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Abstract: This paper reports two piezoelectric materials of lead zirconium titanate (PZT) and alu-
minum nitride (AlN) used to simulate microelectromechanical system (MEMS) speakers, which
inevitably suffered deflections as induced via the stress gradient during the fabrication processes.
The main issue is the vibrated deflection from the diaphragm that influences the sound pressure level
(SPL) of MEMS speakers. To comprehend the correlation between the geometry of the diaphragm
and vibration deflection in cantilevers with the same condition of activated voltage and frequency, we
compared four types of geometries of cantilevers including square, hexagon, octagon, and decagon
in triangular membranes with unimorphic and bimorphic composition by utilizing finite element
method (FEM) for physical and structural analyses. The size of different geometric speakers did
not exceed 10.39 mm2; the simulation results reveal that under the same condition of activated
voltage, the associated acoustic performance, such as SPL for AlN, is in good comparison with the
simulation results of the published literature. These FEM simulation results of different types of
cantilever geometries provide a methodology design toward practical applications of piezoelectric
MEMS speakers in the acoustic performance of stress gradient-induced deflection in triangular
bimorphic membranes.

Keywords: stress gradient; deflection; aluminum nitride (AlN); MEMS speaker; sound pressure
level (SPL); piezoelectric; unimorph; bimorph

1. Introduction

The conventional speaker generates sound through a magnetic mechanism with a
coil and then pushes the air through the vibration of the cone. The MEMS speaker is a
device that uses microelectromechanical technology to generate audio. The advantage of
the MEMS speaker is excellent audio transparency and high fidelity [1]. It is an integrated
piezoelectric element technology in which the structure covers the driver, the actuator,
and the piezoelectric material layer. The MEMS microspeaker offers tremendous usage
in smartphones, the internet of things (IoT), hearing aids, wearable devices, laptops, and
in-ear applications [2,3].

Lead zirconate titanate (PZT), aluminum nitride (AlN), and zinc oxide (ZnO) are
widely used for piezoelectric materials [4–6]. This research focuses on the comparison
between PZT and AlN materials with triangular unimorphic and bimorphic cantilever struc-
tures including square, hexagonal, octagonal, and decagonal geometries for piezoelectric
MEMS speaker applications. The piezoelectric properties of PZT materials are better than
those of AlN materials, and PZT films are widely used in optoelectronics, microelectronics,
microelectromechanical systems, and integrated optics. Compared with the piezoelectric
PZT film, AlN is an important nitride in the III–V group with a wurtzite structure that
exhibits high structural stability [7,8]. In addition, AlN film has the advantage with lower
piezoelectric response in which the sound wave velocity of AlN film is higher, meaning
that AlN film can be used to make high-frequency filters such as GHz and high-frequency
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resonance in devices. Although PZT thin film materials have a high dielectric constant,
coupling coefficient, lateral piezoelectric coefficient, and vertical piezoelectric coefficient,
acoustic wave velocity is low; thus, the PZT materials have poor compatibility. The propor-
tion of individual components and piezoelectric properties are affected by factors such as
crystalline orientation, the distribution ratio of components, and particle size. It is difficult
to repeatedly produce high-quality PZT thin films. The AlN thin film has better CMOS
compatibility and a mature fabrication process [9,10]. In contrast, the fabrication process of
PZT is less mature, and the lead content is not environmentally friendly. Therefore, AlN is
mainly simulated and discussed in this work.

Traditionally, an important interest in the device design of MEMS speaker is the per-
formance evaluation. Surrounded by various practicable managing factors, residual stress
is a major issue directly affecting the structure deflection and performance variations [11].
Consequently, the characterization of residual stress in MEMS structures is a significant
part in various aspects. Residual stresses in thin film can be regarded as the combination of
a uniform stress and a stress gradient across the thickness [12]. During the release process
by removing the sacrificial layer, the phenomena of deflection generated by residual stress
and a stress gradient will influence the speaker performance.

