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Abstract: This paper is a continuation of the research and analysis to estimate hyperelastic material
constants when only uniaxial test data are available. The FEM simulation was expanded and the
results obtained from three-dimensional and plane strain expansion joint models were compared
and discussed. The original tests were carried out for a gap with a width of 10 mm, whereas in the
case of axial stretching, the stresses and internal forces caused by the leading deformations were
recorded for a smaller gap, and the axial compression was also recorded. The differences in the global
response between the three- and two-dimensional models were also considered. Finally, using FEM
simulations, the values of stresses and cross-sectional forces in the filling material were determined,
which can be the basis for the design of expansion joints geometry. The results of these analyses could
form the basis of guidelines for the design of expansion joint gaps filled with material, ensuring the
waterproofing of the joint.
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1. Introduction

Building construction represents one of the largest development uses of construction
chemicals. Big buildings are divided into parts that are separated by expansion joints.
These are usually made during the construction and are present in every element, from the
bottom slab to the roof structure [1–7].

The main problem for the system of filling the expansion joint is water, because
it causes damage to internal installations and its structure. One of the most frequent
problems is water leakage through expansion joints. This is a real problem in buildings
under construction and during their service life [8–10]. Therefore, the material filling the
expansion joint should ensure its waterproofness. In this case, application of a polyurethane-
based resin is a good choice [9–12].

Within the expansion joints, section forces occur caused by, i.a., thermal deformations,
concrete creep and shrinkage, and the uneven subsidence of the structural members [12,13].
Various fillings, sealing materials, and closing in the form of premoulded inserts and
sealing strips are applied to ensure the expansion joints’ waterproofness [11] against the
above-mentioned non-mechanical excitations.

There are several products on the market for sealing expansion joints selected on the
basis of “the engineering knowledge, experience and assurances of the sealing crews”. One
of them—the resin—becomes a permanent flexible mass after curing, which, during the
cyclic excitations acting on the expansion joint, should expand or shrink depending on
changes in the geometry of the expansion joint. There are no standards and guidelines that
would indicate the use of a particular filler under specific conditions. There are also no
standards and guidelines for surface preparation, i.e., the preparation of sidewall surfaces
in an expansion joint [14,15]. For this reason, the comparison of the results of the FEM
numerical analysis and the experimentally determined material strength parameters seems
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to be the right direction for further research in order to correctly design the optimum width
of the expansion joint.

The authors of [16] presented an interesting alternative to other ways of fixing adhesive
bonded joints between glass panels and their load-bearing metal structures in façade
constructions. Silicon sealants have been studied for their excellent adhesion to glass
and exceptionally high resistance to environmental influences and aging. FEM nonlinear
numerical simulations were used to verify filled joints. An overview of the available
damage criteria for rubber-type materials was presented. The criteria application to silicone
sealants was verified for three characteristic stress states: uniaxial tension, compression,
and shearing.

A polyurethane polymer, which owing to specially selected additives providing a
better damping, was analyzed in PhD thesis [17]. The efficiency of a novel material for a
seismic vibration isolation bearing was carried out by experimental and detailed nonlinear
numerical FEM analyses. Discrete models response analysis of existing steel structure with
and without vibroisolation to several seismic and paraseismic excitations were performed.
Laboratory tests (compression and tension) allowed the determination of the material
constants for a five-parameter Mooney–Rivlin model for the analyzed polymer material.

In [18], the authors considered elastomeric tracks for industrial vehicles, in which
materials are incompressible and very high deformable. The material parameters for
several hyperelastic material models (Mooney–Rivlin) were determined in experiments.
The parameters were used to define FEM discrete models for computations. Numerical
results obtained for different models were compared with experiments, in which the
samples were exposed to the same load.

This manuscript is a description of one of the stages, into which the authors have
divided the study of the issue. The first step proposes a novel way to identify a physical
model of a hyperelastic material, where only a limited set of experimental data is available.
The results of these investigations were published in [19]. The next stage, presented in
this manuscript, concerns the possibility of numerically determining stress distributions
for typical excitations, to which the material filling the expansion joint is subjected. In
this part, the authors want to assess whether, in regard to the identified material model
and its previously determined physical constants, numerical simulations will give results
in acceptable ranges. In the final stage, for numerically determined distributions of the
stress tensor components, it is intended that various damage criteria will be applied, and
attempts to verify them experimentally will be made.

