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Abstract: Defects on graphene over a micrometer in size were selectively blocked using polyvinyl
alcohol through the formation of hydrogen bonding with defects. Because this hydrophilic PVA does
not prefer to be located on the hydrophobic graphene surface, PVA selectively filled hydrophilic
defects on graphene after the process of deposition through the solution. The mechanism of the selec-
tive deposition via hydrophilic–hydrophilic interactions was also supported by scanning tunneling
microscopy and atomic force microscopy analysis of selective deposition of hydrophobic alkanes on
hydrophobic graphene surface and observation of PVA initial growth at defect edges.
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1. Introduction

Polymer–based graphene nanocomposites hold great potential for applications such as
sensors, energy harvesting, and gas barrier films because of their superior mechanical, opti-
cal, and barrier properties [1–6]. However, defects on graphene limit further development
and commercialization [7–14]. The graphene defects could be generated from synthetic
or artificial processes. For example, graphene synthesized through the chemical vapor
deposition (CVD) method generally has countless defects with various sizes ranging from
nanometer to micrometer [15–20]. There could be defects that have not been synthesized,
or perfect hexagons could not be formed at grain boundaries where graphene domains
with different crystal directions meet. Thus, the honeycomb structure may not be formed,
and defects with various shapes and sizes such as pentagon and octagon may occur. In
addition, the mismatch of grain boundaries could also lead to overlapped defects at grain
boundaries [8]. Since graphene layers are physically connected, defects could be a pathway
of gas molecules, limiting gas barrier application using CVD graphene.

Furthermore, graphene defects do not occur only in the synthesis process. Defects may
also occur in the process of transferring graphene to the target substrate [21]. Although
graphene is considered a very high–strength material at the atomic level, graphene is very
weak at the macroscopic level. Therefore, defects are likely to occur due to inexperienced
handling in the process of transfer. If graphene is transferred onto another substrate while
the metal is not completely melted during the etching process, a metal mass may be placed
under the graphene and tension may be applied to the graphene, which might cause defects.
Graphene is a theoretically perfect material as a gas barrier; however, as described so far,
perfect graphene does not exist in reality. Therefore, defects are a very critical issue in
developing graphene–based applications [22–24].

A number of graphene healing methods have been reported. For example, since
DFT calculations or molecular dynamics could study the interactions of graphene with a
variety of molecules, these methods hold great potential to design graphene–defect–healing
processes [25–27]. As another example, defects on graphene–like surface graphite at 625 K
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can be healed with flowing hydrocarbons or acetylene. As hydrocarbons decompose at
100–150 ◦C [28], carbon enters and fills the empty space of the defect, bonds with other
nearby carbon, and the defect is healed [29]. Similarly, when hydrogen or oxygen flows,
gas molecules are adsorbed to carbon in the part connected to the pentagons in the 7–5–5–7
defect. After that, the defect is healed as it exits with two carbon atoms [30]. Another
way of providing carbon sources into graphene defects is by using another graphene layer.
When there are multiple layers of graphene, adjacent layers are used as a carbon source.
Carbons in one layer could move to defects in the other layer at 2500 K and defects in the
other graphene layer could be healed [31]. An adsorption healing method using carbon
monoxide and nitrogen monoxide was also reported. It involves sequentially exposing
carbon monoxide and nitrogen monoxide to graphene [32]. After the first flowing carbon
monoxide, carbon monoxide is adsorbed in the graphene defect. Then, the oxygen of
carbon monoxide is reacted with the second flowing nitrogen monoxide to become nitrogen
dioxide. Therefore, graphene defects could be filled with carbon from carbon monoxide.
Catalytic substrates could be used to heal graphene defects. Graphene synthesized on
nickel could contain thermodynamically unstable ring structures such as pentagons and
octagons. These unstable defects could be rearranged to a hexagon via heat treatment on
catalyst substrates [33]. Electrochemical deposition was used to selectively heal defects by
using metal atoms because nucleation of metal atoms during electrochemical deposition
occurs at graphene defects [34]. However, these healing processes may not be suitable
for industrial applications upon considering high process cost and mass production. For
example, the high temperature treatment process is difficult to apply in the industry because
it greatly increases the process cost. In addition, the method of healing graphene defects
with metals has disadvantages of losing intrinsic properties of graphene such as flexibility
and transparency, and not covering micrometer size defects. Therefore, developing a
healing method suitable for mass–production processes with a low cost of the process is
still required from an industrial–application standpoint. Although it was demonstrated that
self–assembled alkane molecules were able to physically block graphene defects smaller
than alkane size, over micrometer size defects could not be selectively healed [24].