The sound pressure level (SPL) of microelectromechanical systems (MEMS) speakers
with and without stress gradients in physical vapor deposition (PVD) was compared in this
study and it was found that the SPL without stress gradients had the best performance. The
slope of the stress gradient was also found to impact the amount of buckling that occurs on
the wafer, which can affect the wafer yield and the performance of the SPL [13]. To better
understand this phenomenon, the electric field distribution on the surface of the wafer
in a PVD chamber was simulated using COMSOL software. One of the factors that can
contribute to non-uniform wafer thickness is the uneven distribution of electric field. A
non-uniform distribution of the electric field was found to lead to non-uniform deposition
of the wafer, resulting in a stress gradient on the wafer surface that increases from the
center to the edge. Different geometric structures of the MEMS speaker membranes were
also observed to have varying degrees of deflection under the same stress gradient, with
more circular structures deflecting less and thus being less affected by the stress gradient.
By controlling the stress gradient, it was found that it is possible to improve the wafer yield.
The aim of this study is to achieve an acoustic performance of stress gradient-induced
deflection of triangular unimorphic/bimorphic cantilevers for practical applications of
piezoelectric MEMS speakers.

2. Simulation Set-Up, Speaker Design and Geometry
2.1. Simulation Set-Up: Parameters

We designed unimorphic and bimorphic loudspeakers with four different cantilever
geometries including square, hexagon, octagon, and decagon in triangular membranes,
and utilized COMSOL Multiphysics (COMSOL, Inc., Burlington, MA 01803, USA, 6.0)
or simulation in the study of physical and structural properties of piezoelectric devices.
Figure 1 shows the simulation parameters with associated key results on variants of MEMS
speaker designs including the thickness in active layer, the piezoelectric materials in active
layer (PZT and AlN), the molybdenum (Mo) electrode material, the driving voltage, and
the SPL between the unimorphic and bimorphic structures. The key parametric variant-
associated results will be discussed in the following sections as well as in the Results
and Discussion.
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Figure 1. Illustration of the various cantilever geometries of MEMS speakers and key results of
variant MEMS speakers.

2.2. Speaker Geometry

The unimorphic and bimorphic structures have an active area of about 10.39 mm2

with an air gap of 8 µm, and the active layer is composed of PZT and AlN piezoelectric
materials [14]. Each active layer is connected to a layer of electrodes, and the proposed
structure is illustrated in Figure 2. Unimorph and bimorph cross-sectional structures can
be realized as shown in Figure 3. For a bimorphic device, molybdenum (Mo) is used as the
bottom, middle, and the upper electrode, see Figure 3a. For a unimorphic device, Mo is
used as the bottom and upper electrode, see Figure 3b.
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Figure 3. Cross-section of the unimorphic and bimorphic speakers. (a) Mo is used as the bottom,
middle, and upper electrode in a bimorph device. (b) Mo is used as the bottom and upper electrode
in a unimorphic device.

2.3. Speaker Design

Figure 3 shows the schematic cross-sections of the unimorphic and bimorphic speak-
ers. Wang et al. developed a MEMS loudspeaker with a side length of 2 mm and six di-
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aphragms [15]. A remarkable SPL improvement was obtained at low frequency compared
to other existing MEMS speakers [15–19]. The simulation size of the different cantilevers
in a unimorphic structure is set to 10.39 mm2 and the air gap width is ~8 µm. Lang
et al. designed and fabricated a bimorphic diaphragm with dimensions of 1.4 × 1.4 mm2.
The purpose is to reduce the area of the loudspeaker while achieving a high sound pres-
sure level of the loudspeaker. Thus, the area of the loudspeaker diaphragm is set to be
1.4 × 1.4 (1.96) mm2 [9]. The resonant frequency is fixed at ~10 kHz. A resonant frequency
that is up to 10 kHz can give the loudspeaker better high-frequency performance and wider
bandwidth. The thickness of the AlN active films is fixed at 1 µm to guarantee the quality
of the films. This paper reports on the simulation of MEMS loudspeaker diaphragms
with four different geometric cantilever structures. The area is about 10.39 mm2, and the
thickness of each unimorph and bimorph active layer is 500 nm for both AlN and PZT.
The thickness of Mo is 25 nm as an electrode, and the thickness of Si is 5 µm as a support
layer. For simulation purposes, the symmetry condition requires two halves adjacent to
each device and a single air gap. The driving voltage between the top electrode and bottom
electrode ranges from 2 V to 20 V. The cantilever geometries are separated by narrowing
air gaps, and the full thermo-viscous acoustic formulation is used to simulate the acoustic
behavior. The simulated results are based on the physical conditions of solid mechanics,
electrostatics, and pressure/thermo-viscous acoustics. Table 1 lists the materials properties
(AlN, Si, Mo, SiO2, and PZT) that we use for simulation.

