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Abstract: In this paper, a total of 4770 effective documents about metamaterial absorbers were re-
trieved from the Web of Science Core Collection database. We scientifically analyzed the co-occurrence
network of co-citation analysis by author, country/region, institutional, document, keywords co-
occurrence, and the timeline of the clusters in the field of metamaterial absorber. Landy N. I.’s, with
his cooperator et al., first experiment demonstrated a perfect metamaterial absorber microwave to ab-
sorb all incidents of radiation. From then on, a single-band absorber, dual-band absorber, triple-band
absorber, multi-band absorber and broad-band absorber have been proposed and investigated widely.
By integrating graphene and vanadium dioxide to the metamaterial absorber, the frequency-agile
functionality can be realized. Tunable absorption will be very important in the future, especially
metamaterial absorbers based on all-silicon. This paper provides a new research method to study
and evaluate the performance of metamaterial absorbers. It can also help new researchers in the field
of metamaterial absorbers to achieve the development of research content and to understand the
recent progress.

Keywords: metamaterial; metamaterial absorber; absorption; Tunable absorption; research hotspot;
bibliometric

1. Introduction

Metamaterial is a kind of artificially constructed material that possesses extraordinary
physical properties compared with natural materials [1–6]. The novel properties of meta-
material are mainly attributed to the structural design, which can break the limits of some
apparent natural laws [7,8]. The response of metamaterial can be independently controlled
by tailoring the element size and shape [9,10]. Recently, the two-dimensional equivalent
of metamaterials, metasurfaces, possess a smaller thickness and are very flexible in real
applications [11–13]. More recently, using coding metamaterials to control electromagnetic
waves has been reported instead of conventional metamaterials [14,15]. In addition, the
concept of “programmable metamaterials” and “digital metamaterials” has been proposed
to obtain different functionalities [16,17]. Many different kinds of metamaterial absorbers
have been developed in the design, fabrication and measurement of microwave to optical
frequencies due to their designable and controllable material parameters [18]. Most of
these designs are based on strong electric and magnetic resonances to absorb incident
electric fields and incident magnetic fields. By adjusting the structural sizes of metamaterial
absorbers, it can achieve the impedance-match of the free space in order to realize nearly
perfect absorption [19]. The metamaterial absorbers have many uses, such as radar cross
section reduction and imaging [20–22]. One of the most widespread uses is for wireless
communication [23–25]. It has attracted a lot of interest in this field since the first microwave
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metamaterial absorber fabricated by Landy N. I. in the year 2008 [26]. Metamaterial ab-
sorbers have many practical applications, such as sensing, detection, imaging, selective
thermal emitters and so on [27]. Only a few metamaterial absorbers (with conventional
substrate and copper patch) have been proposed that are designed at some targeted fre-
quencies for real world application. Some metamaterial absorbers have been proposed with
a rotational symmetric patch structure to enable cross-polarization insensitivity, along with
the conventional co-polarization absorption of the incident waves at resonance frequen-
cies [28]. Along with its many other applications, SAR reduction from the next generation
mobile phones is a recent application of frequency-targeted metamaterial absorbers [29].

CiteSpace is an information visualization software developed gradually under the
background of scientometrics and data visualization, which has been widely used in sci-
ence, information and bibliometric, psychology, computing and various other fields [30,31].
CiteSpace is a scientific knowledge mapping tool used to analyze the co-occurrence network
of the co-citation analysis of author, country/region, institutional, document, keywords co-
occurrence in the field, as well as to find the subject hotspots and research frontiers [32–35].
In order to quantitatively analyze and accurately understand the focus of scientific re-
search, we retrieved a total of 4470 effective documents about metamaterial absorbers
from the Web of Science Core Collection database. In addition, we used this scientific
knowledge mapping tool, the CiteSpace software, to analyze these documents, which can
provide a more scientific bibliometric analysis method and grasp the evolution route of
metamaterial absorbers.

