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Abstract: Developing efficient and stable photocatalysts is crucial for photocatalytic hydrogen produc-
tion. Cocatalyst loading is one of the effective strategies for improving photocatalytic efficiency. Here,
Ti3C2Tx (Tx = F, OH, O) nanosheets have been adopted as promising cocatalysts for photocatalytic
hydrogen production due to their metallic conductivity and unique 2D characterization. In particular,
surface functionalized Ti3C2(OH)x and Ti3C2Ox cocatalysts were synthesized through the alkalization
treatment with NaOH and a mild oxidation treatment of Ti3C2Fx, respectively. ZnIn2S4/Ti3C2Tx

composites, which were fabricated by the in-situ growth of ZnIn2S4 nanosheets on the Ti3C2Tx

surface, exhibited the promoted photocatalytic performance, compared with the parent ZnIn2S4. The
enhanced photocatalytic performance can be further optimized through the surface functionalization
of Ti3C2Fx. As a result, the optimized ZnIn2S4/Ti3C2Ox composite with oxygen functionalized
Ti3C2Ox cocatalyst demonstrated excellent photocatalytic hydrogen evolution activity. The charac-
terizations and density functional theory calculation suggested that O-terminated Ti3C2Ox could
effectively facilitate the transfer and separation of photogenerated electrons and holes due to the
formation of a Schottky junction, with the largest difference in work function between ZnIn2S4 and
Ti3C2Ox. This work paves the way for photocatalytic applications of MXene-based photocatalysts by
tuning their surface termination groups.

Keywords: Ti3C2Tx MXene; surface functionalization; work function; photocatalytic hydrogen
production; cocatalyst

1. Introduction

Hydrogen is regarded as an ideal energy with the advantages of a high energy capac-
ity and zero pollutants. Among the various H2 production strategies, solar-light-driven
photocatalysis for H2 production from water splitting is a promising route to alleviating
the energy crisis [1–3]. Developing highly efficient photocatalysts is the key to realizing the
industrialization of photocatalytic H2 production. Regarding photocatalysts, ZnIn2S4 has at-
tracted more attention in recent years because of its low toxicity, visible-light response, and
considerable photostability [4,5]. However, the rapid recombination and tardy migration
of the photogenerated electrons and holes restricts the photocatalytic H2 production effi-
ciency of bare ZnIn2S4 [6,7]. To address this issue, diverse approaches, including cocatalyst
loading, vacancy engineering and heterojunction construction, have been systematically
developed to improve the photocatalytic performance of ZnIn2S4 materials [8–10]. Among
them, cocatalyst loading has been verified to be a feasible and efficient method to promote
the photocatalytic efficiency by accelerating the separation and transfer of photogenerated
charge carriers while simultaneously acting as active sites to facilitate the photocatalytic H2
production reaction kinetics. The employment of noble metals (such as Pt, Au, Pd and Rh)
as cocatalysts, has been proven to be highly efficient in improving the photocatalytic perfor-
mance, but their high price largely limits their widespread application [11,12]. Therefore, it
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is urgent to explore an inexpensive and efficient noble metal-free cocatalyst to replace Pt,
Au, Pd and Rh to achieve large-scale photocatalytic H2 production.

