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Abstract: Grain size has a significant effect on the mechanical properties of metals. It is very impor‑
tant to accurately rate the grain size number of steels. This paper presents a model for automatic
detection and quantitative analysis of the grain size of ferrite–pearlite two‑phase microstructure to
segment ferrite grain boundaries. In view of the challenging problem of hidden grain boundaries in
pearlite microstructure, the number of hidden grain boundaries is inferred by detecting them with
the confidence of average grain size. The grain size number is then rated using the three‑circle in‑
tercept procedure. The results show that grain boundaries can be accurately segmented by using
this procedure. According to the rating results of grain size number of four types of ferrite–pearlite
two‑phasemicrostructure samples, the accuracy of this procedure is greater than 90%. The grain size
rating results deviate from those calculated by experts using the manual intercept procedure by less
than Grade 0.5—the allowable detection error specified in the standard. In addition, the detection
time is shortened from 30 min of the manual intercept procedure to 2 s. The procedure presented in
this paper allows automatic rating of grain size number of ferrite–pearlite microstructure, thereby
effectively improving the detection efficiency and reducing the labor intensity.

Keywords: grain size; grain boundary; segmentation; classification; intelligent rating; deep learning

1. Introduction
Grain size is a parameter used to describe the dimensions of grains of polycrystalline

materials. It has a significant effect on the properties of metals [1]. When polycrystalline
materials are deformed under external force, the dislocation source will continuously re‑
lease dislocations, which continuously slip inside the crystal. When dislocations reach the
grain boundary, they can only continue moving after overcoming the impediment of the
grain boundary to the dislocation movement and transfer the deformation from one grain
to adjacent ones, and thus yielding the material. Generally, the grain boundaries in poly‑
crystalline materials have large resistance to deformation, and the deformation of a single
grain is implicated by adjacent grains, so the strength of polycrystalline materials at room
temperature usually increases with the refinement of grains. That is to say, for polycrys‑
talline materials of the same volume, the smaller the grain, the higher the grain boundary
content, the more obvious the impediment of grain boundary to dislocation movement,
and the higher the yield limit of the material. This is the fine‑grained strengthening effect
in polycrystalline materials [2,3]. The Hall–Petch equation [4,5] σs = σ0 + Kd−

1
2 is usu‑

ally used to describe the relationship between the grain size and the yield strength. In the
equation, σs is the yield strength of the material, the yield strength of single crystal of the
material, d the average grain size, K the gradient of H‑P as a constant. Therefore, grain
size is a technical item that needs to be strictly controlled in metal processing, especially
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in hot working. The rating procedures for grain size number include comparison proce‑
dure, the planimetric (or Jeffries) procedure, and the intercept counting procedure [6]. In
the circle intercept procedure, the error caused by deviation from equiaxed grain can be
automatically compensated for without excessive additional fields of view. It is a common
procedure that gives consideration to both accuracy and efficiency. In the circle intercept
procedure, a number of concentric circles are used to form ameasuring network in themet‑
allographic image, and appropriate magnification is selected and used to make the grain
boundary intersection count between 50 and 100. During the calculation of intersections, it
is counted as one intersection if the measuring circle is tangent to the grain boundary and
as two intersections if it is significantly overlappedwith the confluence of three grains. The
grain size number is calculated by measuring the average grain intercept distance:

G = 6.643856lg
MP

L
− 3.288 (1)

where, G is the grain size number; M is the magnification used; P is the grain boundary
intersection count; L is the intercept length.

At present, the grain size number in the intercept procedure is mainly rated by man‑
ual measurement and calculation. Manual rating has obvious disadvantages. First, it has
great subjective influence. Only experienced professionals can accurately identify grain
boundaries and judge intersections, and human subjectivity during the measurement af‑
fects the rating accuracy. Second, it has low efficiency. For a metallographic image, if the
intercept procedure is used, it will take at least 30 min for measurement of hundreds of
intersections in multiple fields of view and for the subsequent calculation. Third, it affects
health. The rating of grain size number is analyzed under a microscope, and long‑term
work under high‑intensity light will affect the health of testing personnel.