In this paper, we use the CiteSpace software to analyze metamaterial absorbers. Firstly,
we retrieved the literature documents from the Web of Science Core Collection database.
Secondly, we analyzed the number of published papers each year and the distribution
of Journal papers. We performed a cooperative analysis of the country/regions in CiteS-
pace in order to find the degree of the country/region’s contribution to the research in
metamaterial absorbers. Thirdly, we calculated the author collaboration network map
of metamaterial absorbers in order to determine the contribution of scholars. Lastly, we
studied the keyword co-occurrence network of metamaterial absorbers and included some
meaningful information through the analysis of the articles about metamaterials.

2. Data Collection and Method

The literature documents selected for analysis in this article were retrieved from the
Web of Science Core Collection database (This database platform is from the library of
Tianjin University, Tianjin, China) using an advanced search strategy in order to ensure the
accuracy of the original data. The key topic for retrieval is “Metamaterial absorber”, and
the search criteria is: (1) timespan: 2008–2022; (2) language: English; (3) the document type:
Article; (4) index: Science Citation Index Expanded (SCI-expanded, This database platform
is from the library of Tianjin University, Tianjin, China). Based on the above retrieval
method, a total of 4470 effective documents were retrieved from the Web of Science Core
Collection database and the retrieval bibliography information were saved and output
in plain text format. It includes the title, authors, institutions, keywords, abstract, date,
citation and other information in the document.

In this paper, CiteSpace 6.1.R6 is selected for the quantitative analysis of the meta-
material absorbers. It can provide a more scientific bibliometric analysis method and
grasp the evolution route and future tendency. It can also help the researcher obtain the
development of the research content and understand the recent progress. We performed
the CiteSpace search and obtained a knowledge graph. According to the size of the font,
we clearly demonstrate the co-occurrence frequency of the analytic items, such as author,
country/region, reference and so on.
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3. Statistical Analysis Results of Metamaterial Absorber
3.1. Analysis on the Number of Published Papers of Metamaterial Absorber

The number of papers about metamaterial absorbers published each year is shown
in Figure 1, which reflects the rising attention to metamaterial absorber to some extent.
N.I. Landy published the first article, entitled “Perfect Metamaterial Absorber”, in 2008.
After that, the number of papers published regarding metamaterial absorbers was elevated
from five in 2008 to 678 in 2022. The metamaterial absorber has shown a positive and rapid
development trend. It can be clearly seen from Figure 1 that the applied research about
metamaterial absorbers can be divided into three stages. The first stage is between 2008 and
2011, when research on metamaterial absorbers was in a slow increase stage and there were
fewer relevant research papers per year in this period. We can clearly see that the growth
rate of metamaterial absorber research is slow. Metamaterial absorbers received more
and more attention between 2012 and 2015, which can be regarded as the next stage. The
published documents steadily increased in number compared to the first stage. The third
stage was between 2016 and 2022, the volume of publications continued to grow during this
period. In this stage, the number of articles (3653) accounts for 81.7% of the total of articles,
which shows a rapid growth trend. The published articles of metamaterial absorbers tend
to be stable in this stage. The number of published articles about metamaterial absorbers in
2022 (678) was about seven times that in 2012 (99). From the volume of published articles,
we can conclude that an increasing number of experts and researchers will pay attention to
the metamaterial absorber from now on.
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3.2. Country and Institutional Analysis of Metamaterial Absorber

We performed a cooperative analysis of the countries in the CiteSpace as shown in
Figure 2. This graph can help us understand the distribution of research power in this field.
A node represents a country/region. There are 79 nodes and 416 lines in the cooperation
network of countries. The larger (fewer) connections indicate the larger (fewer) cooperation
between countries in the field of metamaterial absorbers. We can see the font of China is
the largest of all the countries. It shows that China has ranked first and has published the
largest number of documents.
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In Table 1, we list the top ten high-frequency countries in the research of metamaterial
absorbers. It can be seen from Table 1 that China has become the main research country
in the research field of metamaterial absorbers. China published 2702 articles, which
accounted for 60.45% of the total data collected and was the most significant impact country
in the field of metamaterial absorbers. The top four countries ranked by centrality were
China (0.29), America (0.18), England (0.16) and Turkey (0.11). America ranked second,
with a total of 468 articles; its centrality was also quite high, with 0.18. In this area, the
cooperation relationship between China and the other countries was strong, which reflected
the strong international influence of China in the research of metamaterial absorbers with
its large number of publications.

