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Abstract: We investigated the effect of gate bias stress (GBS) on the electrical characteristics of
ferroelectric oxide thin-film transistors (FeOxTFTs) with poly(vinylidenefluoride-trifluoroethylene).
Generally, conventional oxide thin-film transistors (OxTFTs) with dielectric gate insulators exhibit a
small negative shift under negative gate bias stress (NBS) and a large positive shift under positive
gate bias stress (PBS) in transfer characteristic curves. In contrast, the FeOxTFTs show a small positive
shift and a large negative shift under NBS and PBS, respectively. It was confirmed that sufficient
changes in the electrical characteristics are obtained by 10 min NBS and PBS. The changed electrical
characteristics such as threshold voltage shift, memory on- and memory off-current were maintained
for more than 168 h after NBS and 24 h after PBS. It is deduced that, since the dipole alignment of the
ferroelectric layer is maximized during GBS, these changes in electrical properties are caused by the
remnant dipole moments still being retained during the gate sweep. The memory on- and memory
off-current are controlled by GBS and the best on/off current ratio at 107 was obtained after NBS.
By repeatedly alternating NBS and PBS, the electrical characteristics were reversibly changed. Our
results provide the scientific and technological basis for the development of stability and performance
optimization of FeOxTFTs.

Keywords: ferroelectric; oxide TFT; P(VDF-TrFE); gate bias stress; threshold voltage shift

1. Introduction

Oxide thin-film transistors (OxTFT) have attracted great attention due to their high
field-effect mobility, high optical transparency, and solution processability [1–4]. In order
to examine the electrical stability of OxTFTs, numerous studies about the characteristic
variations caused by long-term gate bias stress (GBS), such as negative gate bias stress
(NBS), positive gate bias stress (PBS), and negative bias illumination stress (NBIS), have
been conducted [5,6]. In conventional OxTFTs, NBS and PBS typically induce negative and
positive threshold voltage (VT) shifts, respectively [5].

Recently, various attempts have been made to exploit OxTFTs as a ferroelectric or
charge trap memory device [7,8]. Ferroelectric oxide thin-film transistors (FeOxTFTs),
which use ferroelectrics as a gate insulator, facilitate programing and erasing operations
at relatively low voltages compared to charge trap transistors [9]. Representatives of fer-
roelectrics for gate insulators include lead zirconate titanate, silicon-doped hafnia, and
poly(vinylidenefluoride-trifluorethylene) (P(VDF-TrFE)). Since P(VDF-TrFE) thin films can
be fabricated via a facile low-cost solution process, P(VDF-TrFE) has been actively studied
thus far [10–12]. Previously, studies on the improvement of the retention characteristics of
the FeOxTFT memories with solution-processed P(VDF-TrFE) insulator have also being
conducted using the solution-processed indium-gallium-zinc oxide (IGZO) semiconduc-
tor [13].
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In an array architecture where multiple memory devices are integrated, a voltage for
the operation of a certain cell is simultaneously applied to the gates of other constituent
cells [14]. Especially, in the case of NAND-type ferroelectric memories explored recently,
positive or negative read voltages should be continuously applied to the devices for the
pass states of FeOxTFTs [15]. Although there is a growing need for investigating the effect of
GBS in ferroelectric memory devices, GBS-induced variations in the memory characteristics
of FeOxTFTs have not yet been studied.

In this work, we investigated the effect of GBS on the electrical characteristics of
solution-processed FeOxTFTs with P(VDF-TrFE). First, we compared the NBS and PBS char-
acteristics of OxTFTs in both bottom-gate and top-gate configurations applying dielectric
and ferroelectric polymers. Moreover, the effect of GBS time on the electrical characteristics
of the devices and the electrical sustainability of the GBS-induced characteristic changes
were examined. It was found that the memory on- and off-currents can be controlled
through the application of GBS, and the FeOxTFT with P(VDF-TrFE) exhibited the highest
on/off current ratio at ≈107 after being subjected to NBS. Lastly, the reversibility of the
characteristic changes by repeatedly alternated NBS and PBS were tested.