2. Objectives

The aim of the development and continuation of the research is to carry out FEM
simulations for a resin material in an expansion gap under different non-mechanical
excitations: axial stretching and compression, bending, and shearing. The influence of the
width of the gap on the response of the filling material in dilatated reinforced concrete
beams and slabs at different levels of forcing is studied. The results are the values of stresses
and cross-sectional forces in the filling material, which can be the basis for the design of
expansion joints geometry.

As a material filling the expansion joint, polyurethane-based resin was considered.
Its description was given in Section 3. It should be noted that during the deformation
process, material can be subjected to extreme strains, even more than 100% in the case of
stretching. Moreover, during laboratory tests, one observed that deformations are reversible
in the whole range. For these reasons, the hyperelastic material model was adopted as the
physical model of the resin. The hyperelastic material model, used in the present paper,
was described in Section 4. The physical constants for the analyzed resin are presented in
Section 5.

In order to describe the response of the material filling the expansion joint in the beam,
a three-dimensional FEM model is assumed. In contrast to the surface girder, where the
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dilatation gap is a long narrow structure, the plane strain problem is the most realistic
physical model. Therefore, in the case of the plate, a two-dimensional model is considered.

The ABAQUS/CAE system was used for all the numerical simulations [20].

3. Description of Analyzed Material

The material analyzed in the numerical simulations was one-component resin based
on polyurethane. This resin was selected because it is used for, among other things,
injecting cracks and joints in reinforced concrete structures, repairing water leakages from
expansion joints [9–12], the preventive sealing of structures, water infiltration control during
tunnelling, curtain injections, injection repairs of concrete, and masonry underground
structures (in basements, underground car parks, etc.).

The resin used in the tests is made up of two components: component A, polyurethane
resin, and component B, water. The two components are mixed at the volumetric proportion
of 1:1.

The components of the tested resin and its properties are presented in, respectively,
Tables 1 and 2.

Table 1. Components of tested resin.

Parameter Component A Component B

Description Polyurethane base Water
Form Liquid Liquid
pH Undetermined 7
Density from 1.04 to 1.16 kg/dm3 ca. 1.00 kg/dm3

Viscosity <350 mPas ca. 1.00 mPas

Table 2. Properties of tested resin.

Property Value

Viscosity <200 mPas
Foam factor >3
Tensile strength approx. 1.3 MPa
Elongation at break approx. 160%

4. Hyperelastic Material Model

The hyperelastic material is described by strain energy potential function U expressed
per unit reference volume, enabling one to formulate a constitutive law [21,22]. For isotropic
materials, the strain energy potential depends on the strain invariants only. It is possible to
use different invariant sets in analytical description. The common choice is deviatoric strain
invariants: I1, I2, and elastic volume ratio Jel , which allow definition of U components
responsible for deviatoric and volumetric strain parts:

U = Udev
(

I1, I2
)
+ Uvol(Jel) (1)

When thermal strains are absent, the elastic volume ratio Jel is equal to total volume
ratio J and can be expressed by the Jacobian of the transformation between the reference X
and the current x configurations:

F =
∂x
∂X

, Jel = J = det(F) =
dV
dV0

(2)

The deviatoric strain invariants can be expressed by deviatoric stretches λi, principal
stretches λi, or principal strains εi:

I1 = λ
2
1 + λ

2
2 + λ

2
3 (3)
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I2 = λ
−2
1 + λ

−2
2 + λ

−2
3 (4)

λi = J−
1
3 λi = J−

1
3 (1 + εi) (5)

ABAQUS offers several forms of strain energy potential U. In the present work, the Og-
den model was applied to describe analysed material physical properties. Strain energy po-
tential for considered form is defined by strain invariants and material coefficients [20,23,24]:

U =
N

∑
i=1

2µi

α2
i

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
+

N

∑
i=1

1
Di

(J − 1)2i (6)

Material coefficients: Ni, µi, αi, and Di, which appear in the Ogden form, are related
to engineering constants. The initial value of shear modulus µi and bulk modulus K0 are
expressed as follows:

µ0 =
N

∑
i=1

µi, K0 =
2

D1
. (7)

5. Material Physical Constants

In paper [19], the authors described an algorithm for identifying the physical model
for hyperelastic material and the decomposing of the associated physical constants. For
the resin described in paragraph 3, the best compliance with the experimental results was
obtained for the Ogden form for the strain energy potential order N = 2. The physical
constants derived for the considered material are collected in Table 3.