Here, we report that graphene defects over micrometer could be selectively filled with
hydrophilic polymers using hydrophilic–hydrophilic interactions. Although the graphene
surface is hydrophobic, graphene defects are generally hydrophilic due to the existence of
hydrophilic functional groups such as hydroxyl and carboxyl groups [35–37]. Upon consid-
ering these differences, we hypothesized that graphene defects could be selectively filled
with hydrophilic polymers which are able to make hydrogen bonding with hydrophilic
functional groups at graphene defects. In order to demonstrate this hypothesis, artificial
graphene defects measuring 5 µm were periodically created using photolithography. On
this patterned graphene, alkane as a hydrophobic material and polyvinyl alcohol (PVA) as
a hydrophilic material were deposited in order to prove the hypothesis. As a result, alkane
materials were only deposited on graphene surface rather than defects, whereas PVA was
deposited in graphene defects by forming hydrogen bonding between hydroxyl groups
in PVA and hydrophilic functions such as hydroxyl or carboxylic groups from graphene
defects as described in Figure 1.Materials 2023, 16, x FOR PEER REVIEW 3 of 9 
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2. Materials and Methods
2.1. Materials and Instruments

Polyvinyl alcohol (PVA, Mw 146,000–186,000, Tg 74.3 ◦C, Tm 222.7 ◦C (Supplemen-
tary Figure S1), Sigma–Aldrich, St. Louis, MO, USA), hexatriacontane (HTC (C36H74),
Sigma–Aldrich, St. Louis, MO, USA), and heptane (C7H16, Sigma–Aldrich, St. Louis, MO,
USA) were used without a further purification process. As a solvent, ethanol was purchased
from Sigma–Aldrich. The height of PVA in defects on graphene was obtained using AFM
(Park system, NX10) in non–contact mode.

2.2. Synthesis of Graphene

Graphene was synthesized by following the chemical vapor deposition (CVD)
method [18,23,38]. This method is generally well–known and widely used to obtain
large–area graphene for various applications. The cut Cu foil was placed in the furnace
and the vacuum was held. While flowing hydrogen gas for 1 h 30 min, the temperature
increased to 1030 ◦C. Then, 5 sccm of methane gas flowed for 1 min to minimize multiple
nucleation sites and then 13 sccm of methane gas flowed for 8 min to grow graphene. After
that, the hydrogen flow was lowered to 15 sccm from 100 sccm, and quickly cooled to
room temperature.

2.3. Graphene Transfer on Si Wafer

Graphene was transferred onto the Si wafer through the wet transfer method us-
ing polymethylmethacrylate (PMMA) as a supporting material [22,39]. The wet transfer
method is also one of the widely known methods of transferring large–area graphene to Si
wafer for application. First, graphene synthesized with CVD was fixed on a polyethylene
terephthalate (PET) film with 3M tape, and PMMA was spin–coated on the graphene. The
coated PMMA/graphene was soft baked in a hot plate or oven (for 1 min at 180 ◦C for
hot plate/for 30 min at 60 to 70 ◦C for oven). Graphene was etched with O2 plasma using
reactive ion etching (RIE) equipment in order to remove graphene off the back side by
inverting the graphene coated with PMMA. To obtain only graphene from CVD–graphene,
Cu foil was etched in an aqueous ammonium persulfate (APS) solution for 4 h. Graphene
floating on the APS solution was transferred to deionized (DI) water using PET film and
the remaining APS solution was rinsed three times. Before graphene was transferred to Si
wafer, the Si wafer was cleaned in acetone and isopropyl alcohol (IPA) using sonication
for 10 min, respectively. Then, graphene was transferred to the target substrate and dried
at room temperature for 30 min in order to prevent water from being trapped between
the graphene and the Si wafer substrate. After that, it was put oven for an hour, dried
completely, and the PMMA used as a supporting material in acetone for an hour on hot
plate at 40 ◦C was removed. Graphene on Si wafer was rinsed in IPA and extra solvent was
blown using nitrogen.