Table 1. Material properties.

Material
Young’s

Modulus E
(GPa)

Poisson’s
Ratio

Density ρ
(kg/m3)

Piezoelectric
Coefficient

(d31) (pm/V)

Dielectric
Constant

(εr)

AlN 345 0.24 3300 −1.92 9
Si 170 0.28 2329 - -

Mo 312 0.31 10,200 - -
SiO2 70 0.17 2200 - -
PZT 63 0.31 7500 −1.80 762.5

3. Results and Discussion
3.1. Film Thickness versus Deflection

Figures 4 and 5 show that the unimorph and bimorph active layers are applied with
different voltages at different thicknesses. For the unimorph active layer with different
thicknesses, the maximum deflection value of the PZT material can reach ~450 µm and
the maximum deflection value of the AlN material can reach ~18 µm. For the bimorph
active layer with different thicknesses, the maximum deflection of the PZT material can
reach ~390 µm and the maximum deflection of the AlN material can reach ~12 µm. The
deflection of the PZT material is much higher than that of the AlN material. The result
shows the decagonal active layer of the unimorph active layer has the largest deflection,
and the octagonal and decagonal active layers of the bimorph layer show less deflection.
The active layer has thicknesses of 0.5, 1.0, 1.5, and 2.0 µm, and a thickness of 0.5 µm is
much better than the others. As shown in Figures 4 and 5, the largest deflection is achieved
at a layer thickness of 0.5 µm. Therefore, the thickness of the unimorph and bimorph active
layers in this study was set at 500 nm (0.5 µm) for both AlN and PZT.

3.2. Driving Voltage versus Deflection

As shown in Figure 6, the unimorph and bimorph active layers with different geomet-
ric cantilever structures are subjected to different voltages at a fixed thickness of 500 nm.
The specified voltage range is between 2 V and 20 V. From Figure 6, it shows the larger
the applied voltage, the larger the deflection. For the four different geometric cantilever
structures, the deflection is the largest for decagonal geometry. Figure 6a shows that the
deflection of the decagonal PZT active layer can be up to 450 µm and the deflection of the
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AlN active layer can be up to 18 µmm, both in a unimorphic diaphragm. In Figure 6b, the
deflection of the decagonal PZT active layer can be up to 390 µm and the deflection of the
AlN active layer can be up to 12 µm in a bimorphic diaphragm. However, AlN piezoelectric
material is more compatible with CMOS manufacturing than PZT piezoelectric material
and is more environmentally friendly without lead. The fabrication process of AlN film
is more mature than that of PZT, therefore AlN is mainly simulated and discussed in
this study.
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3.3. Film Stress Gradient Distribution versus Deflection