Table 3. Material coefficients.

N µ1 µ2 α1 α2 D1 D2 µ0 K0

[-] [kPa] [kPa] [-] [-] [MPa−1] [MPa−1] [kPa] [kPa]

2 410.2 3.306 1.218 −2.883 1.036 0.000 413.5 1930

The parameters listed in the table above will be used to define material physical model
in examples presented in next paragraphs.

6. Dilatation Gap Simulation in Beam: Three-Dimensional Problem
6.1. Physical and Discrete Models

A rectangular beam measuring 10 × 20 cm with an expansion joint 1.0 or 2.0 cm wide
is analyzed. In order to simulate an answer of the material in the dilatation gap, FEM
discrete models were created (Figure 1). It is assumed that the concrete walls behave as
perfectly rigid planes and the connection between the materials is ideal. Taking this it into
account, stiff translations and rotations of the connection plane are applied as external
kinematic loads. To be able to compare results for both widths, the loads ratio is the same
and it is equal to 1:2.
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Figure 1. Material in dilatation gap numerical model. Three-dimensional problem. Expansion
joint geometry and local coordinate systems on connection planes, left graphics. Selected nodes on
connection plane, central graphics, and on central plane, right graphics. The width of the gap is equal
to 1.0 cm, upper, and 2.0 cm, lower.

6.2. Axial Stretching

The material in the dilatation gap is analyzed under uniform stretching equal to 1.0
or 2.0 cm in the z-axis direction for widths of 1.0 or 2.0 cm, respectively. Displacements
uz = 0.5 or 1.0 cm, expressed in local coordinate systems of walls, are put on front and
back connection planes (Figure 1). Deformation images for total load level are presented in
Figure 2.

Figure 2. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphics, and 2.0 cm, right graphics. Views on connection,
first and third columns, or central plane, second and fourth columns.
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ABAQUS calculates Cauchy stresses (real stresses), expressed per unit deformed area.
The nominal stresses, expressed per unit undeformed surface, differ significantly from the
real stresses when the body in question is subjected to large deformations. In this case,
the Cauchy stress values determine the stress intensity in the material. Figure 2 shows the
Cauchy stresses σz generated in the resin for total load level for both gap widths considered.

Figure 3 presents the same stresses σz in selected nodes (Figure 1) versus the gap
elongation for both widths considered.

Figure 3. Equilibrium paths for stresses σ_z in selected nodes. The width of the gap is equal to 1.0 cm,
left graphic, and 2.0 cm, right.

Figure 4 shows the total axial force Nz generated in the resin versus the gap elongation.
The normal stresses along the direction of excitation have different values in different
points of the discrete model (Figure 3). Moreover, due to the differences in deformations
(Figure 2) between the considered gap widths the stress values in the same nodes of the
FEM model differ significantly from each other. Therefore, in order to compare the results,
the excitation force values are included in the charts (Figure 4).

Figure 4. Equilibrium paths for excitation force σz The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic.

6.3. Axial Compression

The material in the dilatation gap is analyzed under uniform compression equal to
0.5 or 1.0 cm in the z-axis direction. Displacements uz = −0.25 or −0.5 cm, expressed in
local coordinate systems of walls, are put on front and back connection planes (Figure 1).
Deformation images and the Cauchy stresses σz generated in the resin for final load level
for both gap widths considered are presented in Figure 5.
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Figure 5. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for final load level. The
width of the gap is equal to 1.0 cm, left graphic, and 2.0 cm, right graphic. Views on connection, first
and third columns, or central plane, second and fourth columns. Details of deformation are enlarged.