2.4. Fabrication of Graphene Defects

Holes were manufactured using photolithography [40,41]. A photoresist (PR) solution
was spin–coated on the transferred graphene and baked at 90 ◦C for 2 min. The sample
was exposed to UV light for 7 s using a mask with holes with a size of about 5 µm and the
chain was broken in PR at that time. The sample was put in developer solution for 40 s to
produce an artificial defect. When the PR disappeared in the developer solution, the site of
graphene exposed to UV light disappeared with PR. Then, the sample was rinsed in DI
water. Extra PR was removed in acetone. This process was illustrated in Figure 2.
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Figure 2. Fabrication processes for micrometer–sized defects. (a) Processes of making defects in
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2.5. Preparation of HTC and PVA Solutions

HTC heptane solution of 1 mM was prepared by ultra–sonicating the HTC and heptane
mixture for 1 h at room temperature. For the PVA solution, PVA was dissolved in ethanol
with a concentration of 0.1 g/mL by stirring the solution for 30 min at 45 ◦C.

2.6. Deposition of HTC and PVA

For HTC deposition, the HTC solution in heptane (b.p 98 ◦C) was dropped on pat-
terned graphene with holes, and the solvent was slowly vaporized at room temperature to
obtain multilayer HTC on graphene. For the PVA deposition, the PVA solution in ethanol
was dropped on prepared graphene with a hole. Then, the ethanol solvent was slowly va-
porized at room temperature and quenched before fully vaporized by blowing the solution
to investigate the initial growth of PVA. For the full deposition of PVA, after dropping PVA
solution on patterned graphene, the ethanol solvent was slowly and completely vaporized
at room temperature. Then, the sample was annealed on a hot plate at 210 ◦C for 10 min to
prepare the selectively deposited PVA films in graphene defects where Tg and Tm of PVA
are 74.3 ◦C and 222.7 ◦C, respectively.

2.7. AFM Measurement

Samples for AFM measurements were created by making artificial defects on CVD–
graphene transferred on Si wafer substrate and dropping the HTC or PVA solutions as
shown in the experimental methods 2.2, 2.3, 2.4, 2.5, and 2.6 above. The AFM imaging
process was conducted in non–contact mode using park system’s NX10 equipment. Images
were scanned measuring 10 µm × 10 µm or 20 µm × 20 µm in size. The values of the scan
rate for the pristine graphene sample, graphene coated with multilayer HTC, and PVA in
defects on graphene were 0.35 Hz, 0.6 Hz, and 0.3 Hz, respectively. The values of Z servo
gain for the pristine graphene sample, graphene coated with multilayer HTC, and PVA
were 1, 1.5, and 1, respectively.

2.8. Scanning Tunneling Microscopy (STM) Study of Self–Assembled HTC on Graphene

A self–assembled HTC monolayer on CVD–graphene was imaged using STM (Bruker
Singapore Pte. Ltd., Singapore). The STM tip was created by cutting the tip of a wire made
of Pt/Ir (California Fine Wire co, Grover Beach, CA, USA, 80%/20%) alloy. In order to
investigate a self–assembled HTC monolayer at molecular level, HTC was dissolved in
1–phenyloctane for STM study. The HTC solution was replaced with CVD–graphene on
copper substrate. The STM tip went into the solution and approached the graphene surface.
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The self–assembled structure of HTC was mainly scanned at 700~800 mV and 200~300 pA.
All image processing was performed using SPIP software.

