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Reactor Core Materials 

 
The two main processes that are believed to be important for irradiation creep are stress-induced 
climb and glide (SICG) or simple mass transport.  There is considerable debate over which 
process dominates and at what temperatures and stresses.  Whereas one can say that SICG is 
likely to be the most dominant process at high temperatures (> 500 °C) and stresses (> 200 MPa), 
or at very low temperatures (< 100 °C) in austenitic alloys, there are ranges of temperatures and 
stresses where both dislocation glide and diffusional mass transport can be significant.  There are 
uncertainties concerning either mechanism, but it is reasonable to assume that both depend either 
partly or wholly on diffusional mass transport. 
 
An appreciation for the physical processes controlling irradiation creep, and therefore whether 
SICG or diffusional mass transport are the dominant strain producing mechanisms, can be 
obtained by reviewing the evidence for both mechanisms in the context of the physics behind 
each.  There is a wealth of irradiation creep data for Zr-2.5Nb pressure tubes that has been 
accrued over many years because, unlike pressure vessel reactors, these tubes are the pressure 
retaining components in a CANDU reactor core.  This document describes the two main 
theoretical mechanisms that are used to model irradiation creep (mass transport and SICG) for 
Zr-2.5Nb pressure tubing. 
 
Case Study – Irradiation Creep of Zr-2.5Nb Pressure Tubing 
  
S1. Microstructure of Zr-2.5Nb Pressure Tubing 
The microstructure of Zr-2,5Nb is illustrated in Figure S1, which shows that the grain structure 
consists mostly of flattened platelets having minor axis dimensions ranging from 0.1 – 0.6 μm.   

 

Figure S1.  Examples of grain structures in a typical Zr-2.5Nb pressure tubing viewed looking 
down the longitudinal axis of the pressure tube for: (a) the front end and (b) the back end. 

 



Because Zr-alloys are comprised mostly of hexagonal close-packed (HCP) grains their properties 
are very sensitive to the texture, i.e. the distribution of grain orientations.  For different Zr-alloy 
components the textures are illustrated in Figure S2. 

 
 Figure S2.  Basal pole figures illustrating the distribution of the unique c-axes of grains in 

different Zr-alloy components. 
 

For Zr-2.5Nb pressure tubing the grain structure and the crystallographic orientations of the 
grains are very important for irradiation creep.  The grain size and shape tend to correlate with 
the crystal orientation; the more equiaxed grains having their c-axes orientated toward the radial  
direction, Figure S3.  The green and blue grains have c-axes close to the radial directions and 
tend to be more equiaxed when viewed looking down the longitudinal axis of the tube.  Grains 
that are flatter (the red grains) tend have their c-axes oriented towards the transverse (hoop) 
direction of the tube. 

 



   
Figure S3.  Transmission Kikuchi Diffraction (TKD) pole figures and image quality maps 

showing the relationship between grain orientations and grain shapes in a sample of Zr-2.5Nb 
pressure tubing.  Reprinted/adapted with permission from [2]. 2019, Elsevier. 

 
Grains are typically thinner (smaller minor axis dimension) at the end of the tube corresponding 
with the back-end of the extrusion, Figure S4.  Also shown in Figure S4 are quarter pole figures 
indicating the tendency for the basal poles to be oriented more towards the radial direction of the 
tube at the back-end.  The basal texture is represented by Kearns texture parameters [1], which 
are factors (fR, fT fL) that resolve and sum the single crystal tensor properties (such as strain for 
example) corresponding with the c-axis of the single crystal onto the directions of interest in the 
component (R, T, L).  
 
 
    

 
 

Figure S4.  Microstructure data for Zr-2.5Nb pressure tubing installed in different CANDU 
reactors showing minor axis grain dimensions and the corresponding basal pole figures centred 
on the radial direction.  The grain thickness is smaller, and the basal pole texture shows that the 
grains tend to have their unique c-axes oriented slightly more towards the radial direction at the 

back-end (the end leaving the extrusion press last). 
 

Perhaps the most important observation concerning the irradiation creep of pressure tubes in 
CANDU reactors is the observation that some tubes (designated TG3 RT1), fabricated with 



unusual microstructures, exhibited unusually high rates of diametral creep and correspondingly 
low rates of elongation [2, 3].  The balance between the elongation and diametral strain rates 
indicates that it is not the magnitude of the creep that is affected but rather the anisotropy.  Given 
that the TG3 RT1 tubes were fabricated with a low dislocation density, because that was deemed 
to be a factor in producing a tube with low elongation [4], there is reason to doubt that the 
relatively high diametral creep could be attributed to a high dislocation density given the 
deviatoric stress state in the pressurised tube is approximately (-60, +60, 0) MPa in the radial, 
transverse and longitudinal directions (R, T, L) respectively, for a typical internally pressurised 
CANDU pressure tube.  It could then be argued that the low dislocation density and high 
diametral creep are inconsistent with a SICG mechanism.  However, it has been proposed that 
dislocation loops produced by irradiation grow could form a dislocation network [5], thus 
circumventing the difficulty in explaining the high diametral creep when the network dislocation 
density is low.      
 
 
S2 Modelling Irradiation Creep by Stress Induced Climb and Glide (SICG) 
 
Stress induced climb and glide depends principally on the glide of network dislocations 
introduced by cold-working during fabrication.  The network dislocations produced by 
dislocation slip are fundamentally different from the prismatic loops produced by the clustering 
of point defects.  Loop evolution is by climb and is therefore governed by diffusional mass 
transport (rate theory).  There have been claims that dislocation loops evolve into an equivalent 
network and therefore, before one discusses the role of network dislocations in irradiation creep, 
it is instructive to distinguish between the two types of dislocations.  
  