The incremental algorithm used to solve the nonlinear problem modelled by FEM loses
convergence when it is impossible to satisfy the equilibrium equations in the next iteration
step. In the presented examples, it was impossible to reach total declared excitations; the
convergence was achieved for shortenings not greater than 0.45 and 0.95 cm. Moreover,
earlier than such final load levels are achieved, non-physical deformations appear (Figure 5)
for shortenings greater than 0.375 and 0.65 cm.

The Cauchy stresses σz in selected nodes (Figure 1) and the total axial force Nz gener-
ated in the resin versus the gap shortening are shown in the Figures 6 and 7, respectively.
In the charts, the equilibrium paths parts, for which non-physical deformations appear, are
displayed with thin lines.

Figure 6. Equilibrium paths for stresses σz in selected nodes. The width of the gap is equal to 1.0 cm,
left graphic, and 2.0 cm, right graphic. Parts of charts with non-physical deformations are displayed
with thin lines.



Materials 2023, 16, 2011 8 of 19

Figure 7. Equilibrium paths for excitation force Nz. The width of the gap is equal to 1.0 cm, left
graphic, and 2.0 cm, right graphic. Parts of charts with non-physical deformations are displayed with
thin lines.

6.4. Bending

The material in the dilatation gap exposed to bending is analyzed. Rotations around
the x-axis of local walls coordinate systems of φx = −0.025 or −0.05 rad and 0.025 or
0.05 rad are put on front and back connection planes, respectively (Figure 1). Assumed
angles of rotation generate the same shortenings in beam bottom fibers, such as in the axial
compression case considered. Deformation images and the Cauchy stresses σz generated
in the resin for final load level are presented in Figure 8. The same stresses σz in selected
nodes (Figure 1) and the total bending moment Mx generated in the resin versus mutual
rotation angle of the opposite connection planes are shown in Figures 9 and 10, respectively.
The stress distributions shown in Figure 8 indicate that the greatest tensile stresses will
occur in different nodes than those shown in Figure 1. The equilibrium paths for these
stresses are also shown in Figure 9. The convergence was achieved for mutual rotation
angles not greater than 0.045 and 0.09 rad; non-physical deformations were detected for
angles greater than 0.0375 and 0.06 rad.

Due to the different behavior of materials under stretching and compression (Figure 8)
in the resin, which fills expansion joint, axial force is generated in addition. The equilibrium
path for the force Nz is displayed in Figure 11.

Figure 8. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for final load level. The
width of the gap is equal to 1.0 cm, left graphics, and 2.0 cm, right graphics. Views on connection,
first and third columns, or central plane, second and fourth columns.
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Figure 9. Equilibrium paths for stresses σz in selected nodes. The gap width is equal to 1.0 cm, left
graphic, and 2.0 cm, right graphic. Parts of charts with non-physical deformations are displayed with
thin lines.

Figure 10. Equilibrium paths for excitation moment Mz. The gap width is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic. Parts of charts with non-physical deformations are displayed with thin lines.

Figure 11. Equilibrium paths for excitation force Nz. The width of the gap is equal to 1.0 cm, left
graphic, and 2.0 cm, right graphic. Parts of charts with non-physical deformations are displayed with
thin lines.
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6.5. Shearing

The material in the dilatation gap exposed to shearing is analyzed. Displacements
uy = 0.5 or 1.0 cm, expressed in local coordinate systems of walls, are put on front and back
connection planes (Figure 1). Deformation images and the Cauchy stresses τzy generated in
the resin for total load level are presented in Figure 12. The same stresses τzy in selected
nodes (Figure 1) and the total shear force Vy generated in the resin versus mutual translation
of the opposite connection planes are shown in Figures 13 and 14, respectively. The
equilibrium paths for the greatest shear stresses, which occurred in different nodes than
those shown in Figure 1, are also displayed in Figure 13. Additionally, the axial force Nz is
generated in the resin. The equilibrium paths for these forces are displayed in Figure 15.

Figure 12. Deformations for scaling factor 1.0 and Cauchy stresses τzy in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphics, and 2.0 cm, right graphic. Views on connection, first
and third columns, or central plane, second and fourth columns.

Figure 13. Equilibrium paths for stresses τzy in selected nodes. The width of the gap is equal to
1.0 cm, left graphic, and 2.0 cm, right graphic.
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Figure 14. Equilibrium paths for shear force Vy. The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic.