3. Results and Discussion
3.1. HTC Deposition on Patterned Graphene

Alkane molecules, hexatriacontane (HTC), were deposited on patterned graphene in
order to confirm that hydrophobic molecules prefer to be deposited on only a hydrophobic
graphene surface rather than hydrophilic graphene defects as shown in Figure 3. HTC
would make self–assembled layers on graphene whenever HTC solution is replaced on
graphene surface due to enough stabilization energy from van der Waals interactions from
HTC–HTC and HTC–graphene. In the solution, HTC molecules prefer to randomly exist
due to the thermodynamic rule of entropy increase. However, when HTC makes a van
der Waals contact with the graphene surface, HTC would be nucleated on graphene due
to strong van der Waals interaction and start to make a self–assembled monolayer [24].
Because the enthalpy reduction from HTC molecules in a self–assembled monolayer and
HTC–graphene contact overcomes the barrier of entropy, Gibbs free energy turns to nega-
tive, allowing the formation of an HTC monolayer on graphene surface even in the solution,
as shown in Figure 4. The synthesized CVD graphene surface and zoomed–in graphene hon-
eycomb structure (inset) is shown in Figure 4a. Under the HTC solution, a self–assembled
HTC monolayer is visualized using STM. The steps originate from the crystalline copper
surface and the lines are from the columnar structure of alkanes (Figure 4b). The zoomed–in
image shows that alkane molecules are stacked by forming the columnar structure through
van der Waals interactions (Figure 4c). The slow evaporation of the solvent would lead
to three–dimensionally stacked HTC films on graphene. Interestingly, this phenomenon
would not occur on amorphous SiO2 surface. The lack of a strong van der Waals interaction
between HTC and surface leads to HTC molecules not being nucleated on the amorphous
SiO2 surface in the early nucleation stage. Therefore, it was expected that HTC would
only be deposited on patterned graphene and not on the amorphous SiO2 surface. This
hypothesis is experimentally demonstrated using patterned graphene. The graphene has
periodically aligned 5 µm defects as shown in Figure 3a. On this graphene, HTC was
deposited through slow evaporation of heptane solution (Figure 3b). After the deposition,
the thickness and morphology of HTC films on graphene were investigated using AFM as
shown in Figure 3c. The initial height from SiO2 to graphene before the deposition was
measured as ~2 nm through the non–contact mode of AFM (Figure 2b). After the deposition,
the thickness of the HTC film was 60 nm (Figure 3c blue line) and the morphology became
much smoother than that of the graphene surface (Figure 3c red line). Interestingly, as
shown in Figure 3b, HTC was only deposited on the graphene surface rather than in defects.
This result supports the hypothesis that hydrophobic molecules prefer to be deposited on a
hydrophobic graphene surface, presumably due to hydrophobic–hydrophobic interactions.
In other words, hydrophilic defects might be filled with hydrophilic molecules through
hydrogen–bonding interactions.
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Figure 4. STM images of (a) CVD–graphene and zoomed–in graphene (inset), (b) a self–assembled
HTC monolayer on CVD–graphene, and (c) zoomed–in HTC monolayer with overlay.

3.2. PVA Deposition on Patterned Graphene

In order to prove the hypothesis that hydrophilic–hydrophilic interaction between PVA
and defects allows selective deposition, the initial growth of PVA was investigated before
completing deposition. As shown in Figure 5, PVA particles were only located at the defect
edges at initial nucleation stages. Interestingly, no PVA particles were observed on the
hydrophobic graphene surface, supporting the hypothesis that PVA prefers to interact with
hydrophilic functional groups at defect edges such as carboxylic acid and hydroxyl group,
as described in Figure 5c [35]. This result indicates that hydroxyl groups in PVA make
hydrogen bonding with defective edges as described in Figure 5c. After completing the
deposition of PVA, it was observed that PVA was periodically deposited only in graphene
defects and not on graphene surface, as shown in Figure 6a. The enlarged image (Figure 6b)
clearly shows that only defects are filled with PVA, although the height and shape of
PVA are slightly different. The thickness and morphology of the deposited PVA were
investigated using AFM (Figure 6c). The thickness was 250 nm and the mountain–like mor-
phology was observed. The formation of this mountain–like morphology also indicates that
PVA does not prefer to be deposited on the hydrophobic graphene surface. Therefore, the
hydrophilic nature of defect edges and PVA, and the hydrophobic nature of the graphene
surface allow PVA to be selectively deposited in graphene defects. This mechanism study
of selective deposition of polymers in graphene defects would provide insights to the
development of applications such as graphene–based gas barriers and various polymer
nanocomposites.
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Figure 5. (a) OM image of PVA in the defects of graphene, (b) the OM image of the PVA particles in
contact with the edge of the defects, and (c) AFM image of PVA in the defects of graphene.
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