In the 2020 creep review by Onimus et al. [5] a creep mechanism was proposed whereby 
dislocation loops grow and form a network that can glide and create a plastic shear strain that is 
in addition to the dilatational strain from the loops themselves.  Whereas shearing of a prismatic 
loop that redistributes the strain within the loop’s glide cylinder is conceivable, the proposed 
mechanism results in the creation of additional strain that, in retrospect, is both unrealistic and 
unphysical.  Figure 10 from Onimus et al. [5] shows the initial distortion of a prismatic loop in a 
small single crystal and the effect of an applied shear stress.  The dislocations are allowed to 
glide subject to the applied stress following a Peach-Koehler rule and the resulting plastic 
distortion was depicted as reproduced in Figure S5.  There are two problems with this scenario: 
(i) the net strain from the glide of the loop does not conform to work done by the applied shear 
stress; (ii) the elastic strain distortion observed at the boundary surface of the single crystal does 
not relax as the dislocation half planes move away from each surface.  The areas red-circled in 
Figure S5 show that the planes in the original figure retain their plastic distortion even when the 
dislocation has moved away from the surface and left the crystal.  The planes should relax once 
the dislocation has moved away in the direction of the red arrows.  For example, at (c) there is 
nothing to maintain the elastic distortion of the crystal shown in the region circled and it must 
relax to the right.  Likewise for the elastic distortion at the opposite surface in (e) that should be 
fully relaxed to the left once the dislocation has exited the left side of the crystal.  The final 
adjustment shown in the original figure (shown in Figure S5(f)) is applied as a response to the 
shear stress.  Quite apart from invoking a non-existent force to maintain the position of the 
planes once the dislocations have exited the crystal, there is no reason for the planes to be further 



displaced in the direction depicted.  This would apply the same whether one was considering a 
discrete prismatic loop or a large loop that had formed from the coalescence of other loops in the 
same plane. 
 
If one considers a shear stress of 50 MPa (say), and a shear modulus of 35 GPa, the elastic strain 
is < th of a degree, an imperceptible distortion relative to what is shown.  The elastic distortion 
from the applied stress would put the equilibrium position of the planes (which would be a shear 
of < th of a degree) in the final two frames moving inwards toward the elastic equilibrium 
position dictated by the imposed shear stress and not in the opposite direction as depicted.  Apart 
from the unphysical nature of the proposed mechanism, any dislocation movement in a 
polycrystalline specimen would be against constraints from neighbouring grains.  Even though 
the material in neighbouring grains will be distorted by similar small elastic strains subject to an 
applied stress (depending on shear modulus), the elastic displacement is small and insufficient to 
cause the plastic distortion that has been envisaged in (f). 
 

 
Figure S5.  Depiction of creep distortion of a prismatic loop according to the rule described in 
[5].  The red arrows denote the direction one would expect the planes to relax given that the 

elastic shear strain is too small to maintain the distortion of the planes after the dislocations had 
exited the crystal as originally depicted. Reprinted/adapted with permission from [5]. 2019, 

Elsevier. 
 
If the prismatic loops were to move, it would be by translation within their glide cylinders.  
These arguments are moot to some extent because there is no experimental evidence to support 



the notion that dislocation loops evolve to form a network and then produce strain that is in 
addition to that from the climb of the prismatic loops themselves.  As stated by Woo et al. [6], 
“At the temperatures and applied stresses at which irradiation creep is important it may not even 
be possible to activate these [slip] systems. This could explain why the creep rates of annealed 
zirconium alloys are always low [7, 8] even though a high dislocation density in the form of a-
type dislocation loops evolves during irradiation.” 
 

The model of pressure tube of pressure tube deformation published by Christodoulou et al. [9, 
10] is primarily based on dislocation slip of network dislocation.  The model was built on the 
premise that the biggest driver for irradiation creep in Zr-2.5Nb pressure tubes was SICG taking 
into account grain interaction stresses in a polycrystalline solid.  The model depended on 
establishing a single crystal response to any stress and from there the polycrystal response could 
be calculated by combining the creep responses of the individual grains.  A key element was the 
fact that the single crystal response was anisotropic and therefore the polycrystal response would 
also be anisotropic unless the grains were randomly oriented.  The single crystal response was 
described assuming that climb and glide was the strain producing mechanism but it is was also 
stated that the model could be generalised to any strain producing mechanism [6, 11].  The 
polycrystal response could be modelled by combining the strains from individual grains in a 
polycrystalline model.      

Without considering grain interactions, if each grain is allowed to deform according to the 
activated slip systems and, when the resulting strain is added to the total, the resulting 
summation would give a so-called lower-bound result.  However, the model described by 
Christodoulou et al. [9, 10] adopted the more realistic approach by allowing for grain-to-grain 
incompatibility.  This was achieved by allowing each grain to deform equally in a so-called 
upper-bound treatment where the stress is allowed to vary from grain-to-grain.   With the 
additional constraint that some grains may deform differently than others, the self consistent 
model was developed to take grain interaction stresses into account as illustrated schematically 
in Figure S6.    

 



 
Figure S6.  Determination of creep strain in a polycrystalline aggregate.  The single crystal 
coordinates are represented by numerical suffixes and the component (bulk) coordinates are 

represented by alphabetical suffixes. 
 

The first step in constructing polycrystalline model of this type is to describe the single crystal 
response during irradiation.  The polycrystalline behaviour can then be calculated by resolving 
the combined strains from each grain according to their volume fraction and summing the result 
considering the grain interactions, as shown in Figure S6.  Considering slip in a single grain 
Hutchinson [12] showed that one must first calculate the shear stress on the active slip plane, 
determine a strain rate for the simple shear and then transform this strain onto the crystal 
coordinate system.  Assuming that the stress exponent for irradiation creep is one, the strain rate 
can be determined through a creep compliance tensor.   Representing tensors by bold text, the 
single crystal deformation can be represented by [12], 

    𝛆𝐢𝐣𝐜 = 𝐤𝐢𝐣𝐤𝐥𝐜 𝛔𝐤𝐥𝐜      (i, j, k and l = 1, 2, 3)   (1)                                

where 𝛆𝐢𝐣𝐜  is the 2nd rank strain rate tensor in a single crystal; 𝐤𝐢𝐣𝐤𝐥𝐜  is the 4th rank single crystal creep compliance; 𝛔𝐤𝐥𝐜  is the 2nd rank stress tensor in a single crystal. 