Table 1. High-frequency country in the research area of metamaterial absorber.

No. Country Frequency Centrality

1 China 2702 0.29

2 America 468 0.18

3 India 321 0.09

4 South Korea 228 0.01

5 Turkey 188 0.11

6 Iran 183 0.07

7 Malaysia 98 0.05

8 Vietnam 95 0.01

9 England 91 0.16

10 Japan 87 0.03

Figure 3 shows the academic collaborations between different institutions; a larger
font in the figure indicates that more articles were published by the research institution. We
can see from the figure that the institutions in China are far ahead in terms of collaboration.
However, the node connection is weak among the institutions. Table 2 lists the top ten
most productive institutions by count and centrality in the research area of metamaterial
absorbers. The Chinese Academy of Sciences ranks first, with 171 articles, followed by the
University of Electronical Science and Technology of China with 112 articles and Southeast
University with 105 articles. It can be seen that the top ten institutions are all Chinese. It is
clear that the Chinese scientific institutions have made outstanding contributions in the
field of metamaterial absorber research. Moreover, the centrality of Hangzhou University
of Science and Technology reaches 0.22, indicating that the research results are worthy of
reference by other scholars.
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Table 2. Top ten most productive institutions in the research of metamaterial absorber.

No. Institution Count Centrality

1 Chinese Acad Sci 241 0.23

2 Univ Elect Sci and Technol China 136 0.07

3 Southeast Univ 134 0.15

4 Huazhong Univ Sci and Technol 115 0.07

5 Air Force Engn Univ 113 0.01

6 Univ Chinese Acad Sci 102 0.04

7 Xi An Jiao Tong Univ 96 0.03

8 Nanjing Univ 94 0.05

9 Zhejiang Univ 90 0.18

10 Northwestern Polytech Univ 84 0.06

3.3. Author of Core Articles of Metamaterial Absorber

We calculated the author collaboration network map of metamaterial absorber research
in order to determine the contribution of scholars, as shown in Figure 4. The isolated sub-
network authors lacked communication with each other. We can conclude that these
authors conducted more independent studies with smaller cooperation. In Table 3, we list
the top ten most productive authors in the field of metamaterial absorbers, including the
degree of centrality and the number of articles and so on. Cumal Sarbh ranked first in terms
of the article counts, with 56 articles, followed by Shaobo Qu (55 articles) and Benxing
Wang (50 articles) in the forefront. The top three authors made a lot of contributions to the
field of metamaterial absorbers.

3.4. Keyword Analysis of Metamaterial Absorber

Figure 5 shows the keyword co-occurrence network of the metamaterial absorber
research. The larger the font, the closer the focus of study is. Table 4 lists the top ten
keywords found in the research of metamaterial absorbers. We can see that metamaterial
absorber studies have multiple keywords as their research focus. In this field, the top
keywords are metamaterial absorber, design, perfect absorber and absorption, indicating
that scholars have taken them as the focus of their study.
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Table 3. Top ten most productive authors in the research of metamaterial absorber.

No. Authors Count

1 Karaaslan, Muharren 60

2 Wang, Benxin 59

3 Sabah, Cumali 53

4 Wang, Jiafu 51

6 Qu, Shaobo 49

6 Lim, Sungjoon 48

7 Islam, Mohammad Tariqul 48

8 Yi, Zao 43

9 Cheng, Yongzhi 41

10 Unal, Emin 35
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Table 4. The top ten keywords in the research area of metamaterial absorbers.

No. Keyword Count Centrality

1 metamaterial absorber 1065 0.05

2 design 955 0.04

3 perfect absorber 738 0.02

4 absorption 715 0.04

5 absorber 632 0.05

6 metamaterial 498 0.06

7 broad band 451 0.01

8 surface 257 0.02

9 light 233 0.02

10 polarization 206 0.02

We list the top 20 keywords with the strongest citation bursts between 2008 and 2022 in
Figure 6. The longest burst keyword was negative index, appearing between 2008 and
2015. The top keywords with the strongest bursts are refraction, regime, negative index,
frequency and index. It is clear that the researchers of metamaterial absorbers can focus on
the theoretical work to lead to a negative refractive index directly.
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3.5. Article Journal Analysis of Metamateial Absorber