MXene, as an emerging family of 2D transition metal carbides/nitrides, has gained
intensive scientific interest in photocatalysis, ascribed to its excellent metal conductivity,
large specific surface area with abundant active sites and hydrophilicity [13–15]. The 2D
planar structure of Ti3C2Tx MXene is beneficial to highly dispersing the host photocatalyst
with a strong interfacial contact [16–18]. On the other hand, owing to its high conductivity
and abundant exposed metal sites, Ti3C2Tx could act as a cocatalyst to facilitate the sep-
aration and migration of photogenerated charge carriers and lower the reaction energy
barriers for accelerating the reaction kinetics. Therefore, Ti3C2Tx was widely used as a
cocatalyst in photocatalytic H2 production [18–20]. For instance, Zhao et al. [17] reported
the construction of hierarchical 2D Bi2MoO6@Ti3C2Tx by in-situ growing Bi2MoO6 onto
the surface of Ti3C2Tx nanosheets. Ti3C2Tx, as the cocatalyst, could not only suppress the
agglomeration of Bi2MoO6 nanosheets and increase the reaction active sites, but also endow
the photocatalyst with the Schottky junction. As a result, the Bi2MoO6@Ti3C2Tx exhibited
enhanced photocatalytic activity. Zuo et al. [18] found that the ZnIn2S4-Ti3C2Tx-ZnIn2S4
sandwich-like hierarchical heterostructures exhibited a superior photocatalytic H2 pro-
duction performance due to the construction of the Schottky junction between ZnIn2S4
nanosheets and Ti3C2Tx. Ran et al. [19] reported that Ti3C2, as a potential cocatalyst,
could efficiently improve the photocatalytic hydrogen production performance by forming
the Schottky junction at the Ti3C2/CdS interface to facilitate the separation of the photo-
generated electrons and holes. Meanwhile, they found that the Gibbs free energy for H
adsorption (∆GH*) of O-terminated Ti3C2 is close to zero. With the near-zero ∆GH*, the
favorable Fermi level position and electrical conductivity, O-terminated Ti3C2 could serve
as an alternative to noble metals in photocatalytic H2 production. Liu et al. [20] utilized
Ti3C2 nanosheets acting as the substrate and cocatalyst to synthesize a CdLa2S4/Ti3C2
photocatalyst, which could not only promote the dispersion of CdLa2S4, but also enhance
the photogenerated charge carriers separation and transfer, leading to a significant enhance-
ment in photocatalytic H2 evolution. In most cases, Ti3C2 with a large work function could
act as electron sink to facilitate the separation and transfer of the photogenerated charge
carriers in photocatalytic H2 production. In contrast, Peng et al. [21] proposed a dual-
carrier-separation mechanism for photocatalytic H2 evolution within Cu/TiO2@Ti3C2Tx,
where -OH-terminated Ti3C2Tx with a lower work function than TiO2 served as the hole
trap to accelerate the holes migration from TiO2 to Ti3C2Tx. Obviously, the surface termina-
tion groups of Ti3C2Tx could arise tunable electronic properties (such as work function) to
impact on the photocatalytic performance of the Ti3C2Tx-based photocatalysts.

Tailoring the surface termination groups of Ti3C2Tx could alter their work function,
electronic and optoelectronic properties [22–24]. Recently, the theoretical calculations
from Khazaei revealed that the work function of Ti3C2Tx was strongly dependent on the
surface termination groups, and the work function of Ti3C2Tx could adjust in a wide
range from 1.6 eV to 6.0 eV [24]. Jiang et al. [25] investigated the effect of the surface
terminations of Ti3C2Tx on the electrocatalytic H2 evolution. They found that O-terminated
Ti3C2Tx nanosheets exhibited much higher H2 evolution activity than other Ti3C2Tx, and
the –O termination groups on the basal plane of Ti3C2 were the H2 evolution reaction
active sites. Especially, the –O termination groups could promote the adsorption of H
and accelerate the H2 evolution reaction. However, the insights into the effect of the
surface termination groups in Ti3C2Tx MXene-based photocatalysts on the photocatalytic
H2 production are not established experimentally. Herein, we designed a series of Ti3C2Tx
(Tx = F, OH, O) with different surface termination groups, and then the 2D ZnIn2S4 was
in-situ grown on the surface of Ti3C2Tx using a facile hydrothermal synthesis method to
synthesize ZnIn2S4/Ti3C2Tx composites. Specifically, the as-synthesized ZnIn2S4/Ti3C2Ox
with the O-terminated Ti3C2Tx exhibited the superior photocatalytic H2 production activity.
When the content of Ti3C2Ox was 1.0 wt%, the ZnIn2S4/Ti3C2Ox presented the optimal
photocatalytic H2 production rate of 363 µmol g−1 h−1. This work provides us with a
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paradigm for the rational design of Ti3C2Tx MXene with tailored surface termination groups
and the development of efficient MXene-based composites for photocatalytic applications.