2. Materials and Methods

An IGZO solution was prepared by dissolving indium nitrate hydrate, gallium nitrate
hydrate, and zinc nitrate hydrate into 2-methoxyethanol with an In:Ga:Zn molar ratio of
4:3:2. The solution was stirred for 8 h at 60 ◦C and then filtered through a syringe filter. A
poly(methyl methacrylate) (PMMA) solution was prepared by dissolving PMMA in toluene
at 5 wt.%. A P(VDF-TrFE) solution was prepared by dissolving P(VDF-TrFE) (75/25) into
cyclopentanone at 10 wt.%.

Figure 1a–c show the schematic diagrams of the bottom-gate top-contact OxTFT with
dielectric gate insulator, top-gate bottom-contact OxTFT with dielectric gate insulator, and
top-gate bottom-contact FeOxTFT with ferroelectric gate insulator, respectively. For bottom-
gate top-contact OxTFT (Figure 1a), the IGZO solution was first spin-coated on a substrate
(i.e., heavily p-doped silicon with thermally grown 200 nm-thick silicon dioxide) at 3000 rpm
for 30 s with subsequent two-step thermal treatment: for 10 min at 110 ◦C and then for
3 h at 500 ◦C. Lastly, 120 nm thick aluminum source/drain electrodes were thermally
deposited on the IGZO layer through a shadow mask. For top-gate bottom-contact OxTFT
with dielectric gate insulator (Figure 1b), the IGZO solution was first spin-coated on an
indium-tin-oxide source/drain-patterned substrate at 3000 rpm for 30 s with subsequent
two-step thermal treatment: for 10 min at 110 ◦C and then for 3 h at 500 ◦C. The PMMA
solution was then spin-coated on the IGZO layer at 3000 rpm for 30 s with subsequent
thermal treatment for 1 h at 90 ◦C. Lastly, a 120 nm thick aluminum gate electrode was
thermally deposited on the PMMA layer through a shadow mask. For top-gate bottom-
contact FeOxTFT with ferroelectric gate insulator (Figure 1c), the IGZO solution was first
spin-coated on an indium-tin-oxide source/drain-patterned substrate at 3000 rpm for 30 s
with subsequent two-step thermal treatment: for 10 min at 110 ◦C and then for 3 h at
500 ◦C. The P(VDF-TrFE) solution was spin-coated on the IGZO layer at 3000 rpm for 30 s
with subsequent thermal treatment for 2 h at 140 ◦C. Lastly, a 120 nm thick aluminum
gate electrode was thermally deposited on the P(VDF-TrFE) layer through a shadow mask.
In the case of the devices with the top-gate configuration, since aluminum source/drain
electrodes can be oxidized due to the high temperature for the IGZO thermal treatment,
the indium-tin-oxide source/drain electrodes with relatively good thermal stability were
used instead of aluminum source/drain electrodes.
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Figure 1. The device structures for (a) the conventional bottom-gate OxTFT with a dielectric gate 
insulator, (b) top-gate OxTFT with a dielectric gate insulator, and (c) top-gate OxTFT with a ferroe-
lectric gate insulator. The transfer characteristic curves of (d) the conventional bottom-gate OxTFT 
with the dielectric gate insulator (i.e., silicon dioxide), (e) top-gate OxTFT with the dielectric gate 
insulator (i.e., PMMA), and (f) top-gate OxTFT with the ferroelectric gate insulator (i.e., P(VDF-
TrFE)) after 1-hour NBS and 1-hour PBS. 
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With the PMMA gate insulator (i.e., a conventional polymer dielectric), the transfer curve 
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nel formation, which further shifts the VT and transfer curve in the positive direction (Fig-
ure S2, Supplementary Materials). Under NBS, a small electric field is applied to the gate 
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OxTFT show conventional transfer curve shift by GBS. 