At the single crystal level the components of strain can be assigned to different slip systems 
using the standard Schmid tensor formula.  For a stress exponent =1, [11, 12], the creep 
compliance is, 

      𝒌𝒊𝒋𝒌𝒍𝒄 = ∑ 𝛾 𝒎𝒊𝒋𝒔 𝒎𝒌𝒍𝒔
     (2)  

where 𝛾  is a reference (measured or calculated) shear strain of a slip system, s; 𝜏  is the critical 
resolved shear stress (measured or calculated) of the slip system, s; and 𝒎𝒔 is the 2nd rank 
Schmid tensor characterizing the slip system in single crystal coordinates.  Substituting equation 
(2) into equation (1), the term 𝑚 𝜎  is the inner product of the Schmid and stress tensors 
referred to the same coordinate system, i.e. it is the sum of the product of the terms in 𝑚  with 
the terms in 𝜎  having the same indices [12]).  The inner product is a shorthand formula taking 
into account the tensor transformations needed to extract the shear stress on the slip system for a 
given stress state 𝜎  in the crystal coordinate system.  The shear stress on the slip system of 
interest then represents a scaling factor which, combined with the reference strain rate (𝛾 ) and 
shear stress (𝜏 ) shown in Equation (2), and applied to the Schmid tensor (𝑚 ), which 
transforms the shear strain rate on the slip system back into the crystal coordinates, gives the 
strain rate tensor in crystal coordinates from slip on the slip system, s.  The fourth rank 
compliance tensor (𝐤𝐢𝐣𝐤𝐥𝐜 ) is then defined by the sum of the outer products (𝒎𝒊𝒋𝒔 𝒎𝒌𝒍𝒔 ) as described 
in [12].  

The relationships between the coordinate systems applicable to individual slip planes and the 
single crystal coordinate systems for the three crystal structures that apply to most reactor core 
materials are illustrated in Figure S7.  Also shown is the Schmid tensor for slip on {111} in an 
FCC crystal using the notation described by Kelly and Knowles [13] for a symmetric shear strain 
tensor. 

 

 



 

Figure S7.  Relationship between the shear strain tensor for a given slip plane and the 
corresponding strain tensor (the Schmid tensor) in the single crystal coordinate system.  

Kelly and Knowles showed how simple shears can be represented as a symmetric shear plus a 
rotation.  The benefit of representing the shears as a symmetric tensor Figure S7) is that 
subsequent transformations give a symmetric tensor also, recognising that the rotations must be 
discarded and therefore represent an unphysical situation unless, of course, there was some real 
grain boundary rotation.  By manipulating the tensors in such a way Kelly and Knowles could 
introduce a form for the Schmid tensor that can be applied in a general way to all slip systems 
using the Burgers’ vector (b) and slip plane normal (n) while maintaining a symmetric form of 
the strain tensor in each case.  The notation used by Kelly and Knowles shown in Figure S7 
gives the same (Schmid) tensor as one would get from a formal tensor transformation of the 
symmetric shear tensor obtained by adding a rotation to the simple shear.  Of course, if one is 
rigorous and applies the transformation to the simple shear the strain tensor in the single crystal 
coordinate system will be asymmetric.  An example of the derivation of the Schmid tensor for 
one of the 12 slip systems in Zr (c+a slip on a pyramidal plane) is shown in Figure S8.   



 

Figure S8.  Derivation of the Schmid tensor for c+a slip on one slip system in Zr. 

Woo’s treatment of irradiation creep, [6, 11, 14], does not involve a rigorous derivation of the 
Schmid tensors as described by Groves and Kelly [15], but is similar in that it is constructed in 
such a way that the total deformation is comprised of orthogonal basis tensors that can be 
combined to describe any single crystal strain.  The basis tensors employed by Woo are 
surrogates for the five independent slip systems necessary to describe an arbitrary volume-
conserving deformation as outlined in [13].  It is important to emphasise that Woo’s analysis 
does not apply to real independent slip systems, rather it is a mathematical construct. 
 
In Woo’s treatment the single crystal creep compliance tensor is obtained from the sum of the 
compliances derived from six basis tensors (denoted by the superscript λ or α) that substitute for 
the Schmid tensors for individual active slip systems, each weighted by a factor determined from 
experimental data.  The basis tensors are described as if they were the result of shear strains that 
can be expected from a simple cubic but, in practice, are simply a means of assigning a strain to 
a stress having the same basis tensor.  The net effect is that each individual basis acts as a 
viscous fluid – i.e. the strain basis has the same tensor components as the stress basis giving a 
resultant strain that is, in itself, isotropic, i.e. the strain basis tensor is proportional to the stress 
basis tensor.  Anisotropy is introduced by weighting the strain response to each applied stress 
basis tensor.  The basis tensors described in [11, 16], bλ, are not the same as the Schmid tensors 
characterizing each slip system described in [13, 15].  Rather than using tensors that correspond 
with the true slip systems of the hexagonal close-packed crystal, Woo chose slip systems for a 
simple cubic crystal.  The hexagonal crystal has the same axes as the simple cubic basis but that 
is where any similarity ends.  In this way Woo was able to describe the deformation of the 
hexagonal crystal as though it deformed subject to five independent slip systems of a simple 
cubic.  In reality hexagonal close-packed crystals do not deform according to a simple cubic so 
the approximation employed by Woo cannot be considered rigorous.  One basis tensor in 
particular (b1) represents the slip on pyramidal planes but is symmetric about the c-axis and 
therefore presumably applies to equal slip on all 12 pyramidal slip systems.  To maintain 



integrity (because one cannot expect that all 12 slip systems are always equally excited) this 
strain basis (as with all other strain basis tensors) can only be excited by the same stress basis.  
But b1 is the only basis representing pyramidal slip [9-11, 17].  Woo states that b1 also represents 
irradiation growth [11].   
 