2. Materials and Methods
2.1. Samples Preparation
2.1.1. Synthesis of Ti3C2Fx

Typically, 2 g LiF was added into 40 mL HCl aqueous solution (9 M) and stirred for 1 h
until the LiF was completely dissolved. A total of 2 g of Ti3AlC2 powder was then added to
the above solution and stirred for 0.5 h. The suspension was stirred at 53 ◦C for 41 h. Upon
cooling, the mixture was centrifuged and washed with deionized water until the pH was
close to 7. The product was dried at 60 ◦C under vacuum for 48 h.

2.1.2. Synthesis of Surface Functionalized Ti3C2Tx

In order to obtain the surface functionalized Ti3C2Tx, the pristine Ti3C2Fx were treated
with a different functionality-modification strategy. To achieve Ti3C2(OH)x with −OH rich
termination groups, according to the previous literature [25], 0.2 g of the pristine Ti3C2Fx
was dispersed in 100 mL of 1 M NaOH aqueous solution in order to replace the −F surface
termination groups with −OH. After stirring for 2 h at room temperature, the product
was centrifuged and washed with deionized water until the pH was close to 7. Then, the
product was collected and dried at 60 ◦C under vacuum for 12 h. To obtain O-terminated
Ti3C2Ox, the Ti3C2Fx was calcined under 300 ◦C in Ar gas flow for 2 h.

2.1.3. Synthesis of ZnIn2S4 and ZnIn2S4/Ti3C2Tx

Typically, 0.176 g InCl3·4H2O, 0.041 g ZnCl2 and 0.120 g thioacetamide (TAA) were
added consecutively into 40 mL glycerol aqueous solution (20 vol%) and stirred for 0.5 h.
The quantitative Ti3C2Tx (Tx = F, OH, O) (1.0 wt%) was added into the above solution.
The mixed suspension was heated at 80 ◦C with stirring for 2 h. After centrifugation, the
products were collected and dried at 60 ◦C for 12 h.

For comparison, the preparation of the pristine ZnIn2S4 was similar to that of
ZnIn2S4/Ti3C2Tx without the introduction of Ti3C2Tx.

2.2. Photocatalytic H2 Production Experiments

The photocatalytic H2 production tests were carried out in a Pyrex glass reaction
(Beijing Perfectlight Labsolar-6A, Perfectlight Technology, Beijing, China) with a circulated
cooling water system to maintain the temperature at 8 ◦C. A total of 100 mg of the photo-
catalyst was dispersed in 100 mL aqueous solution, containing 10 vol% triethanolamine
(TEOA) as the sacrificial agent. Before irradiation under a Xe lamp (CEL-HXUV300, Perfect-
light Technology, Beijing, China), the suspension was evacuated by the vacuum pump. The
produced H2 volume was analyzed using an on-line gas chromatograph (GC5190, TCD, A
column, Ar carrier).