In a vacuum plasma chamber, plasma is an ionized gas made up of charged particles
and atomic nuclei. The electron density refers to the number of electrons present within
a specific volume. An electric field is a potential difference created by charged particles,
which can be used to describe the distribution and movement of charges. There is a close
relationship between plasma, electron density, and the electric field [20]. The density of
plasma is related to the electron density since most of the particles in plasma are electrons.
There is also a connection between the electron density and the electric field, as the electric
field can impact the movement of electrons. For instance, when the electric field strength
increases, the speed of electron movement increases, leading to an increase in electron
density. At the same time, electron density can also affect the electric field, as the presence
of electrons causes a change in charge distribution, which in turn affects the strength of the
electric field. In general, in a vacuum plasma chamber, plasma, electron density, and the
electric field are interrelated and have a close connection with each other. During the process
of depositing thin films, charged particles in the plasma can deposit onto the substrate
through the electric field. The distribution of the electric field on the substrate is influenced
by various factors, including the material properties of the substrate, plasma characteristics,
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and chamber design. By appropriately adjusting these factors, the distribution of the
electric field can be controlled, which in turn affects the mass, thickness, and chemical
composition of the thin film.
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In PVD processes, in order to ensure sufficient thickness distribution at the edge of
the wafer, we face a great challenge to supply larger plasma intensity at its edge [21].
If we ignore the importance of the plasma parameter, this leads to an increase in the
ion bombardment at the wafer edges which takes place when increasing the value of
the residual stress in conventional DC-pulsed processes. The close relationship between
plasma, electron density, and electric field in a vacuum plasma chamber is evident. An
inhomogeneous plasma can lead to an inhomogeneous electric field distribution (Figure 7a)
that produces different stress distributions in AlN layers, from which emerge the different
stress gradients from the bottom to top surface of the AlN layer (see Figure 7c,d). According
to the fabrication process, the residual stress and stress gradient will cause either tensile
or compressive stress through the AlN layer thickness. Figure 7b schematically shows the
cross-section AB of a single diaphragm. As shown in Figure 7c,d, the difference of the local
stress between the bottom and top surface at the edge area can be distinguished, where
the stress at the edge area is much larger than that at the center area. By utilizing FEM,
the electric field on wafer surface was simulated, which demonstrated the non-uniform
distribution of the electric field on wafer surface was induced by plasma. The increase in
the ion bombardment that occurred at wafer edge brings out the different stress gradients
from the wafer center to wafer edge.
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than AlN. It also proves that the cantilever geometry of the diaphragm can improve the performance
of the loudspeaker for deflection amplitude vs. driving voltage at a fixed thickness of 500 nm:
(a) unimorphic diaphragm and (b) bimorphic diaphragm.



Materials 2023, 16, 2129 8 of 16

Materials 2023, 16, x FOR PEER REVIEW 8 of 18 
 

 

plasma, electron density, and electric field in a vacuum plasma chamber is evident. An 

inhomogeneous plasma can lead to an inhomogeneous electric field distribution (Figure 

7a) that produces different stress distributions in AlN layers, from which emerge the dif-

ferent stress gradients from the bottom to top surface of the AlN layer (see Figure 7c,d). 

According to the fabrication process, the residual stress and stress gradient will cause ei-

ther tensile or compressive stress through the AlN layer thickness. Figure 7b schematically 

shows the cross-section AB of a single diaphragm. As shown in Figure 7c,d, the difference 

of the local stress between the bottom and top surface at the edge area can be distin-

guished, where the stress at the edge area is much larger than that at the center area. By 

utilizing FEM, the electric field on wafer surface was simulated, which demonstrated the 

non-uniform distribution of the electric field on wafer surface was induced by plasma. 

The increase in the ion bombardment that occurred at wafer edge brings out the different 

stress gradients from the wafer center to wafer edge. 

 

 

Figure 7. (a) Electric field distribution induced by plasma on wafer surface of AlN layers. (b) Cross-

section AB of single diaphragm. (c) Stress gradient at wafer center. (d) Stress gradient at wafer edge. 

As a matter of fact, according to the study of Lang et al., the performance of SPL 

within FEM-simulated results generated by a bimorphic structure will be better than a 

unimorphic structure [9]. Consequently, we utilize the bimorphic structure for further re-

search. 

