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Abstract: Carbon nanotubes (CNTs) are nanometer-sized structures that can be used to reinforce
cement matrices. The extent to which the mechanical properties are improved depends on the
interfacial characteristics of the resulting materials, that is, on the interactions established between
the CNTs and the cement. The experimental characterization of these interfaces is still impeded by
technical limitations. The use of simulation methods has a great potential to give information about
systems lacking experimental information. In this work, molecular dynamics (MD) and molecular
mechanics (MM) were used in conjunction with finite element simulations to study the interfacial
shear strength (ISS) of a structure formed by a pristine single-walled CNT (SWCNT) inserted in a
tobermorite crystal. The results show that, for a constant SWCNT length, ISS values increase when
the SWCNT radius increases, while for a constant SWCNT radius, shorter lengths enhance ISS values.

Keywords: carbon nanotubes; interfacial shear strength; pull-out test; finite element method;
molecular model

1. Introduction

Cement and cement composites are the most used materials in the building sector
due to their high compressive strength, low prices and mature production technology.
However, cement also has low tensile strength, good permeability to several substances
and easily cracks. To improve these weaknesses, different types of reinforcements are
added to cement. Carbon nanotubes (CNTs) are one of the most promising candidates due
to their excellent mechanical properties. The number of research studies on cement-CNTs
composites has steadily grown in recent years [1–5]. CNTs have elastic moduli greater than 1
TPa and tensile strengths as high as 63 GPa [6,7]. When CNTs are homogeneously dispersed
within the cement matrix, density [8], permeability [9], mechanical properties [10] and
durability [11] of the composites are improved. The effect of CNTs is particularly noticeable
on mechanical properties, as they can delay cracks propagation.

The CNTs—cement interface is a key factor in mechanical properties as this is typi-
cally a weak area and determines the material fracture behavior [12]. Diverse simulation
methods, such as coarse-grained and all-atoms molecular dynamics [13], ref. [14] show
that when CNTs are incorporated into a cement matrix, the way of fracture is changed and
mechanical properties are clearly enhanced.

Interfacial bond strength can be determined from Interfacial Shear Strength (ISS)
measurements, such as fragmentation, pull-out, microdroplet, push-out and push-in
tests [15–20] and most experimental studies have focused on composites made of CNTs and
polymeric matrices due to the difficulties in studying CNT-cement composites. The lack
of experimental information can be supplemented by the use of simulation methods such
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as molecular mechanics (MM) and molecular dynamics (MD). Both techniques provide
atomic information about the interface, which cannot be obtained from experiments. ISS
can be calculated using a pull-out model [21]. Pulling out a CNT from a matrix provide
information about the interface strength. There are numerous molecular modelling stud-
ies of ISS of CNTs-reinforced polymer composites [22–26], while results on carbon-based
reinforcements are scarce and most of them concern graphene [27–30].

The Finite Element Method (FEM) is other type of study that can be used to calculate
mechanical properties of composite materials. It can be based on different formulations,
such as beam models [31], representative volume element FEM analysis [3,32] or nonlinear
analysis for dynamic events [33] or when crack analysis is needed [34].

In this work, SWCNT pull-out simulations from a tobermorite crystal were performed
to calculate the ISS of several nanocomposites. MD, MM were applied to obtain interfacial
energies, which were subsequently used as input in a FE calculation. Pristine SWCNTs
with different radii (2.70 to 4.74 Å) and lengths varying from 9.84 Å to 19.68 Å, were
inserted into a tobermorite were explained as a function of SWCNT diameter and length
and related to non-bonded interactions between the SWCNT and cement. Our work aims
to get more insight into the effect that SWCNT geometry plays on ISS, which is a key factor
for enhancing mechanical properties of these materials. We think that the synergy achieved
by using both atomistic and FE methods is a powerful way of attaining our goals.

2. Models and Methods

In this section, the modelling methods are described.

2.1. Atomistic Model Systems

The periodic simulation cell used for the pull-out atomistic calculations had dimen-
sions of 29.54 × 67.46 × 500 Å3. The cell in the pull-out direction was large enough and
included a vacuum layer (Figure 1).
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Figure 1. Cell used for the atomistic pull-out simulations.