2.3. Characterization

The powder X-ray diffraction (XRD) patterns of the prepared samples were collected
using a Rigaku SmartLab (9 kW, Tokyo, Japan) diffractometer with Cu Kα radiation
(λ = 0.15418 nm) operating at 40 kV and 4 mA. The morphological analysis of the samples
were recorded with scanning electron microscopy (SEM) using a Regulus 8230 scanning
electron microscope (Hitachi, Ltd., Tokyo, Japan) at an acceleration voltage of 5 kV. X-ray
photoelectron spectroscopy (XPS) was carried out to investigate the surface chemical
environment of the samples using an Escalab 250Xi X-ray photoelectron spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). Measuring with an ultraviolet photoelec-
tron spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) was performed with a
−5 V bias voltage. The data were calibrated with a C1s spectrum of 284.6 eV. The Fourier
transform spectrophotometer (Vertex80 + Hyperion2000, Bruker, Billerica, MA, USA) was
employed to acquire IR spectra with the standard KBr disk method. Transmission electron
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microscopy (TEM), high resolution transmission electron microscopy (HRTEM) images
and selected area electron diffraction (SAED) patterns of the samples were collected with a
field-emission electron microscope (JEM-2100F, JEOL, Tokyo, Japan). UV-visible diffuse
reflectance spectroscopy (UV-vis DRS) was recorded to study the optical absorption ability
of photocatalysts with Hitachi U-4100 UV-visible spectrometer using a reference standard
of BaSO4. The photoluminescence (PL) spectra and time-resolved fluorescence spectra
were conducted on an Edinburgh FLS 1000 spectrometer (Edinburgh Instruments Ltd.,
Livingstone, UK) over an exaction wavelength of 375 nm. Electrochemistry impedance
spectroscopy (EIS), Mott–Schottky analyses and transient photocurrent spectra were mea-
sured using a CHI660E analyzer (CH Instruments, Inc., Bee Cave, TX, USA) with a standard
three-electrode system.

3. Results
3.1. Schematic Illustration of the Synthesis

The schematic illustration in Scheme 1 shows the synthesis process for the
ZnIn2S4/Ti3C2Tx (Tx = F, OH, O) samples, which consists of three steps: the prepara-
tion of the Ti3C2 by the selective etching of Ti3AlC2, surface post-treatment (the alkalization
treatment with NaOH and the mild oxidation treatment with Ar calcination) of Ti3C2Fx to
replace the –F termination groups with –OH or –O groups and the in-situ hydrothermal
synthesis of ZnIn2S4 on surface of Ti3C2Tx.
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3.2. Samples Characterization

The X-ray diffraction (XRD) patterns of Ti3AlC2 and the as-prepared Ti3C2Tx (Tx = F,
OH, O) samples in Figure S1 demonstrated a typical Ti3AlC2 and Ti3C2Tx MXene phase. No
crystal structure variation was observed for the Ti3C2(OH)x and Ti3C2Ox, indicating that
the surface functionalization treatments just modulated the termination groups without
changing the crystalline structure of Ti3C2Fx. The XRD pattern of Ti3C2Ox showed no
peaks of TiO2. Meanwhile, the morphology of the Ti3C2Tx nanosheets was maintained
even after the alkalization and oxidation treatments (Figure S2).

To confirm the surface termination groups of the as-prepared Ti3C2Tx (Tx = F, OH, O)
samples, we performed X-ray photoelectron spectroscopy (XPS), as shown in Figure 1a–c.
Figure 1a showed the high-resolution XPS spectrum of F 1s, the binding energy at 685.8 eV
was assigned to the Ti-F bond [26]. After the alkalization treatment and mild oxidation
treatment of Ti3C2Fx, the Ti-F peak intensity in Ti3C2(OH)x and Ti3C2Ox both significantly
decreased, indicating that the surface functionalization treatments did not change its crystal
structure, while the termination groups had modulated noticeably. The elemental composi-
tion result determined by XPS (Table S1) also confirmed the decrease of the –F termination
groups. As seen from the Ti 2p XPS spectra in Figure 1b, more detailed structural variation
could be obtained, four doublets were fitted for Ti 2p3/2 and Ti 2p1/2, which indicated