Figure 15. Equilibrium paths for axial force Nz. The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic.

7. Dilatation Gap Simulation in Plate: Plane Strain Problem
7.1. Physical and Discrete Models

In order to compare the current results with the values obtained in paragraph 6, a plate
thickness equal to the height of the analyzed beam was assumed to be 20 cm, and the same
expansion joint widths equal to 1.0 or 2.0 cm were considered (Figure 16). The kinematic
assumptions and load ratio for both gap widths applied for the three-dimensional discrete
model are the same for the considered plane problem.
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Figure 16. Material in dilatation gap numerical model. Plane strain problem. Expansion joint
geometry and local coordinate systems on connection planes, first and third graphics. Selected nodes
on connection and central plane, second and fourth graphics. The width of the gap is equal to 1.0 cm,
left, and 2.0 cm, right.

7.2. Axial Stretching

The material in the dilatation gap is analyzed under uniform stretching equal to 1.0 or
2.0 cm in the z-axis direction. Displacements uz= 0.5 or 1.0 cm, expressed in local coordinate
systems of walls, are put on left and right connection planes (Figure 16). Deformation
images and the Cauchy stresses σz in the resin for total load level are presented in Figure 17.

Figure 17. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphic, and 2.0 cm, right graphic.

Figures 18 and 19 present the same stresses σz in selected nodes (Figure 16) and the
excitation force Nz versus the gap elongation, respectively. The force is from the same area
as for the paths shown in Figure 4. For comparison, the results from the discrete 3D model
are shown in the background. Curves for nodes lying on the same planes and with the
same coordinates z are displayed in the same color (Figure 18).
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Figure 18. Equilibrium paths for stresses σz in selected nodes. The width of the gap is equal to 1.0 cm,
left graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines
(curves from Figure 3).

Figure 19. Equilibrium paths for excitation force Nz. The width of the gap is equal to 1.0 cm, left
graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines
(curves from Figure 4).

7.3. Axial Compression

One analyses the material in the dilatation gap under uniform compression equal to
0.5 or 1.0 cm in the z-axis direction. Displacements uz = −0.25 or −0.5 cm, expressed in
local coordinate systems of walls, are put on left and right connection planes (Figure 16).
Deformation images and the Cauchy stresses σz generated in the resin for total load level
are presented in Figure 20. The same stresses σz in selected nodes (Figure 16) and the total
axial force Nz generated in the resin versus the gap shortening are shown in Figures 21
and 22, respectively. The convergence was achieved in the whole excitation ranges, and
non-physical deformations (Figure 20) were detected for shortenings greater than 0.4 and
0.7 cm.
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Figure 20. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphic, and 2.0 cm, right graphic. Details of deformation are
enlarged.

Figure 21. Equilibrium paths for stresses σz in selected nodes. The width of the gap is equal to 1.0 cm,
left graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines
(curves from Figure 6). Parts of charts with non-physical deformations are displayed with thin lines.

Figure 22. Equilibrium paths for excitation force Nz The width of the gap is equal to 1.0 cm, left
graphic, and 2.0 cm, right. Plane strain models, solid lines; and 3D models, dashed lines (curves from
Figure 7). Parts of charts with non-physical de-formations are displayed with thin lines.



Materials 2023, 16, 2011 15 of 19

7.4. Bending

The material in the dilatation gap exposed to bending are analyzed. Rotations around
the x-axis of local walls coordinate systems of φx = −0.025 or −0.05 rad and 0.025 or 0.05
rad are put on left and right connection planes, respectively (Figure 16). Deformation
images and the Cauchy stresses σz generated in the resin for total load level are presented
in Figure 23. The same stresses σz in selected nodes (Figure 16) and the total bending
moment Mx generated in the resin versus mutual rotation angle of the opposite connection
planes are shown in Figures 24 and 25, respectively. The equilibrium paths for the greatest
tensile stresses, which occurred in different nodes than those shown in Figure 16, are
also displayed in Figure 24. The convergence was achieved in the whole excitation range;
non-physical deformations were detected for angles greater than 0.0425 and 0.075 rad. The
equilibrium path for the force Nz is displayed in Figure 26.