In order to identify the main part of the metamaterial absorber, we analyzed the
distribution of journals in this field. Table 5 lists the top ten article journals according to
the number of published papers. The 4470 articles about metamaterial absorbers were
published across 200 journals. The number of articles about metamaterial absorbers pub-
lished in Optics Express was the largest, with 357 articles, accounting for 7.99% of the total
4470 articles. The impact factor of this journal was 3.833 in 2021. Scientific Report published
170 articles, accounting for 3.80% of the total. Optics Communications ranked the third,
with 132 articles, accounting for 2.95% of the total.
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Table 5. Top ten article journals according to the number of published papers in the research.

No. Journal Count

1 Optics Express 257

2 Scientific Reports 170

3 Optics Communications 132

4 Journal of Physics D Applied Physics 126

5 Journal of Applied Physics 122

6 Plasmonics 113

7 Applied Physics Letters 107

8 Results in Physics 99

9 Applied Optics 80

10 Applied Physics A Materials Science Processing 77

3.6. Citation and Analysis of References of Metamaterial Absorber

The timeline of the eight largest clusters of metamaterial absorber studies is shown in
Figure 7, indicating the evolution of the field. The main five clusters are summarized below.
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The first cluster (#0) was labeled as film by LLR. The second cluster (#1) and third
cluster (#2) were labeled as microwave absorber and metamaterial absorber by LLR. Meta-
material absorbers have a sandwich structure. It can be periodically arranged by unit cells
that can be designed in many different geometries on the top of the sandwich structure.
The metamaterial absorber needs to minimize the reflection and can be impedance matched
to free space. The transmission of the incoming light is totally suppressed. The mechanism
of the metamaterial absorber can be considered a Fabry-Perot cavity, the reflection of which
is the sum of the direct reflection and the multiple reflection [18], as shown in Figure 8. We
expect that the reflection is completely canceled as a result of destructive interference. We
can design a metamaterial absorber or a perfect metamaterial absorber by optimizing the
structure to realize the unity of the absorption. By designing the metamaterial resonators
in different sizes, resonating at different frequencies, multi-band metamaterial absorbers
with high performance have been designed and fabricated. For multi-band metamaterial
absorbers, the background of the metal can affect the absorber frequencies. Additional
mechanisms of metamaterial absorbers are the electric and magnetic responses. As can be
seen from Figure 9, the designed unit cell can achieve an electric response and the magnetic
response [7].
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Figure 9. (a) The unit cell of the metamaterial absorber structure, where, a, b, c, d and g represent
symbols of geometric dimensions. The simulated surface current density for (b) the low-frequency
absorption without illumination (c) the higher-frequency resonance for σsi = 2000 S/m. Figure
reproduced with permission [7].

The metamaterial absorber was fabricated using standard micro-fabrication approaches.
The numerical simulations were mainly carried out using CST, HFSS, and COMSOL. The
normal incident TEM wave propagated from port 1 to port 2. The metamaterial absorber was
constructed with the sequence of port 1—metamaterial absorber unit cell—dielectric—ground
plane—port 2. The S-parameters of the transmission and reflection of a meta-atom can
be investigated. We can monitor the electric field, magnetic field, surface current, loss
distribution, reflection and transmission coefficient.

The 4th cluster (#3) was labeled as graphene metamaterial by LLR. Metamaterial ab-
sorbers with integrated graphene have been another research hotspot in this field. Graphene
is a monolayer of carbon atom material closely packed in a two-dimensional honeycomb
lattice. It can interact with the incoming light and be a good candidate for metamaterial ab-
sorbers due to its exotic properties. Many new metamaterial absorbers integrating graphene
into the meta-atom have been proposed in order to achieve broadband or tunable absorp-
tion properties. Graphene has attracted much attention due to its tunable electro-optical
properties, which can significantly reduce the manufacturing costs.