Although formulated and interpreted from a consideration of the strains arising from slip, Woo et 
al. point out that these basis tensors can be used to describe deformation by any mechanism [6, 
11, 16].  In fact, the same set of basis tensors were employed to model irradiation creep based on 
diffusional mass transport [16].  Although they represent the strains due to slip on each slip 
system transformed into the crystal coordinates, they can also be used as the orthonormal basis 
on which to partition the contributions to the total strain of the single crystal where the strain 
arises from the elasto-diffusion tensor [16, 17].  The basis tensors and their relationship to the 
deformation of a simple cubic are shown in Figure S9 together with schematics showing the 
main slip planes for two grain orientations in Zr-2.5Nb pressure tubing – the intended application 
for Woo’s analysis being a model for Zr-2.5Nb  pressure tube deformation [9, 10]. 
 

 

Figure S9.  Basis tensors based on a simple cube used to construct a single crystal compliance 
tensor to represent deformation by slip on in Zr (shown by the hexagonal prism). 

According to Woo et al., [11, 16], if one was to assign these basis tensors to slip, the Schmid 
tensors would represent slip on the planes shown in Figure S10.  



 

Figure S10.  Basis tensors based on a simple cube used to construct a single crystal compliance 
tensor to represent deformation by slip on in Zr (shown by the hexagonal prism). 

 

In Woo’s analysis [11], the single crystal compliance (Kc) is given by, 

     𝐊 = ∑ kα 𝐛ijα 𝐛klαα      (3)   

and the single crystal strain is then given by, 
 
                  𝛆𝐢𝐣𝐜 = ∑ 𝐤𝛂 𝐛𝐢𝐣𝛂 𝐛𝐤𝐥𝛂𝛂 𝛔𝛂𝐛𝐤𝐥𝛂     (4)  
 
where the stress tensor for each basis is,  
 
      𝛔𝛂 = 𝛔𝛂𝐛𝐤𝐥𝛂      (5) 
 
where 𝛔𝛂 and kα are eigenvalues for each basis derived for the applicable stress and 
microstructure [9].  As Woo states “kα, is the eigen creep compliance that causes the crystal to 
deform in the α th characteristic straining mode when subjected to a stress in the same 
characteristic mode”.  This is why the strains represented by the basis tensors, bλ, are only 
excited by stresses that have the same basis tensor.  Using this formalism Woo was able to 
construct a single crystal compliance tensor, 𝐊𝐢𝐣𝐤𝐥 𝐜 , from a linear combination of basis tensors 
using a set of factors for kα.  In this way the single crystal compliance is simply defined by three 
eigenvalue parameters k1, k2, and k3 that can be chosen to best represent the single crystal 
response of the material. 
 
The applicability of a compliance tensor constructed in this way depends of how well the choice 
of kα represents the true response of the material based on a rigorous Schmid tensor construction 
of the type described by Kelly and Knowles [13] and represented formally by Hutchinson [12].  
The reference for the proof of this analysis given by Christodoulou et al. [9] is “Woo, C. H., 
Causey, A. R. and Holt,R. A., invited paper in "Diffusion and Defect Data - Solid State Data", 
1990, in press” but does not appear to have been published.  For this reason, the efficacy of what 
Woo has done remains to be established.  Therefore, Woo’s model can at best be considered an 
approximation and at worst can be considered not applicable to the deformation it is intended to 
simulate. 
 



The reconciliation of a slip based model and a stress exponent of 1 is justified by the rate-
determining, slip-enabling, step coming from radiation-enhanced climb of dislocations over 
barriers [2, 5].  In the model described in [10] the irradiation creep deformation is assumed to be 
by slip only and is therefore dependent on dislocation structure and texture only; it is assumed 
that the grain structure does not affect the deformation anisotropy.  Such an approach would be 
an elegant and efficient way to describe the creep anisotropy, provided that the anisotropy is only 
dictated by the texture, i.e. dislocation slip, and provided one could conduct the right experiment 
to determine the single crystal creep compliance tensor.  The best way to determine whether the 
polycrystalline model is valid, i.e. that the single crystal compliance is accurate and the 
anisotropy is only dictated by texture, is to compare with experiment.  However, even that is 
difficult when the deformation model is comprised of different contributions other than 
irradiation creep for which one wants to derive the anisotropy factors (F, G and H) for the 
polycrystal [9, 10]. 

Whereas the creep compliance in any given direction for a given stress state can be deduced from 
the slope of the creep rate as a function of stress, for the model described by Holt [18] and 
Christodolou et al. [9, 10] both thermal creep and irradiation creep are active and one can only 
separate the two using another model.  The best that one can do is either subtract an estimate of 
thermal creep or assume that it is negligible, as in the case of irradiation creep experiments at 
low temperatures and high neutron fluxes [19].  With this caveat, the data on irradiation creep 
rate can then be used to establish a single crystal creep compliance in the context of the 
polycrystalline model described by Christodoulou et al., [10].  A validation of the creep 
anisotropy factors described in Christodoulou et al., has been presented by Causey et al., [20] 
and is reproduced in Figure S11(a).  It has been claimed that the model works well [18], however 
some of the key validation data cited [21], i.e. reference 17 in [20], and circled in Figure S11(a), 
cannot be verified from the information available in [21].  
 