Figure 23. Deformations for scaling factor 1.0 and Cauchy stresses σz in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphic, and 2.0 cm, right graphic.

Figure 24. Equilibrium paths for stresses σz in selected nodes. The width of the gap is equal to 1.0 cm,
left graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines
(curves from Figure 9). Parts of charts with non-physical deformations are displayed with thin lines.
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Figure 25. Equilibrium paths for excitation moment Mz. The width of the gap is equal to 1.0 cm, left
graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines
(curves from Figure 10). Parts of charts with non-physical deformations are displayed with thin lines.

Figure 26. Equilibrium paths for axial force Nz. The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines (curves from
Figure 11). Parts of charts with non-physical deformations are displayed with thin lines.

7.5. Shearing

The material in the dilatation gap exposed to shearing is analyzed. Displacements
uy = 0.5 or 1.0 cm, expressed in local coordinate systems of walls, are put on left and
right connection planes (Figure 16). Deformation images and the Cauchy stresses τzy
generated in the resin for total load level are presented in Figure 27. The same stresses τzy in
selected nodes (Figure 16) and the total shear force Vy generated in the resin versus mutual
translation of the opposite connection planes are shown in Figures 28 and 29, respectively.
The equilibrium paths for the greatest shear stresses, which occurred in different nodes
than those shown in Figure 16, are also displayed in Figure 28. The equilibrium paths for
the axial force Nz, which are generated in the resin, are displayed in Figure 30.
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Figure 27. Deformations for scaling factor 1.0 and Cauchy stresses τzy in MPa for total load level. The
width of the gap is equal to 1.0 cm, left graphic, and 2.0 cm, right graphic.

Figure 28. Equilibrium paths for stresses τzy in selected nodes. The width of the gap is equal to
1.0 cm, left graphic, and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed
lines (curves from Figure 13).

Figure 29. Equilibrium paths for shear force Vy. The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines (curves from
Figure 14).
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Figure 30. Equilibrium paths for axial force Nz. The width of the gap is equal to 1.0 cm, left graphic,
and 2.0 cm, right graphic. Plane strain models, solid lines; and 3D models, dashed lines (curves from
Figure 15).

8. Results Discussion

The results of the numerical analyses presented in the previous chapters allow for
the formulation of several general observations. In the considered ranges of deformations,
clearly nonlinear forms of equilibrium paths are noted. In the case of axial stretching, the
stresses and internal forces caused by the leading deformation of the same value are greater
in a gap of a smaller width, for axial compression they are smaller, and in other cases, no
clear tendency is observed. The differences in the global response between the three- and
two-dimensional models are insignificant, except in the case of axial stretching (force Nz in
Figure 19).

For two-dimensional models, the FEM algorithm achieves convergence in a larger
range of forcing, later non-physical deformations appear. The effect of non-physical defor-
mations on the global response is not noticed, the effects of their occurrence are visible only
on stress equilibrium paths in nearby nodes.

The results obtained in the numerical simulations are in expected and acceptable
ranges. This suggests that physical model of the consider material, which was identified
in the previous stage of investigations, is proper. A more categorical statement, however,
would require empirical confirmation, which is the future intention of the authors.

9. Conclusions

Due to the physical nonlinearity and high strains, adopting a hyperelastic material
model for the analyzed resin is the right choice. The experience gained during the analysis
of the presented examples indicates that the results are highly sensitive to changes in the
values of physical constants (Table 3). Therefore, they should be determined with high
accuracy.

Using FEM simulations one can determine the values of stresses and cross-sectional
forces in the filling material, which can be the basis for the design of expansion joints
geometry. Each of the analyzed elementary deformations generates a complex stress state
in the material filling the expansion joint. In the present study, the authors suggest that it
is possible to determine reasonable numerical stress values for different excitations in the
case of the investigated material.

As part of further research, the authors’ aim will be to formulate criteria for the damage
of the material and breaking its connection with the reinforced concrete structure and their
experimental verification. The results of these analyses could form the basis of guidelines
for the design of expansion joint gaps filled with material, ensuring the waterproofing of
the joint.
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