values under different cross sections of Sample 9; (j) The EC values
under different cross sections of Sample 10.

Based on the above conclusions, 10 samples are detected respectively, and the mean
values of 12 cross-section contour points detected by each sample are calculated. The
calculated average signal is used as the original signal of the outer contour of the ceramic
ball, as shown in Figure 11 below.

The original signal of each sample detected in Figure 11 is processed by the empirical
mode decomposition method EMD, mentioned in this paper. For the initial decomposition
of the intrinsic mode function IMF, it can be seen from the previous text that the number
of intersections n with the zero-frequency component Zj(t) basically satisfies the double
relationship with the number of waveforms Kc. Therefore, after obtaining the number of
intersection points n, the number of waveforms Kc of each Intrinsic Mode Function can
be deduced. According to the relevant instructions of the EMD method, the number of
waveforms Kc = 15 is used as the main criterion. The signal with the number of waveforms
Kc greater than this value in the Intrinsic Mode Functions IMF is set as the precision error
interference signal, and it is eliminated. The IMF7 and residual error Res obtained by the
final decomposition are shown in Figure 12.
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signal diagram; (h) Sample 8 original signal diagram; (i) Sample 9 original signal diagram; (j) Sample
10 original signal diagram.

After the original signal decomposition of the above samples is completed, the remain-
ing intrinsic mode function IMF7 and the residual error Res are reconstructed to obtain the
roundness error signal of the ceramic ball, and the signal is put into the roundness approxi-
mation algorithm as the initial surface detection signal. It can be seen from the previous
text that the algorithm takes the least squares center corresponding to the cross-section of
the ceramic ball as the reference point, and sets the radius R of the approximation region to
be equal to the circle of the least squares roundness error ∆Emin. Starting from the edge of
the region, it is divided into 120 fine points of different sizes, and the fine points inside the
minimum approximation region formed by each division are the center of the circle. The
maximum value Rmax and the minimum value Rmin of the distance corresponding to the
roundness error signal are calculated, and the corresponding range ∆R is obtained.

From the previous introduction of the algorithm flow, it can be seen that the calculated
maximum Rmax, minimum Rmin, and range ∆R are solved by the minimum circumscribed
circle evaluation method, the maximum inscribed circle evaluation method, and the mini-
mum area evaluation method. The corresponding roundness errors EC1, EC2, and EC3 are
obtained by setting the constraint accuracy α of the algorithm to R/1202.
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Figure 12. EMD decomposition results of ceramic ball surface original signal. (a) Decomposition
results of Sample 1; (b) Decomposition results of Sample 2; (c) Decomposition results of Sample 3;
(d) Decomposition results of Sample 4; (e) Decomposition results of Sample 5; (f) Decomposition
results of Sample 6; (g) Decomposition results of Sample 7; (h) Decomposition results of Sample 8;
(i) Decomposition results of Sample 9; (j) Decomposition results of Sample 10.

The calculated roundness error values EC1, EC2, and EC3 are shown in Table 3. Compar-
ing it with the roundness instrument test result E, the result shown in Figure 13 is obtained.

Table 3. Roundness error calculation results.

Sample Number EC1/µm EC2/µm EC3/µm EC/µm

1 0.0645 0.0638 0.0626 0.0624
2 0.0867 0.0824 0.0815 0.0816
3 0.0432 0.0415 0.0397 0.0411
4 0.0835 0.0812 0.0804 0.0814
5 0.0851 0.0831 0.0823 0.0822
6 0.0426 0.0406 0.0385 0.0391
7 0.0975 0.0953 0.0938 0.0934
8 0.0813 0.0807 0.0786 0.0792
9 0.1015 0.0981 0.0962 0.1000

10 0.0986 0.0973 0.0951 0.0965

By analyzing Table 3 and Figure 13, it can be seen that the roundness error values EC1,
EC2, and EC3 calculated by samples 1 to 10 are different, which indicates that there are some
differences in the results obtained by the calculation method under different evaluation
criteria. The error EC1 obtained by the minimum circumcircle evaluation standard is
the largest, and the error EC3 obtained by the minimum zone evaluation standard is the
smallest. The relationship between the three is EC1 > EC2 > EC3, and the value of EC3 is the
closest to the result obtained by the roundness tester. The relative error between the two is
maintained at (0.32~1.45%). Therefore, in the actual measurement process, the error EC3
obtained by the minimum zone evaluation standard should be used as the roundness error
value obtained by this algorithm. At the same time, the error EC3 is basically consistent
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with the instrument-measured value E, indicating that the algorithm can better realize the
accurate evaluation of the form deviation of the outer surface of the ceramic ball.
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Similarly, the original signal collected on the surface of the ceramic ball is used as the 
input signal to be solved by the mainstream algorithms, such as the least circumscribed 
circle method, the least square method, the maximum inscribed circle method, and the 
minimum region method. The roundness error calculated by the minimum circumscribed 
circle method is Ea1, the roundness error calculated by the least square method is Ea2, the 
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circle method, the least square method, the maximum inscribed circle method, and the
minimum region method. The roundness error calculated by the minimum circumscribed
circle method is Ea1, the roundness error calculated by the least square method is Ea2,
the roundness error calculated by the maximum inscribed circle method is Ea3, and the
roundness error calculated by the minimum region method is Ea4.

The calculated results are compared with the roundness error value EC3, obtained by
the method described in Table 4, and the results are shown in Figure 14.

Table 4. Roundness error calculation results of different methods.