In most of the designs, stress gradient is the major problem from the results in posi-

tive or negative beam curvature, therefore, it is important to reduce the influence of the 

stress gradient. The increasing residual stress becomes more non-identical as the distance 

of device location starts from the wafer center [22–24]. Moreover, we checked it with FEM 

analysis to determine if this could be due to residual stress and stress gradient. Table 2 

Figure 7. (a) Electric field distribution induced by plasma on wafer surface of AlN layers.
(b) Cross-section AB of single diaphragm. (c) Stress gradient at wafer center. (d) Stress gradient at
wafer edge.

As a matter of fact, according to the study of Lang et al., the performance of SPL within
FEM-simulated results generated by a bimorphic structure will be better than a unimorphic
structure [9]. Consequently, we utilize the bimorphic structure for further research.

In most of the designs, stress gradient is the major problem from the results in positive
or negative beam curvature, therefore, it is important to reduce the influence of the stress
gradient. The increasing residual stress becomes more non-identical as the distance of
device location starts from the wafer center [22–24]. Moreover, we checked it with FEM
analysis to determine if this could be due to residual stress and stress gradient. Table 2 lists
the stress positions in AlN bimorphic layers. As shown in Figure 8, for these simulations
with the increasing residual stress and different stress gradients, the triangular cantilever
membrane with the increase in deflection amplitude is located starting at the wafer center
toward the wafer edge. Since the residual stress σ2(top surface A) > σ1(bottom surface B)
in tensile stress, the direction of deflection points is up (positive curvature) (Figure 8a);
if the residual stress σ2(top surface A) < σ1(bottom surface B) in compressive stress, the
direction of deflection points is down (negative curvature) (Figure 8b) [25].



Materials 2023, 16, 2129 9 of 16

Table 2. Conditions of AlN stress in AlN bimorphic layers from center position to edge position of
wafer.

Residual Stress (MPa)

Location Edge
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During the manufacturing process, film residual stress cannot be eluded but can
be minimized by modifying the parameters of the manufacturing process, including the
composition selection of film and seed layer material applied for the growth of freely
moving parts, i.e., membranes of the MEMS speaker [26,27]. The film residual stress
plays a key role in a mechanical structure, which can lead to significant changes in the
MEMS speaker. Figure 9a,b presents the residual stress gradients in AlN film 1 near the
bottom electrode and AlN film 2 near the upper electrode, respectively. It can be seen
that different results can be obtained when the voltage remains the same but the stress
gradient is changed. Figure 9a,b shows the variation in the stress gradient of AlN film
1 and film 2 with increasing thickness. The residual stress in average is 500 MPa and
600 MPa, respectively. With the difference in stress gradient coefficient ω (Equation (1)
below), the local stress (σ) changes from rapid to slight, and the given stress value range
is ±50, i.e., between 450 MPa and 550 MPa. While tuning the stress gradient coefficient
ω, the curvature of the stress distribution can be tuned from curve distribution to linear
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distribution. The curve that approaches the value of the stress gradient seems to be more
linear and the deflection is minimal. Figure 9c shows the cross section of the diaphragm
which is assembled by Mo (electrode) and AlN (film 1 and film 2).
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average stress in AlN film 2, and (c) schematic cross-section of AlN film 1 and AlN film 2.

3.4. SPL versus Frequency in Different Cantilever Geometries

The local stress at different heights of the film with respect to the average stress of the
film can follow Equation (1) below:

σlocal stress = σmrs + σ∆σtanh
(

Z − hm

ω

)
(1)

The film stress gradient can be addressed as a composite material with N layers of
AlN films, where σlocal stress (MPa) is the local AlN film residual stress, σmrs (MPa) is mean
residual stress, σ∆σ is the difference of residual stress between upper surface/lower surface
and middle surface in thin film, which causes the stress gradient in thin film, Z (µm) is
the height of thin film, hm (µm) is the height of middle surface, and ω is the coefficient of
stress gradient.