Figure 1. The device structures for (a) the conventional bottom-gate OxTFT with a dielectric gate
insulator, (b) top-gate OxTFT with a dielectric gate insulator, and (c) top-gate OxTFT with a ferroelec-
tric gate insulator. The transfer characteristic curves of (d) the conventional bottom-gate OxTFT with
the dielectric gate insulator (i.e., silicon dioxide), (e) top-gate OxTFT with the dielectric gate insulator
(i.e., PMMA), and (f) top-gate OxTFT with the ferroelectric gate insulator (i.e., P(VDF-TrFE)) after 1-h
NBS and 1-h PBS.

All electrical characterizations for the transistors were carried out using a semicon-
ductor analyzer (Hewlett Packard, HP 4551A). Gate voltages (VG) of −50 V and 50 V
were applied to the transistors for NBS and PBS, respectively (Figure S1d, Supplementary
Materials).

3. Results and Discussion

First, we compared our FeOxTFT with other OxTFTs having conventional dielectric
gate insulators. Figure 1d shows the transfer characteristic curves of the bottom-gate
OxTFT with conventional dielectric gate insulator after NBS and PBS. The VG of −50 V and
50 V were applied to the devices for the NBS and PBS, respectively, for 1 h. Each transfer
characteristic curve after GBS was measured by sweeping VG from −50 to 50 V in 2 V
increments at constant drain voltage (VD) = 5 V. IGZO-based TFTs usually exhibit n-type
operation [16–18]. Our devices also clearly exhibited n-type operation. While the curve
moves to the negative direction after NBS, a large positive shift (>10 V) is shown after
PBS. With the PMMA gate insulator (i.e., a conventional polymer dielectric), the transfer
curve of the top-gate OxTFT shows small negative and large positive shift under NBS and
PBS, respectively, as shown in Figure 1e. This is because holes are trapped by NBS and
electrons are trapped by PBS in field-effect transistors [19,20]. For NBS, the trapped holes
that act as positive charges further accumulate free electrons in the channel region, which
shifts the VT and transfer curve of an n-type device in the negative direction. For PBS, the
trapping of electrons reduces free electrons, which shifts the VT and transfer curve in the
positive direction. Moreover, the trapped electrons hinder the charge accumulation for
channel formation, which further shifts the VT and transfer curve in the positive direction
(Figure S2, Supplementary Materials). Under NBS, a small electric field is applied to the
gate insulator due to depletion of IGZO during NBS, resulting in only a small or negligible
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negative shift [21,22]. Therefore, with dielectric gate insulators, both bottom- and top-gate
OxTFT show conventional transfer curve shift by GBS.

In contrast, with a ferroelectric P(VDF-TrFE) gate insulator, the device shows non-
conventional transfer curve shift as shown in Figure 1f. First, after NBS, a small positive
curve shift and reduced off-current were observed. For PBS, a large negative curve shift
appeared, resulting in the off-current being significantly increased compared to the initial
curve. That is, the FeOxTFT shows a GBS-induced characteristic change, which is opposite
to the case with dielectric gate insulators. While the off-current is significantly increased
by the PBS, the gate current maintained a comparable level without showing a discernible
variation (Figure 1f). In addition, the linear mobility values were calculated (Figure S1,
Supplementary Materials) [23].