The polycrystalline model outlined in [10] shows reasonable agreement with the OSIRIS data for 
a narrow range of textures corresponding to the OSIRIS creep capsules (the two data points at fT-
fR ~ 0.2), Figure S11(a), for which k1, k2 and k3 were chosen [9].  Although there is a clear 
indication that the creep anisotropy is affected by texture, it has been assumed that the anisotropy 
is dependent on the texture only [9, 10, 18].  This is largely based on the underlying assumption 
that the irradiation creep is dominated by dislocation slip.  We know from irradiation growth that 
grain structure changes the growth anisotropy [18], so it is hardly surprising that grain structure 
also affects the creep anisotropy [3].  For the pressure tube deformation equation, Christodoulou 
et al. [10] included the effect of grain size empirically through the inclusion of the K4(x) 
parameter, which is meant to capture variations in microstructure other than texture along the 
pressure tube length.  K4(x) also accounts for any variation in texture not adequately accounted 
for by the polycrystalline model.  The introduction of K4(x) renders the anisotropy factor C4(x) 
redundant, unless it can be shown that the empirical equation obtained for one orientation of the 
component (in this case the axial component) can be applied to other directions through the 
anisotropy factor C4(x), i.e. unless it can be shown that K4(x) is a magnitude effect and is the 
same for any orientation of the component.  There is no reason to assume that this is true. 
 
 



One problem with the data shown in Figure 11(a) is that one is mixing data for an irradiation (in 
NRU) where thermal creep is deemed to have a significant contribution to the strain with data for 
an irradiation (in OSIRIS) where the creep is deemed to be dominated by irradiation creep.  
Another problem is that the data were averaged for several creep capsules with slightly different 
textures and irradiated at different temperatures.  The data for individual tubes irradiated in 
OSIRIS [19] has been plotted together with more recent data from NRU [22] in Figure 11(b).  In 
the model of Christodoulou et al. [10] it was assumed that the anisotropy is independent of 
temperature, but later work from irradiation in NRU [22] has shown that this assumption is 
incorrect (also shown in Figure S11(b)). 
 
 

 
Figure S11.  (a) Comparison of measured and calculated (from texture) anisotropy ratios (axial 

strain rate/transverse strain rate) for internally pressurized tubes under irradiation creep 
conditions. The open square represents CANDU pressure tubes. fT and fR are the Kearns’ basal 
pole texture parameters [21].  Reprinted/adapted with permission from [18]. 2019, Elsevier; (b) 

Dependence of the ratio of biaxial in-reactor creep compliance in the transverse and axial 
directions of Zr-2.5Nb pressure tubing on the texture parameter, ft – fr [19, 22]. 

 
The main shortcomings of models that assume I-creep, where dislocation slip is the dominant 
deformation mechanism, are: (i) slip may not be the dominant mechanism; (ii) there is no 
provision for diffusional mass transport to contribute to the strain other than through enhancing 
climb of dislocations over obstacles.  If the irradiation creep was dominated by slip one would 
eventually expect to see two characteristics in the observed deformation behaviour: (i) the creep 
would eventually cease as the mobile dislocations are exhausted at grain boundaries or at large 
obstacles (large inclusions, precipitates or voids for example), and (ii) the total creep and the 
creep rate would be smaller in small-grained material as the dislocation travel shorter distances 
before running into boundaries.   In fact, neither of these characteristics are demonstrated by 
irradiated Zr-alloys at CANDU reactor operating temperatures.  In the absence of evidence for 
irradiation creep cessation in Zr-alloys, and given that diametral creep increases with decreasing 
grain size [3, 9, 10, 23], the evidence suggests that a mass transport mechanism is more 
applicable.   There are other reasons why there are shortcomings with slip-based models and this 



stems from the need to separate the strain arising directly from diffusional mass transport and the 
strain arising from slip. 

Although many of the cold-worked dislocations are locked in sessile junctions and do not appear 
to change during irradiation [2], some dislocations will be mobile and these could then 
potentially contribute to creep strain from slip.  However, post-irradiation annealing of Zr-2.5Nb 
pressure tubing irradiated to fluences of 8 x 1025 n.m-2 removes the radiation damage to reveal a 
microstructure that is close to the original cold-worked structure [24] indicating that little, if any, 
of the network dislocations have moved, otherwise there would be a visible reduction in 
dislocation density as the dislocations glide and annihilate at grain boundaries.  Based on the 
available evidence one can conclude that irradiation creep in Zr-2.5Nb pressure tubing is not 
dominated by dislocation slip, i.e. irradiation creep is not governed primarily by a climb-and-
glide type mechanism.  However, in the theoretical analysis of polycrystalline creep by Woo and 
So [16] the creep due to elasto-diffusion was determined to be an order of magnitude lower than 
creep by slip.  They concluded that either the slip-based polycrystalline model [9] was dominant, 
or the model parameters for diffusion were incorrect.  Grain boundaries were not included in 
their analysis, and it is hardly surprising that the amount of strain one can obtain from dislocation 
slip turned out to be more than the strain possible from dislocation climb, as they concluded. 
 
When grain boundaries are incorporated in a rate-theory model including a bias due to stress, it is 
relatively easy to show that one can account for irradiation creep by selecting appropriate bias 
parameters (equivalent to anisotropy factors).  Even the parameters in the slip-based models at 
the single crystal level are adjusted so that the polycrystalline output fits the experimental data 
[9].  For creep capsules and pressure tubing all of the creep giving a c-axis strain is attributed to 
pyramidal slip [9].  However, there is no evidence for dislocation mobility or that there are even 
sufficient mobile c-component dislocations to generate the necessary strain to match the data.  It 
should be re-emphasised that prismatic dislocation loops can not provide a source for mobile 
dislocations that can contribute to creep strain by slip even if they have evolved by climb into a 
coarse network [5, 25, 26]; the strain resolved in the direction of the Burgers’ vector of a 
dislocation loop is the same whether or not it has moved along its glide cylinder or even if it tilts. 
 

 
S3 Modelling Irradiation Creep using Rate Theory 
 
During irradiation equal numbers of interstitial and vacancy point defects are produced by 
atomic displacements by neutrons.  These irradiation-induced point defects have steady-state 
concentrations that are many orders of magnitude higher than the thermally-induced point 
defects at temperatures up to about 500 °C.  The point defect concentrations can be expressed as 
numbers of defects per unit volume, but it is often easier (and more elegant) to express the 
concentrations as atom fractions.  Therefore, instead of N point defects per unit volume one 
expresses the fractional concentration as N∙Ω, where Ω is the atomic volume and   is the number 
of atoms per unit volume.  The number of atomic displacements is expressed similarly as 
displacements per atom (dpa).  Considering the strain arising from the annihilation of these point 
defects at a given sink, one can envisage an interstitial as adding a positive strain in the direction 
of either the Burgers vector for a dislocation, or the surface normal for a surface such as a cavity 
or grain boundary.  Likewise, a vacancy annihilating at a given sink produces an opposite strain 



to the interstitial at the sink.  For a cavity/void the strain is only manifested macroscopically by 
the atoms that are not in the cavity and is thus always positive.   
 