In the application of stress gradients to different bimorphic cantilever geometries
in a triangular membrane, Figure 10 shows the deflection results in the FEM analysis
with four different geometries including square, hexagonal, octagonal, and decagonal
diaphragms. The deflection for the different cantilever membrane geometries are 384, 426,
469, and 475 µm, respectively, with the same average residual stress and stress gradient.
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The results from FEM show that the four types of devices have the same area but decreasing
the area of a single membrane in a device leads to an increase in deflection.
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Figure 10. The deflection of the diaphragm after applying stress gradient with different bimorphic
cantilever geometries in a triangular membrane.

The speaker is located in an infinite baffle and uses a voltage difference acting between
the faces of the piezoelectric material to create vibrations that will propagate as acoustic
perturbations. The acting voltage contains a constant component, usually called the bias
voltage (DC), and an alternating voltage (AC or perturbation contribution); it follows
Equation (2) [28]:

V0 = VDC + VAC cos(2π f ·t) (2)

where V0 is the terminal voltage, VDC is the bias voltage, VAC is the alternating voltage, f is
the driving frequency, and t is the time.

During the manufacturing process, the generation of local residual stress cannot be
avoided. When we compare the performance of SPL with local residual stress and without
local residual stress at 10 V driving voltage, as shown in Figure 11 [29], the result shows



Materials 2023, 16, 2129 12 of 16

that SPL without local residual stress is better than SPL with local residual stress. For the
bimorphic loudspeaker, the simulation of SPL in different geometries shows that the highest
value of SPL for the square geometry without local residual stress gradually decreases,
and the value of SPL for the square geometry is still the highest when local residual stress
is present. The second highest value is for the hexagonal geometry, as shown in Table 3.
In addition, with the simulated condition of stress gradient, the SPL results show less
difference in the decagonal structure between the condition of non-utilizing stress gradient
and the condition of utilizing stress gradient. The attenuation of SPL in the decagonal
structure is much smaller than the square structure with the condition of stress gradient,
which is close to the circumstances of reality.
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Table 3. SPL values for different diaphragms.

Geometry of Speakers SPL (dB) without Stress
Gradient

SPL (dB) with Stress
Gradient

Square 105 93
Hexagonal 97 89
Octagonal 92 86
Decagonal 89 85
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3.5. Literature Results for Comparison

Most recently, Lang et al. [9] used FEM to simulate the acoustic performance of a
bimorph speaker structure with dimensions of 1.4 × 1.4 mm2 in a square shape by active
layers of 1 µm aluminum nitride (Figure 12a). The simulation results verified the feasibility
of the bimorph diaphragm and the improved SPL on the fabricated speakers. The test
results showed a good linearity between the sound pressure produced by the fabricated
speaker and the driving voltage (see Figure 12b) [9]. Additionally, in order to cross-check
the accuracy of our simulation, we compared the simulation results between our simulation
model and the reference design [9]. Our FEM model is shown to be reasonably accurate
and suitable for this study, as illustrated in detail below. Our simulation results exhibited a
strong resemblance to the experimental measurements reported in the literature.
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Figure 12. (a) MEMS speaker of a bimorph diaphragm on the square cantilever geometry in literature
reference [9]. (b) The linear relationship between the sound pressure produced by the fabricated
bimorph speaker in a square shape (1.4 × 1.4 mm2) and the driving voltage.

On the other hand, in order to thoroughly evaluate the simulation model’s accuracy,
we performed a comparison between our simulation results and those results presented
by Stoppel et al. [6] for simulating the SPL of a speaker structure, which included a 2 µm
thick PZT active layer and a 15 µm poly-Si support layer in a unimorph diaphragm with
dimensions of 4 × 4 mm2 as shown in Figure 13a. Figure 13b–d displays the simulation
results in reference [6] under three different air gap conditions of 5 µm, 10 µm, and 25 µm.
Our simulation results are slightly different from the reference paper and experimental
results due to some setting conditions that were not explicitly mentioned in the paper, such
as mesh size, boundary conditions, and back cavity size. However, the differences are
very small, indicating that our simulation model settings are almost identical to those of
the reference paper, which provides strong evidence of the simulation model’s credibility
and accuracy.