The atomic models built to represent the cement matrix and the composite material are
shown in Figure 2. Despite the fact that cementitious systems are not fully crystalline [35],
tobermorite 11 Å was employed to model cement by many different authors [36–38]. As
we are mainly interested in studying interfacial interactions, crystalline tobermoritecan be
a good approximation to this interface.

To build the model of the composite material, a SWCNT was inserted into the tober-
morite crystal (Figure 2). Different pristine SWCNTs ((CNT (4, 4) = 2.70 Å, CNT (5, 5) = 3.39 Å,
CNT (6, 6) = 4.07 Å and CNT (7, 7) = 4.74 Å) with lengths of 9.64 Å, 19.68 Å and 24.60 were
used to study the influence of diameter and length on ISS.
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ing CNTs and cement derived materials [28,43–46]. Coulomb interactions were calculated 

Figure 2. Models used in the simulation; cement: tobermorite crystal (left) and composite: tober-
morite/SWCNT.

2.2. Molecular Mechanics and Molecular Dynamics

The first step in creating a good model for the pull-out process was to relax the
simulation lattice by means of a 100 ps simulation in the NPT ensemble at 298 K and
atmospheric pressure. The temperature and pressure were controlled by a Nose-Hoover
thermostat [39] and a Berendsen barostat [40] respectively. A time step of 1 fs was used
during the simulation. Three independent simulations were carried out to obtain average
values. After relaxing the structures, they were used to simulate the pull-out process. The
size of the cell in x direction was increased and a vacuum layer was included. Before the
pull-out study, these new models were subjected to a process of optimization by molecular
mechanics (MM). Then, pulling-out was done by displacing the SWCNT along the x axis
with increments of 10 Å. Initial and final structures before and after the SWCNT pull-out
process are shown in Figure 3. After each pull-out step, the energy of the system was
calculated by MM. Materials Studio 7.0 software [41] was used to perform the simulations.
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Figure 3. Initial and final structures before (top) and after (bottom) the SWCNT pull-out process.

The condensed-phase optimized molecular potential for atomistic simulation studies
forcefield COMPASSII [42] was employed to calculate the potential energy of all systems.
This forcefield has been successfully applied in numerous MD studies of systems containing
CNTs and cement derived materials [28,43–46]. Coulomb interactions were calculated by
the Ewald summation method while an atom-based cutoff method was applied for van der
Waal interactions. The cutoff distance for both interactions was 12.5 Å.

The interfacial energy (Einterfacial) was calculated as the energy difference between the
fully embedded configuration of the SWCNT and the complete pulled-out configuration
(Figure 3). This energy was then used to calculate the ISS by FEM.
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2.3. Finite Element Method Model

A Finite Element Model based on Axisymmetric conditions has been built in MSC.Marc
software by HEXAGON [47] to represent the composite material. Different FE models
have been defined to cover the different combinations of radius and lengths. Same loads,
boundary conditions, physical and material properties and analysis methodology are used
for each geometrical combination.

2.3.1. Loads & Boundary Conditions

Loads and Boundary Conditions were defined using contact bodies and contact interac-
tions. Five contact bodies were defined (Figure 4): Armchair (a flexible body corresponding
to Pristine armchair SWCNTs material), tobermorite (a flexible body corresponding toto-
bermoritematrix material, Base (a rigid body defined by a curve), Tirador (a rigid body
defined by a curve) and Sym_Axy (a rigid body defined by a curve). The contact inter-
actions defined between contact bodies represented the load and boundary conditions
where “Tirador–Armchair” was a glue contact interaction. This interaction defined the
load as Tirador rigid body and it was controlled by its position. Tirador body was moved
1.1 × 10−9 mm in X-Axis, so it pulled Armchair body due to glue contact interaction.
The “Sym_Axy–Armchair” contact was defined as a touching contact interaction. This
interaction represents the axisymmetric boundary condition. The “Base–Armchair” pair
was defined as a glue contact interaction. This interaction represented a fixed boundary con-
dition. Finally, the “Base–tobermorite” interaction was defined as a glue contact interaction.
This interaction represented a fixed boundary condition.
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Figure 4. Geometry and boundary conditions for the FEM model.