The strain rate at a surface or a dislocation is equal to the flux of point defects expressed as an 
atom fraction.  Consider a unit cube with N atoms along each edge.  The total number of atoms is 
N3.  If 1% of the atoms (expressed as an atom fraction) are displaced and migrate to one of the 
surfaces, then the number of displaced atoms arriving at that surface is 0.01∙ N3.  The number of 
atom sites on the surface is N2 and the fractional coverage is then 0.01∙ N3/ N2 = 0.01∙N.  But the 
cube is N atoms in length perpendicular to each face.  Therefore, the strain is 0.01∙N/N = 0.1, i.e. 
the strain from a net flux of point defects expressed as an atom fraction of 0.01 or 1% is therefore 
1%.  Creep strains from diffusional mass transport are thus calculated by computing the net flux 
(balance of interstitials and vacancies) to each sink responsible for the strain in each direction. 
 
S3.1 Rate Equations 

For freely migrating point defects, the diffusion to different sinks can be described by a set of 
simultaneous rate equations, 

    𝜙 − ∑ 𝑘  𝐷 𝐶 −  𝑎𝐶 𝐶 = 0    (6) 

    𝜙 − ∑ 𝑘  𝐷 𝐶 −  𝑎𝐶 𝐶 = 0   (7) 

where (𝜙) is the freely-migrating point defect generation rate, (𝑘 , ) is the sink strength summed 
over all sinks (s) and has units of m-2,  (𝐷 , ) is the diffusion coefficient and has units of m2.s-1, 
(𝐶 , ) is the fractional point defect concentration in the diffusive medium and (𝑎) is a 
recombination rate parameter that is proportional to the interstitial diffusion coefficient, 𝐷  [27, 
28].  The point defects are designated (i) for interstitial atoms, and (v) for vacancies.  The rate of 
flow of point defects to a given sink is determined by the concentration difference between the 
steady-state concentration in the medium (mid-way between sinks), (𝐶 ) and the concentration 
at the sink surface (𝐶 ).  The thermal emission term (𝐶 ) is relatively insignificant for most 
structural materials at power reactor operating temperatures and only becomes important at high 
temperatures, and then only for vacancies, when the equilibrium vacancy concentration becomes 
comparable with the steady-state concentration due to neutron displacement damage.   

Following Heald and Speight [28] the effect of recombination is given from the solution of the 
two simultaneous equations (1) and (2), 

      𝑘∝ 𝐷∝𝐶∝ = 𝜙 𝐹(𝜂)   (8) 

      𝐹(𝜂) =  (1 + 𝜂) . − 1   (9)  

      𝜂 =          (10)  

As radiation damage produces equal quantities of interstitial (i) and vacancy (v) point defects 
(denoted by the subscript α), the net atom fraction flux of each type of point defect to all sinks is 
equal to the generation rate in dpa, thus giving a mass balance for the displacement damage.  



This mass balance only applies to vacancies and interstitials created by direct atomic  
displacement. Other point defects such as He or H created by transmutation reactions are added 
to the system and the only mass balance to consider is the one balancing production with 
annihilation at sinks.  In such cases annihilation often changes the nature of the sink (e.g. 
increasing the pressure inside a cavity).  The total number of vacancy and interstitial point 
defects available to diffuse to the point defect sinks after mutual recombination is given by 𝜙 𝐹(𝜂).  The mutual recombination, represented by 𝐹(𝜂),  is a function of the sink strengths 
(𝑘 ), the freely migrating point defect production rate (𝜙), which is the atom fraction of 
displaced atoms that survive spontaneous recombination or clustering within a collision cascade 
[27], the diffusion coefficients (𝐷 ) and mutual recombination parameter (𝑎).  Those point 
defects of opposite sign that migrate to the same sink result in no net mass transfer.  The net 
accumulation of one sign or the other causes a change in the size of the sink (for clusters) and 
can alter the properties of the sink, e.g. pinning of screw dislocations by helical climb or jog 
formation. 

 The net flux of point defects to a sink of a given type (s), or orientation, can then be calculated 
as, 

 𝐽 =  (𝑘 )  𝐷 𝐶 − 𝐶 −  (𝑘 )   𝐷 (𝐶 − 𝐶 )    (11) 

where the point defect thermal emission term is now added.  Thermal emission is only important 
at high temperatures.  For a given displacement damage rate as the temperature rises the thermal 
emission terms will be increasingly dominant.  Eventually the effect of irradiation will be 
insignificant compared to the effect of temperature in producing point defects. 

The sink strength (k) is a measure of the probability that a point defect will annihilate at a given 
sink.  This will be determined by the density and orientation of said sinks and, in the case of 
dislocations, the elastic interaction between the strain field around the sink and the point defects 
[28].  As we are dealing with balance equations it is only necessary to be able to compute the 
relative sink strengths for the different sinks.  To do so, it is helpful to consider what the sink 
strength represents physically.  If L is the average distance a point defect moves before it 
encounters a sink, according to random-walk theory [27] the average distance (L) that a point 
defect migrates in n randomly oriented jumps with a jump distance (r) is given by, 

 𝐿    =   𝑛 .  𝑟       (12) 

The relationship between the atomic jump frequency (ω) of a given defect, the jump distance (r), 
and the diffusion coefficient (D) is, 

 𝐷 =   𝛼 .  𝜔 .  𝑟      (13) 

The 𝛼 is a geometric factor (assumed = 1 for a vacancy diffusing in an fcc lattice [27]).  The rate 
at which a vacancy point defect will move a distance L is then simply the ratio of the number of 
jumps per second (ω) and the average number of jumps (n) to move a distance L, i.e. . 