Furthermore, based on the reference design of Wang et al. [15], which has a unimorph
diaphragm on the hexagonal cantilever geometry with a side length of 2 mm (Figure 14a),
we compared our simulation results of the SPL versus frequency with both experimental
measurements and simulation results reported in the literature (reference [15]). We found
that our simulation results were closer to the experimental measurement curve reported in
the literature, while the simulated results in the literature showed significant differences.
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Figure 13. (a) MEMS speaker of unimorph diaphragms on the square cantilever geometry in literature
reference [6], and simulation results of SPL vs. frequency with different air gaps, (b) 5 µm, (c) 10 µm,
and (d) 25 µm, respectively, in the cantilever geometries of unimorph diaphragms.
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Figure 14. (a) MEMS speaker of a unimorph diaphragm on the hexagonal cantilever geometry in
literature reference [15]. (b) The results of our simulation (blue line) compared with the simulation
result (green dotted line) and experimental measurement (red dotted line) in literature reference [15].

4. Conclusions

In this study, we aimed to investigate the acoustic performance of triangular unimor-
phic/bimorphic cantilevers for MEMS applications. To do so, we simulated and analyzed
the performance of unimorph and bimorph active layers under various simulation param-
eters, including geometry, thickness, voltage, and stress gradient, using solid mechanics,
electrostatics, and pressure/thermo-viscous acoustics physical conditions. With the resid-
ual stress and stress gradient affected by plasma in the PVD process, the deflection form
location of wafer center to wafer edge displayed a positive or negative curvature. On the
other hand, the simulation shows that the active layer of AlN has the largest deflection at a
thickness of 0.5 µm by 20 driving voltage. When the deflection was simulated at a fixed
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thickness of 0.5 µm with variable voltage, the result of the simulation shows the higher the
voltage, the larger the deflection.

In fact, we compared our simulation results with the experimental measurements
reported in the literature references [9,15] for both bimorphic square cantilever structures
and unimorphic hexagonal cantilever structures. The results demonstrated the accuracy of
our simulation, as our simulation results were found to be highly similar to the experimental
measurement data reported in the literature.

In our design, while applying driving voltage of 20 V, the speaker resonated at around
10 kHz. Under that resonant frequency, the SPL was from 105 dB to 89 dB, and with
the initial deflection condition, the SPL was from 93 dB to 85 dB with the membrane
morphology of square to decagon. However, during the fabrication of sputtering, residual
stress is inevitable, and the deflection after release is generated by residual stress and
stress gradient which are the major factors that affect the SPL of the device. For the
bimorphic loudspeaker, the simulation of SPL in different geometries showed the highest
value of SPL for the square geometry with and without local residual stress. In addition,
with the simulated condition of stress gradient, the SPL results show less difference in
decagonal structure between the condition of non-utilizing stress gradient and the condition
of utilizing stress gradient. Furthermore, the stress gradient-induced deflection may also
consider the non-uniform deflection within one die, i.e., mismatch (the difference between
the maximum and minimum deflection) and relevant impact on the acoustic performance.

In future work, we are planning to fabricate bimorphic MEMS speakers with vari-
ous cantilevers: square, hexagonal, octagonal, and decagonal geometries. For optimizing
the thickness and membrane morphology of the diaphragm, the PVD fabrication process
to avoid high residual stress and stress gradient, as well as the experimental validation
afterwards, will be the first concern in order to attain a better SPL performance. Further-
more, acoustic measurement work will be carried out, including for the performance of
microspeakers such as SPL, total harmonic distortion (THD), and sensitivity.
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