Furthermore, a delamination condition was defined in the interface between Armchair
and tobermorite elements. This delamination condition automatically created interface
cohesive elements (CZM) between both components when stresses were higher than the
stablished (10−9 MPa). Very low values (numerically zero) were set to allow the software
Marc always automatically split the mesh between Armchair and tobermorite elements,
and introduce interface cohesive elements.
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2.3.2. Physical Properties

Axisymmetric properties were defined for all elements of the model, for both Armchair
and tobermorite components. Marc Element types 10 (Arbitrary Quadrilateral Axisymmet-
ric Ring) and 2 (Axisymmetric Triangular Ring) were used [48].

2.3.3. Material Properties

Armchair and tobermorite were defined using standard isotropic elastic material
model. The Young’s Modulus (E) of the Armchair is set to 98,413 MPa and the Poisson
Ratio (υ) to 0.13. The Young’s Modulus (E) of the tobermorite is set to 85,000 MPa and the
Poisson Ratio (υ) to 0.3.

Interface Cohesive elements (CZM) were defined using Exponential formulation with
the following properties derived from the where the values obtained with MM and MD
methods in order to get a coherent traction vs opening displacement curve: Cohesive
Energy (Gc) of 9.64 × 10−9 mJ and Critical Opening Displacement (vc) of 7.81 × 10−11 mm.

The effective traction (t) was introduced as a function of the effective opening dis-
placement (v) and was characterized by an initial reversible response followed by an
irreversible response as soon as a critical effective opening displacement (vc) has been
reached. The irreversible part was characterized by increasing damage ranging from 0
(onset of delamination) to 1 (full delamination). The exponential formulation has the
following Equation (1) [48].

t = Gc
v
v2

c
e
−v
vc (1)

in which Gc is the energy release rate (cohesive energy).

2.3.4. Analysis Methodology

An Implicit Non-Linear analysis using MSC.Marc is performed using a constant load
step (1% of total load is applied in each load step), a convergence method based on residual
forces criterion with automatic switching to displacement criterion was used, a relative
convergence force tolerance of 10% was defined, large strain formulation was set and
“Node-to-Segment” contact algorithm was selected.

3. Results and Discussion
3.1. Interfacial Energy

The variation in total potential energy with pull-out displacement for the model
containing a SWCNT(6, 6) is shown in Figure 5. As the SWCNT was pulled-out from
the matrix, the total potential energy increased and reached a constant value beyond
a certain pull-out distance. This indicated that the SWCNT and the matrix no longer
interacted. The energy of the fully embedded configuration was lower than the energy of
the complete pulled-out configuration. Many other authors found similar results [23,26–28].
The interfacial energy is the energy difference between the fully embedded configuration
of the SWCNT and the complete pulled-out configuration (Figure 5).

The interfacial energy values are presented in Figure 6 for all systems. The standard
deviation of each value is also shown in this figure. In general, interfacial energy increases
when SWCNT diameter and length increase. This is probably due to the greater number
of atoms in longer and bigger SWCNTs, which increases the contact points between the
SWCNT and the tobermorite and, hence, the interfacial energy.

3.2. Interfacial Shear Strength

For each FE model, Contact Force in X-Axis of contact body Base can be plotted with
respect to position in X-Axis of contact body Tirador. The maximum value of this force
can be considered as the limit value from which delamination begins to occur. This force
will be used to calculate ISS dividing it by contact area between Armchair and tobermorite
contact bodies (Figure 7).
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ISS values are improved when SWCNT radius increases, and SWCNT length shortens.
This is given by a similar extraction force (Table 1) for each diameter that leads to lower
stress values when the contact area increases (length). This trend was also found by
Li et al. [24] for pristine SWCNTs/polyethylene matrices. They attributed the positive
correlation between SWCNT dimensions and ISS values to the increase of interfacial atoms.
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Table 1. Contact force and ISS of the different systems.