The diffusion length (L) is inversely proportional to the sink density (ρ) and the rate of 
annihilation of point defects at a given sink, for which the diffusion length L applies, is 



proportional to  or Dρ, where ρ is the sink density, which for dislocations is in units of m/m3.  
The rate at which point defects annihilate at sinks is then given by the ratio of the mean squared 
distance travelled per second (proportional to D) and the square of the mean distance travelled to 
reach a sink (L2) multiplied by the fractional concentration of the point defect in question (C), 

 𝑅𝑎𝑡𝑒 ∝   ∙        (14) 

The value of L is inversely proportional to the sink density but is not simply the distance 
between sinks.  There are other factors, for example strain field interactions, that affect the 
probability that the point defect reacts with a given sink.  For dislocations the rate can be 
expressed as, 

   𝑅𝑎𝑡𝑒 =   𝑧 ∙ 𝜌 ∙ 𝐷 ∙ 𝐶      (15) 

Olander [27] considers z to be a parameter equal to the number of trapping sites surrounding the 
dislocation where the point defect is spontaneously captured and is similar to the trapping 
cylinder calculated by Heald and Speight [28].  For most practical purposes there are only three 
types of sinks to consider: (i) dislocations, (ii) cavities, and (iii) grain boundaries.  The derivation 
of the sink strengths assuming diffusion-limited kinetics is described for each. 

 
S3.1.1 Sink Strength for Dislocations 
 
By solving diffusion equations with cylindrical geometry, Heald and Speight [28] showed that 
the rate constant for point defect interactions with dislocations is 

 𝑘 , =    =  𝑧 , 𝜌  (16) 

where 𝜌  is the dislocation density of a given type of dislocation, and 

 𝑧 , =   ,  (17) 

where R is the mean distance between dislocations and 𝑙 ,  is determined from the elastic strain 
field interactions between the dislocation and respective point defects.  One can think of 𝑙 ,  as 
the radius of an effective trapping cylinder [28]. 
 
S3.1.2 Sink Strength for Cavities 
By solving diffusion equations with spherical geometry, Heald and Speight [28] also calculated 
the sink strengths for cavities. Cavities are considered “neutral” sinks because, unless highly 
pressurized, the strain field is not large compared to the cores of dislocations.  Accordingly, the 
same reaction rate expression is applicable for both interstitials and vacancies. 

 𝑘 , =   =  4𝜋𝑟 𝜌  (18) 

where 𝑟  is the cavity radius and 𝜌  is the cavity number density (number per cubic metre). 



When cavities are pressurized, it is assumed that the main influence of the pressurization is in the 
absorption and emission of vacancies from the cavity surface.  Apart from the free energy of the 
vacancy itself, the free energy change of the cavity caused by the absorption of one vacancy is 
given by -(𝑝 − ∙ )Ω, where p is the pressure in the cavity, γ is the surface energy of the cavity, r 
is the cavity radius and Ω is the atomic volume [29]. 
 
S3.1.3 Sink Strength for Grain Boundaries 
Grain boundaries are a special case.  Although the high densities of cavities and dislocations 
within the matrix can be assigned average sink strengths and the partitioning of point defects 
between those sinks can be calculated assuming no other interactions, the flux of point defects to 
the grain boundaries surrounding the sinks within the grain is determined by the mean steady-
state concentration in the interior and the concentration gradient at the boundary. As the steady-
state point defect concentration in the matrix is a function of the total sink density within the 
grain, the grain boundary sink strength is not only dependent on the grain boundary density 
(grain size) but also on the density of other sinks within the grain interior. 
The sink strengths of grain boundaries have been calculated assuming spherical geometry 
(treating the grain as a sphere of diameter d), while considering the internal sinks within the 
grains [30, 31].  The diffusion of point defects to the grain boundary is determined from the 
steady-state point defect concentration within the grain interior and the concentration gradient at 
the boundary, assuming that the boundary itself is a perfect sink.  As with the cavities, the same 
reaction rate expression is applicable for both interstitials and vacancies.  If the average diffusion 
length averaged over all sinks is λ (and the average sink strength, 𝑘 = ) then the sink strength 
for the grain boundaries are given by [31], 

 𝑘 , =    , or , when   (𝑧 , 𝜌 +  4𝜋𝑟 𝜌 ) . > 1/𝑑 (14) 

when the diffusion length for the interior is very much smaller than the grain boundary 
dimensions.  Alternatively, 

 𝑘 , =    , or , when   (𝑧 , 𝜌 +  4𝜋𝑟 𝜌 ) . < 1/𝑑 (15) 

when the diffusion length for the interior is very much larger than the grain boundary 
dimensions. 
 
S3.2 Balance Equations 
 
The physics behind the sink strengths that dictate the rate at which a given point defect will 
migrate to and be absorbed by a given sink can be simplified if one considers that one is aiming 
to determine the relative probabilities of absorption for each sink.  One can then create a set of 
balance equations for the flow of point defects created by irradiation to all of the sinks based on 
relative probabilities.  In this respect the rate of point defect production is important rather than 
the speed at which the defects migrate to the sinks because the production rate is typically slower 
than the rate at which the point defects get to a sink.  At sufficiently high temperatures in power 
reactors, 250 °C - 350 °C for example, one can consider that a point defect migrates to a sink 



almost instantaneously compared to the time it takes for another point defect to be created and 
migrate to the same sink.  This is the so-called sink-dominated regime.  At high temperatures (> 
500 °C for example) the thermal equilibrium vacancy concentration is comparable to the steady-
state concentration of point defects produced by irradiation and thermal processes dominate, 
except when He is generated [32].  At low temperatures the steady state concentration of the 
slower-moving vacancies (those with a high migration energy) increases together with the rate of 
mutual recombination with interstitial point defects.  The temperature regime where 
recombination is important is called the recombination-dominated regime and is typically < 200 
°C for austenitic alloys and < 100 °C for Zr-alloys, the latter having a lower vacancy migration 
energy [2].   In the sink-dominated regime any temperature dependence in a rate theory 
calculation is the result of variations in the sink densities with temperature.  For all practical 
purposes mutual recombination can be ignored in the sink-dominated regime.  One can also 
formulate balance equations by applying suitable bias factors for different sinks that dictate the 
relative probability of one type of defect being absorbed compared to another.    
 