In order to investigate the variation in the electrical characteristics of the FeOxTFTs
according to the GBS time, the transfer characteristic curves were measured as the GBS
time increases, shown in Figure 2a,d. The measurements were conducted by acquiring the
transfer characteristic curves with the accumulated GBS time of 10 min, 20 min, 30 min,
40 min, 50 min, 60 min, and 120 min, under the GBS of VG = −50 V and 50 V for the
NBS and PBS, respectively. Each transfer characteristic curve after GBS was measured
by sweeping VG from −50 to 50 V and back in 2 V increments and 2 V decrements at
constant VD = 5 V. The double sweeping measurement was conducted to understand
the memory characteristics of the ferroelectric transistors. As shown in Figure 2b,c,e,f,
VT at forward sweep (VT,F), VT at reverse sweep (VT,R), memory on-current (IM,ON), and
memory off-current (IM,OFF) of the transfer curves under NBS and PBS were obtained,
respectively. Here, we defined VT,F and VT,R as a voltage where the drain current is 15 µA
during forward and backward sweeps [24]. IM,ON and IM,OFF were defined as the current
values where the VG is −10 V during forward and backward sweeps. Under NBS, VT,F and
VT,R shows only small changes as seen in Figure 2b, and IM,ON exhibits negligible change
shown in Figure 2c. However, IM,OFF shows a large decrease even under 10 min of NBS
and saturated with additional GBS thereafter. In contrast, when PBS is applied, VT,F and
VT,R were moved to the negative direction more than about 15 V as shown in Figure 2e. In
Figure 2f, IM,ON and IM,OFF are increased, and notably a large increase of about 103 times
was observed. That is, when NBS and PBS are applied, unlike the OxTFT with dielectric
gate insulator showing negative and positive shift, the FeOxTFT rather shows positive and
negative shift respectively. Note again that, in the OxTFT with dielectric gate insulators,
the GBS-induced characteristic change originated from the trapped charges by the gate
field. However, it has been reported that trap density in P(VDF-TrFE) interfaced with the
oxide semiconductor was low [25]. In addition, due to the effect of the remnant ferroelectric
dipole moments, counterclockwise hysteresis, rather than clockwise hysteresis, appears
by trapped charges. During the VG sweeping in the transfer characteristic measurement,
which proceeds for a short time (<15 s), ferroelectric dipole moment alignment is not
achieved in the entire ferroelectric layer. During VG sweeping, the ferroelectric dipole
moments are aligned according to the gate electric field in the relatively high crystalline
region. However, under long GBS, the additional ferroelectric dipole moments are aligned
even in the region where the alignment of ferroelectric dipole moments is difficult under
short gate bias. The GBS possibly suppresses partial disorder in the P(VDF-TrFE) layer,
which leads to the alignment of the additional ferroelectric dipole moments [26]. After this
GBS, if a VG is swept for a short time, the additional ferroelectric dipole moments aligned
by the previous GBS do not change along the VG (Figure S3, Supplementary Materials). For
example, under PBS, ferroelectric dipole moments are formed in an upward direction in
our top-gate FeOxTFTs. During the gate sweep after PBS, even if the VG becomes negative,
exceeding the coercive voltage, the additional ferroelectric dipole moments maintain an
upward direction instead of a downward direction (Figure S2, Supplementary Materials).
Therefore, by these unswept ferroelectric dipole moments, the drain current is increased
and the transfer curve is negatively shifted.
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Figure 2. (a) Transfer characteristic curves, (b) VT, and (c) IM,ON and IM,OFF under NBS as increasing
GBS time, (d) transfer characteristic curves, (e) VT, and (f) IM,ON and IM,OFF under PBS. IM,ON and
IM,OFF are the current at VG of −10 V during forward and backward sweeps.

In order to find out the electrical sustainability of the GBS-induced characteristic
changes (i.e., how long the changed properties of the FeOxTFTs due to GBS are maintained),
the transfer characteristic curves were measured corresponding to the elapsed time as
shown in Figure 3a,d. After applying the GBS of VG = −50 V and 50 V for the NBS and PBS,
respectively to the devices, the transfer characteristic curves were acquired with the elapsed
time of 1 h, 24 h, 48 h, 96 h, and 168 h. The transfer characteristics were measured by
sweeping VG from −50 to 50 V and back in 2 V increments and 2 V decrements at constant
VD = 5 V. For the case of NBS, since the change of VT,F, VT,R, and IM,ON by NBS were small,
a significant change according to the elapsed time was not observed; see Figure 3b,c. The
value of IOFF significantly reduced by NBS was maintained for 168 h. For the case of PBS,
VT,F, VT,R, IM,ON, and IM,OFF, which showed large changes due to PBS, varied close to the
initial values as time passed, as shown in Figure 3e,f. In detail, after 24 h, the characteristics
of FeOxTFT changed by PBS are maintained to some extent, but after 96 h, the values
become similar to the transfer curve values in the initial state.