Radius (Å) Length (Å)
Maximum

Contact Force
(N × 10−11)

Contact Area
(mm2 × 10−12) ISS (MPa)

2.71

9.84 3.48 1.68 20.740

19.68 3.40 3.35 10.158

24.6 3.39 4.19 8.091

3.39

9.84 5.02 2.10 23.932

19.68 4.87 4.19 11.620

24.6 4.83 5.24 9.210

4.07

9.84 6.51 2.52 25.859

19.68 6.49 5.03 12.896

24.6 6.44 6.29 10.237

4.74

9.84 8.09 2.93 27.602

19.68 8.27 5.86 14.115

24.6 8.20 7.33 11.194

It can be seen from Table 1 that, depending upon the SWCNT length and diameter,
calculated ISS values ranged from 8.09 to 27.70 MPa. The effect of CNTs length on mechan-
ical properties is controversial, as its efficiency as reinforcing agents depends on several
factors such as defects on the CNT surface, concentration or dispersion in the cement
matrix, although, in general, the addition of CNTs to cement leads to high improvements
in mechanical properties. Some authors found that long CNTs performed better, and, to
improve mechanical properties, highest amounts of short CNTs were needed [49,50].

Other authors [51] found that composites reinforced with the long CNTs showed
worse properties and they attributed the efficiency of the shortest CNTs to a better filling of
the nanopores within the cement matrix.

In a recent work, it was observed that the CNT length had a minimal effect on the
properties of cement [52], as it is obtained in our simulations. For a given radius, the contact
force can consider as constant, resulting in higher ISS for smaller areas (longer CNTs).

Thus, to validate our approach, a comparison of our results with experimental data of
single SWCNT pull-out from cement matrices would be extremely useful. To the best of
our knowledge, none is currently available as the experimental characterization of these
interfaces still faces numerous technical problems.

It is noticeable that, for a given radius of the SWCNT, the energy rises with the length
(increase of interfacial atoms) but the ISS decreases (the contact area is higher, and the ISS
is obtained by dividing the force by the area).

3.3. Damage Level

If a more detailed post-processing is done in the FE models, a Damage Level can
be studied. Damage value indicates the amount of irreversible cohesive energy that has
been lost. A value of 1.0 indicates complete loss of cohesive energy and an area where
delamination will begin to occur. Damage results can be defined as follows [48]:

D =
G − Gelastic
Gc − Gelastic

; 0 ≤ D ≤ 1; ve ≥ vc (2)

For instance, in the case of Radius 2.71 Å and Length 9.84 Å, delamination starts when
cohesive elements begin to be damaged at 24% of total load applied (Displacement × Tirador:
2.64 × 10−10 mm).
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In Figure 8a it can be observed that crack initiates in the interface between Armchair
and tobermorite when Cohesive Interface Elements begin to have irreversible behav-
ior (2.238 % of Damage Level). It must be noticed that deformed shape is not in real
scale but scaled with a factor in order to be able to see Damage Level in the Cohesive
Interface Elements.
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At the end of the analysis (Figure 8b)) (Displacement × Tirador: 1.1 × 10−9 mm), it
can be observed how the delamination has grown through the interface between Armchair
and tobermorite and how Damage Level of Cohesive Interface Elements have also grown
until 100% of Damage Level (deformed shape is also scaled with a magnification factor).

The Damage level analysis permits to confirm that the pull-out test results are affected
by the cohesion energy given by molecular models. On the other hand, the results of the test
are limited by the weakest element, obtaining ISS values coherent with the cement-based
materials limits [53].

4. Conclusions

Pristine SWCNTs with different geometrical characteristics were pulled-out from a
tobermorite matrix to study the interfacial characteristics of the resulting composites by MM
and MD simulations. Only non-bonded interactions between the SWCNT and the cement
matrix were considered. The interfacial energy obtained from these atomistic simulations
were subsequently used as input in FEM calculations to determine ISS values. ISS values
increased with larger SWCNT radius, which could be attributed to a more extensive contact
surface between the SWCNT and the tobermorite. However, ISS showed an opposite trend,
being larger for shorter CNTs. This is due to the increased area for longer CNTs for an
almost constant force for a given radius. The weakest zone of the material seems to be the
tobermorite matrix. Delamination and crack growth is mainly observed at the tobermorite
side of the interface. Thus, the introduction of a SWCNT of varying geometry modifies
the mechanical behavior of the matrix as confirmed by the Damage Level analysis test.
The pull-out results are affected by the cohesion energy, which, in turn, depends on the
CNT geometry. We think the joint use of atomistic and FEM methods seems to be a good
approach to describe the interfacial properties of this kind of material. It would be very
interesting to be able to compare the results of this simulation with experiments, but, to our
knowledge, none is currently available.
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