For a given range of stresses, temperatures and neutron fluxes/fluences, one can assume that 
irradiation creep to a large extent is governed by the same processes that control irradiation 
growth, i.e. diffusional mass transport.  It is reasonable then to consider that irradiation growth is 
an intrinsic response of the material to neutron irradiation that is represented by a suitable bias 
factor for each sink.  The bias factor may reflect the tendency for interstitials to be absorbed at 
dislocations [30] or the probability that a boundary absorbs different point defects according to 
its orientation in an anisotropic diffusive medium [17].  These intrinsic bias factors are modified 
by the imposition of a stress.  In the context of a simple mass transport model, involving 
dislocations only, the effect of stress can be included as a bias factor that is in addition to the 
interstitial bias factor.  As an example, Figure S12 is an idealised schematic showing a simple 
model for large-grained cold-worked Zircaloy-2 fuel cladding subject to a uniaxial stress during 
irradiation.  For simplicity the strain from a-type dislocations and dislocation loops has been 
resolved into two orthogonal directions in the basal plane.  The creep rate in the direction of the 
uniaxial tensile stress (a1) is determined by calculating the interstitial and vacancy flux to sinks 
aligned to give strain in the direction a1, as illustrated.  This simple example illustrates that rate 
theory balance equations are simply constructed so that the point defect generation rate is 
balanced by the point defect fluxes to the different sinks.  If the sum of the interstitial fluxes to 
all sinks is given by G, the sum of the vacancy fluxes to all sinks is -G and thus the total flux to 
all sinks is zero.  One can extract the flux (expressed as a strain rate) to a given sink type.  In this 
example the flux to sinks giving strain in the direction a1 is shown in the 3-D plot.  The strain is a 
function of all the sink strengths and the locus of the maximum strain is given by the peak in the 
3-D plot. 
 



 

Figure S12.  Schematic and rate-theory output showing irradiation growth model results for the 
longitudinal direction of a large grained Zircaloy-2 as a function of the a (𝜌 ) and c (𝜌 ) 

dislocation densities (sink strengths).  The interstitial bias factor for a-type dislocations is b.  The 
stress bias factor is given by s.  The c-component dislocations (loops) are assumed to be neutral.   

As stated previously the strain may arise directly from the point defects themselves when they 
annihilate at an oriented sink or may involve the activation of climb and glide.  Without a direct 
measure of the effect of stress on point defect diffusion one has to decide which mechanism 
dominates from empirical data.  It has been shown that for pressure tubing at low stresses and 
temperatures mass transport is the most likely mechanism simply because creep from SICG 
cannot be reconciled with all the available evidence.  Dislocation slip is important at low 
fluences, either during primary creep or at low neutron fluxes when the contribution from mass 
transport is small.  Dislocation slip also appears to be important when the radiation damage 
density is low and there is increased thermal activation of slip at high irradiation temperatures 
[22].  Of course, dislocation slip will also dominate at stresses high enough that yielding occurs, 
albeit at a higher stress than for unirradiated material.  When considering irradiation creep at 
moderate reactor operating temperatures (250 °C – 350 °C) and stresses (< 150 MPa), one must 
consider that the mechanism is dominated by diffusional mass transport directly and not just by 
enabling glide.  In this context one can envisage the irradiation creep of Zr-2.5Nb pressure 
tubing to be an extrinsic effect, i.e. a modification of the intrinsic irradiation growth by the 
applied stress. 
 
Even when the creep can be explained by dislocation slip, mass transport is still a controlling 
factor and may be considered rate-determining given that pre-irradiated material exhibits low 



out-reactor creep rates compared with unirradiated material and compared to irradiated material 
in reactor, provided the neutron flux is high enough [22].    The creep rate of irradiated material 
only exceeds that of an out-reactor test once the neutron flux (displacement damage rate) is 
sufficiently high that the creep is dependent on either climb and glide or simple mass transport.  
The key to understanding irradiation creep is to know the state of the material microstructure (as 
fabricated and during irradiation).  One can then decide which creep mechanism likely applies 
and assess the behaviour accordingly.  For Zr-2.5Nb pressure tubing at nominal CANDU reactor 
operating conditions one can conclude that diffusional mass transport involving annihilation of 
point defects at grain boundaries is the most likely mechanism for irradiation creep.  Using rate 
theory one can explore the effect of changes in an idealised grain structure to tailor the response 
to give the dimensional changes that are desired, for example lower elongation or lower 
diametral strain [3].  Figure S13 shows calculated strain rates for radial, longitudinal and 
transverse directions in a pressure tube as a function of axial location for nominal fluxes, stresses 
and temperatures applicable to pressure tubes in a CANDU reactor [3].  The tube is assumed to 
have a fixed transverse basal texture as depicted with a stress bias (s) comparable with the 
dislocation bias for dislocations (b).  Results for two grain shapes are shown.  The model shows 
that a tube that has grains with short dimensions in the transverse direction will exhibit low axial 
but high diametral creep.  For Zr-2.5Nb pressure tubes the grains have a large variety of shapes 
and orientations and therefore models need to be developed that account for these variations [2]. 

 

Figure S13.  Schematic illustrating the relationship between grain dimensions and calculated 
strains for a fixed grain orientation and dislocation structure using rate-theory applied to Zr-

2.5Nb pressure tubing. The grain boundaries compete with network dislocations and dislocation 
loops as sinks for point defects and the resultant strain anisotropy is therefore dictated by the size 

and shape of the grains [3]. 
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