To investigate the memory characteristics of the FeOxTFTs, the retention characteristics
of ID were measured as shown in Figure 4a. The device was programmed by applying the
high VG of 50 V and −50 V, and then, the IM,ON and IM,OFF were measured with the VG of
0 V for the initial measurement and with the VG of −10 V for the post-NBS and post-PBS
measurements. The VG of −50 V and 50 V for the NBS and PBS, respectively, were applied
to the device for 1 h. IM,ON and IM,OFF were well retained during 1000 s for the initial (no
bias), NBS, and PBS cases. It was noted that in the case of NBS, IM,OFF shows a decreasing
value over time, which occurs when the holes charged in ferroelectric in erasing operation
are discharged during retention measurement. IM,ON, IM,OFF, and IM,ON/IM,OFF of the
FeOxTFTs after 103 s are presented in Figure 4b. In the initial FeOxTFT, IM,ON and IM,OFF
shows 388.9 µA and 1.6 µA, respectively, and thus an IM,ON/IM,OFF value of 2.5 × 102 is
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obtained. In the case of NBS, a significantly improved IM,ON/IM,OFF value of 107 is shown
due to largely reduced IM,OFF. For PBS, while IM,ON increases, IM,OFF increases excessively,
resulting in a reduced IM,ON/IM,OFF value of 0.4 × 102 compared to the NBS case.
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In order to study the reversibility of the GBS effect, the NBS and PBS were applied
alternately and repeatedly as shown in Figure 4c. The transfer characteristic curves were
obtained with applying the first NBS (GBS #1), first PBS (GBS #2), second NBS (GBS #3),
second PBS (GBS #4), and third NBS (GBS #5) in sequence. In Figure 4d, IM,ON and IM,OFF
repeatedly decrease after NBS and increase after PBS. This means that the direction of
the unswept ferroelectric dipole moments during the gate sweeping can be controlled
reversibly by GBS (Figure S3, Supplementary Materials). The repeatedly alternated NBS
and PBS further suppressed the partial disorder [26], which eventually enabled the re-
versible rotation of the additional ferroelectric dipole moments. In a real memory array
circuit, a larger value of IM,ON and IM,OFF or a larger value of IM,ON/IM,OFF is preferred
according to the number of memory elements connected together and the connected circuit
in the next stage. Therefore, using NBS and PBS, the performance of the FeOxTFTs is
reversibly optimized. Future work needs to investigate the origin of the partial disorder
in P(VDF-TrFE) layers and the mechanism for the alignment of additional ferroelectric
dipole moments.
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FeOxTFT and those subjected to the NBS and PBS were well retained for 1000 s. Moreover,
the IM,ON and IM,OFF of the FeOxTFT tended to increase and to decrease, respectively, with
the application of the repeatedly alternated NBS and PBS. This indicates that the reversibil-
ity of the GBS effect was obtained by repeatedly alternating the NBS and PBS. These results
will contribute to improving the electrical stability and performance of FeOxTFTs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16062285/s1, Figure S1: (a–c) The device structures, (d) the
circuit diagram for the GBS, and the linear-scale transfer characteristic curves of (e) the conventional
bottom-gate OxTFT with the dielectric gate insulator (i.e., silicon dioxide), (f) top-gate OxTFT with
the dielectric gate insulator (i.e., PMMA), and (g) top-gate OxTFT with the ferroelectric gate insulator
(i.e., P(VDF-TrFE)) after 1-h NBS and 1-h PBS; Figure S2: The energy band diagrams for the OxTFT
and FeOxTFT subjected to the PBS and NBS; Figure S3: Schematic diagrams for the ferroelectric
dipole changes in the P(VDF-TrFE) layer in the PBS and NBS cases.
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