Materials 2023, 16, 2168 5 of 12

that the Ti species in Ti3C2Tx exhibited four kinds of chemical environment. The Ti 2p3/2
binding energies at approximately 455.1, 455.8, 456.9 and 459.1 eV could be assigned to
C-Ti-C, C-Ti-OH, C-Ti-O and O-Ti-O bonds, respectively [23,27,28]. Obviously, compared
to Ti3C2Fx, the intensity of the C-Ti-O peak for Ti3C2Ox increased and the intensity of the
C-Ti-OH peak for Ti3C2(OH)x increased, which indicated that the –F terminations in the
Ti3C2Fx were replaced by –O and –OH after the oxidation treatment and alkalization treat-
ment, respectively. The intensity of the O-Ti-O peak increased in Ti3C2Ox and Ti3C2(OH)x,
which was attributed to the surface oxidation with the transform C-Ti-C band to O-Ti-O.
Furthermore, the O 1s XPS spectra (Figure 1c) exhibited Ti-O, Ti-OH and C-OH peaks at
the binding energies of 530.1, 531.8 and 533.5 eV, respectively [29,30]. In particular, the
peak at 531.8 eV demonstrated the highest proportion of –OH groups on the surface of
Ti3C2(OH)x, while Ti3C2Ox showed the highest concentration of Ti-O due to O-terminated
surfaces. The XPS results showed the coexistence of Ti-F, Ti-OH and Ti-O bonds in all
Ti3C2Tx samples. It should be noted that the Ti3C2Ox, Ti3C2(OH)x and Ti3C2Ox represented
a higher density of termination groups –F, –OH and –O on the surface, respectively. After
the alkalization treatment, the Ti-F peak intensity significantly decreased while the Ti-OH
peak intensity increased in Ti3C2(OH)x, implying the successful replacement of –F with
–OH. Similarly, the –F groups in Ti3C2Fx were successfully replaced by –O with the mild
oxidation treatment to form the Ti3C2Ox.
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Figure 1. (a) F 1s XPS spectra, (b) Ti 2p XPS spectra, (c) O 1s XPS spectra and (d) FT-IR spectra of
Ti3C2Tx (Tx = F, OH, O).

The surface termination groups of the Ti3C2Tx samples were further analyzed using
Fourier transform infrared spectroscopy (FTIR), as displayed in Figure 2d. The FTIR
spectrum of Ti3C2Tx samples showed two peaks at approximately 3430 and 1625 cm−1,
which assigned to the −OH band on the surface of Ti3C2Tx. In addition, a peak at 657 cm−1

can be observed, which is attributed to the Ti-O band [31]. It is notable that Ti3C2(OH)x
showed the strongest −OH vibration intensity and that the Ti3C2Ox exhibited a significantly
increased Ti-O vibration, which was consistent with the XPS results. These results indicated
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that the surface functionalized Ti3C2(OH)x and Ti3C2Ox were successfully synthesized
with the alkalization treatment and mild oxidation treatment, respectively.
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Figure 2. (a) SEM image, (b) TEM image, (c) HRTEM and (d) STEM image and corresponding EDX
element mapping of Zn, In, S, Ti and C of ZnIn2S4/Ti3C2Ox.