The 5th cluster (#4) was labeled as vanadium dioxide by LLR. As can be seen from
Figure 7, tunable metamaterial absorbers were another research hotspot. Once the proper
resonate unit of the metamaterial absorber is designed and fabricated, the absorption per-
formance cannot be changed. An active tunable and passive tuning metamaterial absorber
has been reported. Vanadium dioxide can undergo the insulator-to-metal transition under
external stimulus. The tunable characteristic of the metamaterial absorber can be realized
by the transition character of vanadium dioxide. We have proposed a redshift switching
metamaterial absorber with semiconductor silicon in our earlier proposed structures [36]. It
can be seen from Figure 10 that the resonant frequency can be tuned from 1.17 to 0.68 THz.
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Figure 10. (a) The unit cell of the switchable metamaterial absorber structure. (b) The array of the
switchable metamaterial absorber. In this metamaterial absorber, a, b, c, e represent symbols of
geometric dimensions and the axes indicate the polarization and propagation direction of the incident
THz wave. (c) Simulated absorption spectrum at different values of silicon conductivity.

Table 6 lists the top ten co-cited publications in the research area of metamaterial
absorbers. It can be seen that the article titled ‘perfect metamaterial absorber’ was the most
important literature [26]. This article was cited 4797 times by other authors. As we all know,
citation reflects the foundation of relevant research. In this article, the narrow-band perfect
metamaterial absorber was first presented at 11.5 GHz. Holloway, C. L. et al. published
the article titled ‘An overview of the theory and applications of metasurfaces: propagation
the two-dimensional equivalents of metamaterial’ that was also very important [37]. This
article reviews the development in recent years of such metasurfaces. Metamaterials
or metamaterial absorbers are bulky optical components. Recently, metasurfaces have
also attracted much attention. Metasurfaces can replace the bulky optical components
because they consist of a monolayer of plasmonic structures. They can easily integrate to the
electronic and mechanical systems and control the wavefront of the incident electromagnetic
wave. The phase and amplitude can be changed by the ultrathin optical components. The
metasurfaces can inherit all of the properties of metamaterials and exhibit many amazing
capacity. Metasurfaces can be easily fabricated.

Table 6. Top ten co-cited publications in the research area of metamaterial absorbers.

No. Author Citations Title Journal Frequency

1 Landy, N. I. et al.
(2008) [26] 4797 Perfect metamaterial absorber Physical Preview

Letters microwave

2 Watts, C. M. et al.
(2012) [38] 1490 Metamaterial electromagnetic

wave absorbers Advanced Materials microwave,
terahertz

3 Holloway, C. L.
1372 et al. (2012) [39] 1372

An overview of the theory and
applications of metasurfaces: equivalents
of metamaterial

IEEE Antennas and
Magazine

microwave,
terahertz

4 Aydin, F. et al.
(2011) [40] 1364

Broadband polarization- independent
resonant light absorption using ultrathin
plasmonic super absorbers

Nature
Communication visible spectrum

5 Liu, X. L. et al.
(2011) [41] 1099

Taming the blackbody with infrared
metamaterials as selective
thermal emitters

Physical Review
Letters mid-infrared

6 Tao, H. et al.
(2008) [42] 1097

A metamaterial absorber for the terahertz
regime: design, fabrication
and characterization

Optics Express terahertz

7 Pfeiffer, C. et al.
(2013) [43] 1092

Metamaterial Huygens’ surfaces:
tailoring wave fronts with
reflectionless sheets

Physical Review
Letters microwave
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Table 6. Cont.