Sample Number Ea1/µm Ea2/µm Ea3/µm Ea4/µm Ec/µm

1 0.0662 0.0628 0.0699 0.0629 0.0626
2 0.0826 0.0819 0.0832 0.0820 0.0815
3 0.0425 0.0399 0.0425 0.0400 0.0397
4 0.0886 0.0808 0.0937 0.0810 0.0804
5 0.0904 0.0826 0.0940 0.0828 0.0823
6 0.0407 0.0387 0.0426 0.0387 0.0385
7 0.1000 0.0945 0.1009 0.0946 0.0938
8 0.0802 0.0793 0.0817 0.0794 0.0786
9 0.0984 0.0970 0.1040 0.0974 0.0962

10 0.1036 0.0958 0.1068 0.0962 0.0951
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method is the largest, followed by the error Ea1 obtained by the minimum circumscribed
circle method. The error Ea obtained by the least square method is the minimum value
calculated by the traditional method, but the value is still less than the roundness error
value EC3 obtained by the method described in this paper. The relative error between
the two ranges from 1.39% to 10.1%. At the same time, compared with Tables 3 and 4,
it can be seen that for the same evaluation method, the calculation method in this paper
can reduce the corresponding roundness error; among them, the mean error reduced
by the minimum circumscribed circle method is 0.0087 µm, the mean error reduced by
the maximum inscribed circle method is 0.0553 µm, and the mean error reduced by the
minimum zone method is 0.00633 µm. Therefore, the calculation accuracy of the method
described in this paper is higher than that of several existing, traditional algorithms. At the
same time, it shows that the algorithm can better realize the accurate evaluation of the form
deviation of the outer surface of the ceramic ball, and it provides a great guiding value in
the evaluation of the shape accuracy of the ceramic ball processed under the condition of a
sufficient change of the rotation angle.

7. Conclusions

This paper proposes an evaluation algorithm for the shape error of the ceramic sphere’s
outer surface applied to the lapping trajectory’s uniform envelope. The main factors to
improve the uniformity of the lapping trajectory on the surface of the ceramic sphere are
verified by simulation analysis and experiment, that is, the variation range of the rotation
angle of the sphere. When the value of ∆ δ is larger, the trajectory of the surface of the sphere
is more uniform, and the envelope of the sphere can be realized. The different sections of
the sphere can achieve more consistent processing, that is, the roundness deviation error of
different sections is small. The experimental results show that the corresponding standard
deviation SD value is basically stable at approximately 0.03 µm. Combining the empirical
mode decomposition method with the roundness approximation algorithm, the roundness
error signal is extracted by the empirical mode decomposition method and used as the
input signal of the roundness approximation algorithm. The experimental results show
that the method has a great advantage in accuracy compared with the traditional algorithm
and is basically consistent with the results obtained by the instrument detection.

In summary, the method designed in this paper fills the gap in the field of ceramic
balls with uniform distribution of lapping trajectories to a certain extent and provides a
new idea for the accurate evaluation of the spherical error of ceramic balls.
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Abbreviations

[Op Xd Yd Zd] Fixed coordinate system
[Op Xz Yz Zz] Rotary coordinate system
[Oz, Xs Ys Zs] Rotation coordinate system of ceramic ball
δ Rotation angle of ceramic ball
[Oz, Xs, Ys, Zs] The coordinate system in the state of spin angle change
PN Initial matrix
tran(u, δ) Coordinate change matrix of ceramic ball
ω1, ω2, ω3 Angular velocity of contact point
ωz Rotational angular velocity of ceramic balls
ωb Projection of angular velocity on x axis
ωc Projection of angular velocity on y axis
RB, RC The distance from the contact point to the radius of rotation of the sphere
r The radius value of ceramic ball
η Groove angle
∆F Rotation amplitude matrix
∆t The unit sampling time of the trajectory points on the sphere surface
C Real-time state matrix of sphere rotation angle in grinding process

PN(i + 1)
The trajectory coordinates of the ceramic ball obtained after turning any angle
during the grinding process

δ(i)/∆δ The variation range of rotation angle in unit time
m1 Upper envelope line
m2 Lower envelope line
D The difference between the time series signal and the mean value
L Stopping function
Pj (t) Data set from initial high-frequency IMF to minimum low-frequency IMF
Pj (t) IMF classification
Qm (t) Residual error
Zj(t) Zero-frequency component
IMF Intrinsic Mode Functions
Kc Number of waveforms
OL The center of the least squares circle
Ci The actual measured contour points
∆Emin The roundness deviation of the sphere obtained by the least square method
e The distance from the center of Rotation O to the circle OL
rp The distance from any point on the actual contour line to the center OL
β The initial angle between rp and polar axis
∆rp The distance deviation value in the model
R Approximation region radius of the algorithm
Ox Highly fine points
Rmax The maximum radius in each minimum partition region
Rmin The minimum radius in each minimum partition region
∆R The radius range in each minimum partition area
MZM Minimum zone method
LSM Least square method
MCM Minimum circumcircle method
MIC Maximum inscribed circle method

EC1
The algorithm is based on the MCM to evaluate the roundness deviation
obtained by the standard

EC2
The algorithm is based on the MIM to evaluate the roundness deviation
obtained by the standard

EC3
The algorithm is based on the MIC to evaluate the roundness deviation
obtained by the standard

Ec Roundness deviation value detected by instrument
Ea1 The roundness deviation calculated by the MCM
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Ea2 The roundness deviation calculated by the LSM
Ea3 The roundness deviation calculated by the MIC method
Ea4 The roundness deviation calculated by the MZM
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