The ZnIn2S4/Ti3C2Tx (Tx = F, OH, O) composites were obtained through the in-situ
growth of ZnIn2S4 onto the surface of Ti3C2Tx. To acquire the crystallinity phase of the
ZnIn2S4 and ZnIn2S4/Ti3C2Tx composites, the XRD analysis was introduced (Figure S3).
It was found that all ZnIn2S4/Ti3C2Tx samples presented similar diffraction peaks with
ZnIn2S4. The missing Ti3C2Tx diffraction peaks could be ascribed to the low content
and high dispersion of Ti3C2Tx in the composites. The morphology of the ZnIn2S4 and
ZnIn2S4/Ti3C2Ox samples were investigated using scanning electron microscopy (SEM).
The ZnIn2S4 presented a morphology of nanoflowers stacked with nanosheets (Figure S4).
From the SEM image of ZnIn2S4/Ti3C2Ox sample in Figure 3a, it can be seen that the
ZnIn2S4 particles are uniformly dispersed and anchored onto the Ti3C2Ox surface. The
more detailed microstructure of the ZnIn2S4/Ti3C2Ox composite were further demon-
strated using the transmission electron microscopy (TEM) technique. TEM observation
confirmed such hierarchical ZnIn2S4/Ti3C2Ox structure (Figure 2b). Furthermore, as shown
in Figure 2c, the lattice distances of the ZnIn2S4/Ti3C2Ox photocatalyst were measured,
and the lattice fringes spacing of 0.32 and 0.41 nm were corresponded to the (102) and
(006) planes of ZnIn2S4, while the lattice fringes spacing of 0.26 nm was assigned to
the (0110) crystal plane of Ti3C2Ox. Moreover, there was an obvious interface contact
observed between the ZnIn2S4 and the Ti3C2Ox, which could contribute to the faster
transfer of the photogenerated charge. In addition, the corresponding EDX elemental
mapping (Figure 2d) displayed that the Zn, In, S, Ti and C elements were uniformly dis-
tributed in the ZnIn2S4/Ti3C2Ox sample. The above results powerfully confirmed that the
ZnIn2S4/Ti3C2Ox photocatalyst was successful constructed.
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The optical properties of pristine ZnIn2S4 and ZnIn2S4/Ti3C2Fx (T = F, OH, O) com-
posites were analyzed using the UV-vis diffuse reflectance spectra (UV-vis DRS). As shown
in Figure 3a, the pristine ZnIn2S4 showed an absorption edge at 560 nm, while the ab-
sorption edge of the ZnIn2S4/Ti3C2Tx composites exhibited a slightly red shift with the
introduction of Ti3C2Tx. Moreover, compared to that of ZnIn2S4, the absorption intensities
of the ZnIn2S4/Ti3C2Tx composites increased in the whole visible light region, suggesting
that the Ti3C2Tx loading increased the visible light utilization efficiency of ZnIn2S4. In
addition, the UV-vis DRS spectra of ZnIn2S4 and ZnIn2S4/Ti3C2Tx composites were con-
verted into Tauc’s band gap plots (Figure 3b), the band gaps of ZnIn2S4, ZnIn2S4/Ti3C2Fx,
ZnIn2S4/Ti3C2(OH)x and ZnIn2S4/Ti3C2Ox were measured to be 2.64 eV, 2.60 eV, 2.59 eV
and 2.63 eV, respectively.

3.3. Photocatalytic H2 Evolution Activity

The photocatalytic H2 evolution activity of the as-obtained pure ZnIn2S4 and
ZnIn2S4/Ti3C2Tx composites were evaluated under visible light irradiation using tri-
ethanolamine (TEOA) as a sacrificial reagent. It was well known that Ti3C2Tx were not
semiconductors and they could not generate electrons and holes upon light irradiation [32].
Therefore, Ti3C2Tx had no photocatalytic H2 evolution activity. In Figure 4a, the pure
ZnIn2S4 exhibited the poor H2 evolution rate of 253 µmol h−1 g−1. Inspiringly, after
loading the Ti3C2Tx cocatalysts, the ZnIn2S4/Ti3C2Tx composites all exhibited the im-
proved photocatalytic H2 evolution activity, and the order of photocatalytic activity was
ZnIn2S4/Ti3C2Ox > ZnIn2S4/Ti3C2Fx > ZnIn2S4/Ti3C2(OH)x > ZnIn2S4. Furthermore, the
photocatalytic H2 evolution rate of the ZnIn2S4/Ti3C2Ox composites strongly depended on
the amount of Ti3C2Ox. The ZnIn2S4/Ti3C2Ox composite with 1.0 wt% Ti3C2Ox achieved
the optimal H2 evolution rate of 363 µmol h−1 g−1 (Figure 4b). By further increasing the
Ti3C2Ox content, the H2 evolution rate of the ZnIn2S4/Ti3C2Ox composite decreased, which
could be due to the excessive amount of Ti3C2Ox covering the active sites and hindering the
light absorption of ZnIn2S4 [33]. The photocatalytic stability test of ZnIn2S4/Ti3C2Ox for
photocatalytic H2 evolution was carried out for four consecutive cycles (Figure 4c). It can
be seen that ZnIn2S4/Ti3C2Ox maintained the photocatalytic H2 evolution activity during
the four consecutive cycles, indicating the excellent photostability of ZnIn2S4/Ti3C2Ox.
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production over ZnIn2S4/Ti3C2Ox.