No. Author Citations Title Journal Frequency

8 Hao, J. M. et al.
(2013) [44] 951 high performance optical absorber based

on plasmonic metamaterial
Applied Physics

Letters optical frequencies

9 Dickey, M. D. et al.
(2017) [45] 896 Stretchable and soft electronics using

liquid metals Advanced materials microwave

10 Liu, X. L. et al.
(2010) [46] 873 Infrared spatial and frequency selective

metamaterial with near-unity absorbance
Physical Review

Letters mid-infrared

We can conclude that realizing tunable or polarization-dependent absorptions is the
most important top throughout the 4470 articles. In addition, metamaterial absorbers
based on all-silicon metamaterials have also attracted much interest in recent years [47].
Most metamaterial absorbers are made up of three sandwiched layers (metal-insulator-
metal), which enhance the absorption in the metal backplane and the particles. High-
index dielectric resonators such as silicon provide the possibility to reduce the reflectivity.
The absorption is obtained by A = 1 − R− T, where A is the absorptance and R is the
reflectance. Therefore, the absorbance can be maximized by inducing the reflection and
transmission. The reduction in the all silicon metamaterial absorber is mainly realized
through optical pumping. It can change the carrier concentration of silicon, which is also
a tunable metamaterial absorber. Silicon nanoparticles also support both the electrical
and magnetic resonances in the metamaterial absorber. The effective medium theory
can be used to analyze the physics of the perfect absorption of all silicon metamaterial
absorbers [48]. All silicon metamaterial absorbers have many advantages, such as being
easy to process and having lower costs.

We can also conclude some meaningful information through the analysis of the articles
of metamaterials.

Metamaterial absorbers with four-fold rotational symmetry or chiral metamaterials can
lead to polarization-independent absorption. Another method to realize the polarization-
independent absorption is that the meta-atom of the metamaterial absorbers has π/2 ro-
tational symmetry. This is the key consideration to design a polarization-independent
metamaterial absorber. Being polarization-independent is not a necessary condition for a
metamaterial absorber. Therefore, many designs are polarization-dependent, which can
also absorb the electromagnetic wave.

Metamaterial absorbers have been studied from microwave to optical frequencies.
The proposed metamaterial structures that were published mostly consist of three layers.
Li presented a perfect metamaterial absorber in the microwave region, which possessed
two metallic layers separated by a dielectric spacer. The top layer is an electric split-ring
resonator [49]. The meta-atoms of the first terahertz metamaterial absorber are the electrical
ring resonator, with a split wire is on the back [42]. Zhu presented an optical metamaterial
absorber which was composed of three layers. The top layer consists of metallic leaf-
shaped cells [50]. Ding proposed a metamaterial absorber working in the near-infrared
range. The author chose the titanium disk-shape as the top layer [51]. There are many
other structures of metamaterials, such as the split-ring-cross-shaped resonator, modified
T-shaped resonators, the geometrically gradient dielectric, cross-shaped graphene arrays,
graphene-based rectangular gratings, molybdenum-Ge2Sb2Te5-molybdenum nanodisk
structure and so on [52–57].

The substrate of the metamaterial absorber is very important to the absorption. If
we want to absorb the incoming light, the transmission of the electromagnetic must be
suppressed. In order to minimize the reflection, it is important to impedance match to free
space. Therefore, many structures of metamaterial absorber substrates can be designed as
metal. There are many other forms of substrates in the published papers, such as silicon,
FR4, Rogers 3035, Rogers 4300, Rogers 5880 and so on [58–60].
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Metamaterial absorbers have been extensively reported from microwave to deep ultra-
violet wavelengths. However, the published metamaterial absorbers are mainly focused on
research in the laboratory. We believe that with the deepening of the research, metamaterial
absorbers will certainly see important progress on the road to commercialization.

4. Conclusions

In summary, a scientific knowledge mapping tool, namely the CiteSpace software
R.1.R6, was used to analyze the published research concerning metamaterial absorbers.
To the best of our knowledge, this is the first paper to use this method to study this
field of metamaterial absorbers. We could accurately understand the focus of scientific
research in this field, which can be indicated that the evolution of the field from the
timeline of the eight largest clusters of metamaterial absorber studies. Landy et al.’s
first experiment demonstrated a perfect MM absorber to absorb all incident radiation.
Since then, a single-band absorber, dual-band absorber, triple-band absorber, multi-band
absorber and broad-band absorber have been proposed and investigated widely. Recent
progress in metamaterial absorbers has led to the realization of frequency-agile functionality,
provided by integrating graphene and vanadium dioxide. The metamaterial absorber
can also be tuned by integrating semiconductors, such as silicon. Tunable absorptions
are very important for the future, and particularly metamaterial absorbers based on all-
silicon. This paper provides a new research method to study and evaluate the performance
of metamaterial absorbers. It can also help new researchers in the field to obtain the
development of the research content and understand the recent progress. It is believed that
this work can provide readers and researchers with certain reference in the future.
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