3.4. The Mechanism of Enhanced Photocatalytic Activity

To shed light on the fundamental reasons for the enhanced photocatalytic performance
of ZnIn2S4/Ti3C2Ox, fluorescence property and photoelectrochemical measurements were
employed. It is well known that the transfer efficiency of photogenerated electrons and
holes was an important influencing factor for the photocatalytic performance. The pho-
toluminescence (PL) spectrum was employed to illustrate the transfer efficiency of the
photogenerated electrons and holes. Figure 5a showed the PL spectra of the ZnIn2S4 and
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ZnIn2S4/Ti3C2Tx composites measured at 375 nm. The order of the PL signal intensity at
565 nm was ZnIn2S4 > ZnIn2S4/Ti3C2(OH)x > ZnIn2S4/Ti3C2Fx > ZnIn2S4/Ti3C2Ox. The
loading of Ti3C2Tx lead to the decreased PL intensity of ZnIn2S4, and the ZnIn2S4/Ti3C2Ox
composite showed the lowest PL intensity, which indicated that the addition of the Ti3C2Ox
cocatalyst could effectively facilitate the transfer of the photogenerated electrons and
hole on the ZnIn2S4 photocatalyst. The time-resolved photoluminescence (TRPL) spectra
(Figure 5b) further certified this result. The calculated average fluorescence lifetime (Ave. τ)
of ZnIn2S4/Ti3C2Ox (0.594 ns) was significantly longer than that of ZnIn2S4 (0.167 ns),
which demonstrated that the Ti3C2Ox cocatalyst loading greatly reduced the recombination
rate of the photogenerated electrons and holes on ZnIn2S4. In addition, electrochemical
impedance spectroscopy (EIS) and transient photocurrent response analyses were carried
out to further investigate the separation and transfer ability of the photogenerated charge
carriers. The EIS Nyquist plots were shown in Figure 5c and the arc radius on the EIS
Nyquist plot of ZnIn2S4/Ti3C2Ox was the smallest among these four samples, which in-
dicated its lowest resistance for the charge carriers on the ZnIn2S4/Ti3C2Ox composite.
This also confirmed that the Ti3C2Ox cocatalyst enhanced the separation and transfer ef-
ficiency of the photogenerated electrons and holes of ZnIn2S. The transient photocurrent
densities of the as-prepared samples were displayed in Figure 5d. Compared with that of
the blank ZnIn2S4, the photocurrent densities of the ZnIn2S4/Ti3C2Tx samples exhibited
remarkable increases; in particular, ZnIn2S4/Ti3C2Ox exhibited the highest photocurrent
density, further confirming the excellent photogenerated carriers transfer and separation
ability of ZnIn2S4/Ti3C2Ox. All of these results proved that the ZnIn2S4/Ti3C2Ox exhibited
the fastest transfer and separation ability of photogenerated electrons and holes, further
resulting in the excellent photocatalytic H2 production performance.
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tocurrent responses of ZnIn2S4 and ZnIn2S4/Ti3C2Tx (Tx = F, OH, O) samples.

In terms of the band theory, electron transfer behavior is closely related to the work
functions of ZnIn2S4 and Ti3C2Tx (Tx = F, OH, O). In order to determine the work functions
(Φ) of the ZnIn2S4 andTi3C2Tx samples, the ultraviolet photoelectron spectroscopy (UPS)
technique was employed, as shown in Figure 6. The incident photon energy (hν) was
21.22 eV. As for ZnIn2S4 (Figure 6a), the secondary electron cutoff energy (Ecutoff) was
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9.32 eV and the Fermi energy (EFermi) was 25.92 eV. The work function of ZnIn2S4 was
calculated to be 3.33 eV using the formula: Work function (WF) = hν + Ecutoff − EFermi.
Similarly, the work functions for Ti3C2Fx, Ti3C2(OH)x and Ti3C2Ox were calculated to be
4.22 eV, 3.73 eV and 4.57 eV, respectively (Figure 6b–d). Obviously, the work functions of
the Ti3C2Tx samples were all higher than that of ZnIn2S4. Therefore, the photogenerated
electrons could transfer from ZnIn2S4 to Ti3C2Tx. Meanwhile, the Schottky barrier could
be formed at the ZnIn2S4/Ti3C2Tx interface due to the difference in the work function
and the band alignment between ZnIn2S4 and Ti3C2Tx, which could greatly accelerate the
separation and transfer of the photogenerated electrons and holes [34]. The electrostatic
potentials of Ti3C2Fx, Ti3C2(OH)x and Ti3C2Ox were obtained from a density functional
theory (DFT), as shown in Figure S5. The order of work function values obtained from the
DFT calculations was in accordance with that from the UPS characterization. Moreover,
the difference in work function between ZnIn2S4 and Ti3C2Tx was associated with the
photogenerated electrons’ transfer ability [35,36]. The largest difference in the work function
between ZnIn2S4 and Ti3C2Ox indicated that Ti3C2Ox showed the strongest electron capture
capability from ZnIn2S4 in the ZnIn2S4/Ti3C2Ox heterojunction, leading to the significantly
high photocatalytic activity.
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Based on the aforementioned results, a probable photocatalytic mechanism for
ZnIn2S4/Ti3C2Ox was proposed (Figure 7). The conduction band potential of the parent
ZnIn2S4 was estimated by the Mott-Schottky method (Figure S6). Under visible light
irradiation, the photogenerated electrons on the valence band (VB) of ZnIn2S4 were excited
to the conduction band (CB). Because the work function of Ti3C2Ox was higher than that of
ZnIn2S4, photogenerated electrons in the CB of ZnIn2S4 could quickly migrate to the surface
of Ti3C2Ox across the intimate interface, the Schottky junction formed between ZnIn2S4 and
Ti3C2Ox could further prevent the recombination of photogenerated electrons and holes
in the ZnIn2S4/Ti3C2Ox. Subsequently, the photogenerated electrons in ZnIn2S4/Ti3C2Ox
were available to react with water to evaluate H2, while the holes on the VB of ZnIn2S4 are
consumed by the sacrificial agent TEOA.
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4. Conclusions

In summary, we have successfully designed and synthesized the surface functionalized
Ti3C2(OH)x and Ti3C2Ox using the surface post-treatments of Ti3C2Fx; then Ti3C2Tx (Tx = F,
OH, O) were employed as the substrate and cocatalysts for the in-situ growth of ZnIn2S4 to
obtain ZnIn2S4/Ti3C2Tx heterojunctions for photocatalytic H2 production. Remarkably, the
photocatalytic H2 production activity of ZnIn2S4/Ti3C2Tx was greatly improved, compared
to that of ZnIn2S4. Due to the differences in work function between ZnIn2S4 and Ti3C2Tx,
the formation of the Schottky junction could effectively accelerate the separation and
migration of photogenerated electrons and holes, and thus boost the photocatalytic H2
evolution activity. In particular, among Ti3C2Tx (Tx = F, OH, O), the work function of
Ti3C2Ox was the largest, and the Ti3C2Ox showed the strongest electron capture ability from
ZnIn2S4. Experimental characterization analyses also demonstrated the rapid separation
and transfer of photogenerated electrons and holes of ZnIn2S4/Ti3C2Ox. This work paves
the way for photocatalytic applications of MXene-based photocatalysts by tuning their
surface termination groups.
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as-synthesized Ti3C2Tx (Tx = F, OH, O); Figure S2: SEM of (a) Ti3C2Fx, (b) Ti3C2(OH)x and (c)Ti3C2Ox;
Figure S3: XRD pattern of ZnIn2S4 and ZnIn2S4/Ti3C2Tx (Tx= F, OH, O); Figure S4: The SEM of
ZnIn2S4; Figure S5: Electrostatic potentials of Ti3C2Tx (Tx = F, OH, O); Figure S6: Mott–Schottky
diagram of ZnIn2S4; Table S1: the atomic ratio of Ti3C2Tx (Tx = F, OH, O) by XPS results [37,38].
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