In recent years, the continuous development of artificial intelligence technology has
achieved remarkable results in various fields. Deep learning, as the leading artificial in‑
telligence technology, has attracted increasing attention and has achieved excellent per‑
formance in medical image classification and text recognition [7–10]. In the field of ma‑
terial tissue analysis, the automatic metallographic analysis of metal materials based on
computer vision and machine learning technologies has become the exploring direction of
researchers at home and abroad. Zhang [11] et al. used the dual‑threshold method and
watershed algorithm to segment different metallographic structures. Geng [12] realized
threshold segmentation of 2D exponential gray‑level entropy through PCA noise reduc‑
tion based on Gaussian Mixture Model. Zhu [13] proposed an efficient grain boundary
division method based on the structured random tree. Patxi [14] et al. reconstructed the
austenite grain boundary inmartensitic steel using the deep learning algorithm. Wang [15]
et al. applied computer vision technology and machine learning to identify the location
of fatigue crack initiation in materials. Azimi [16] et al. pixel‑wise segmentation based on
Full Convolutional Neural Networks (FCNN), using deep learning method to classify and
identify the microstructure of mild steel, achieving 93.94% classification accuracy. In Li’s
paper [17], the machine learning method of Gradient Boosting Decision Tree was used to
recognize the boundaries of a lath bainitic microstructure. The optimized machine learn‑
ingmodel achieved greater than 88% recognition accuracy for all boundaries in the bainitic
microstructure, where the recall score of PAG boundary was 93%. Han [18] proposed a
high‑throughput characterization method based on deep learning, rapid acquisition tech‑
niques and mathematical statistics to identify, segment and quantify the microstructure of
weathering steel. The segmentation accuracies of 89.95% and 90.86% for non‑metallic in‑
clusions and pearlite phases, respectively, and the detection time are significantly reduced.
Tharindu [19] proposes a computational design framework and uses artificial neural net‑
works (ANNs) for generating and predicting the forging response of preform shapes, re‑
spectively. This study predicted the average effective plastic strain response in spatially
varying regions of the forging to within ±8% of the ground truth.
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Currently, scholars have studied the research of using image‑processing techniques
to identify grain boundaries and calculate grain size [13,14], such as segmentation‑based
on grayscale thresholding. This technique is an image transformation and analysis based
on the gray value of each pixel, which is influenced by factors such as image quality and
illumination, and the accuracy of detection is not high. In contrast, using deep learning
techniques, the model can be trained and iterated using a large number of calibration sam‑
ples, and the features of different types of grain boundaries can be extracted, thus achieving
accurate segmentation of grain boundaries and accurate calculation of grain size. In this
paper, a sample of ferrite–pearlite microstructure (see Figure 1) is used as an example to
detect grain boundaries and thus calculate their grain size by using a U‑Net‑based image
segmentation model. These two phases are the most common microstructures in steels.
A large number of medium and low‑carbon hot‑rolled, annealed or normalized steels are
ferrite–pearlite microstructures, so it is necessary to study the automatic rating of grain
size number of this two‑phase microstructure.
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Figure 1. Typical ferrite–pearlite two‑phase microstructure.

There are four facts relevant to the grain size testing of ferrite–pearlite in steel mills.
(1) Almost all the steel mills use optical microscopes when testing the grain size. (2) Under
the optical microscope, the grain boundary in the ferrite has obvious contrast difference
from the grain inside, so such grain boundaries can be easily identified with human eyes.
However, for pearlite, due to low resolution, the boundaries of pearlite colonies and the
slices of ferrite–cementite cannot be seen. Hence, the pearlite grain size (the size of pearlite
colonies) cannot be tested under the optical microscope. (3) Therefore, when the steel mills
test the actual grain size of ferrite–pearlitic steel, almost all of them test only the grain size
of the ferrite, while the pearlite part is ignored, and finally the grain size of the ferrite part
is taken as the overall grain size of the sample. (4) The difficulty of testing the grain size
using this method (ferrite only) is different for steels with different carbon contents. For
steel with less carbon content, the grain size of ferrite can be easily tested directly because
ferrite dominates in the sample and the whole sample indicates a great ferrite region with
very little pearlite. However, for steel with high carbon content, since pearlite is randomly
and approximately uniformly distributed throughout the sample and there is no large pure
ferrite area, it is difficult to directly test the grain size of ferrite. In such cases, the presence
of pearlite will significantly interfere with the efficiency and accuracy of ferrite grain size
testing, and the efficiency of manual calculation of the grain size is extremely low.
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Based on the four facts above, when evaluating the grain size of ferrite–pearlite steels
by testing the ferrite grain size, in order to solve the interference of pearlite regions to the
testing process and results of ferrite, and to improve the testing efficiency, we propose a
new and simple method based on artificial intelligence techniques. Since the steel mills
ignore the pearlite and consider the grain size of ferrite as the overall grain size of the
sample. Then, we assume that all the pearlite areas are ferrite. At this point, the exact size
of grains in the pearlite (considered as ferrite) region is unknown, but it can be predicted
according to the confidence of the average grain size of ferrite (actual ferrite) using the
model (the grain boundaries predicted by the model, which are not real but assumed by
the model, are called “hidden grain boundaries”). In this way, we, (1) identify and test the
grain boundaries in ferrite, (2) treat pearlite as ferrite, and use our model to predict the
“hidden grain boundaries” inside it, and (3) count and calculate the intersections in the
actual grain boundaries in ferrite and the predicted “hidden grain boundaries” in pearlite
using the three‑circle intercept procedure. Then, statistical calculation is made to achieve
automatic rating of grain size number.

2. Model and Method
Image segmentation is the first step and also the most important and difficult part of

image analysis. Image segmentation is the process of partitioning an image into several
disjoint parts by grayscale, color, spatial texture or other characteristics [20], so that these
characteristics show consistent differences in adjacent parts, thus achieving the purpose of
separating the target from the image. Traditional image segmentation is often carried out
with the knowledge of digital image processing, topology, mathematics, etc. Compared
with the deep learning‑based method, traditional methods have poor ability to deal with
impurities, patterns, hidden boundaries, etc. Since the texture of metallographic images is
complex [21], and it is difficult and costly to obtain training sets of metallographic images,
the image segmentation algorithm of U‑Net neural network is used in this paper to extract
grain boundaries.

U‑Net is a variant of fully convolutional neural network (FCN) [22]. Its architecture is
in the shape of a “U”, hence the name. This network consists of two parts: the contracting
path and the expanding path. The contracting path is generally used to capture the context
information in the image, and the expanding path is used to enable precise localization of
the parts to be separated from the image. U‑Net is an improved model based on FCN,
and it can be trained by using small sample datasets to achieve good segmentation effect
through data augmentation. It is especially suitable for application scenarios with high
cost and great difficulty in sample collection and calibration, such asmetallographic image
analysis.

In the contracting path of U‑Net, each contraction consists of a 2 × 2 max pooling
layer (with stride 2) and two 3 × 3 unpadded convolutional layers. Each unpadded con‑
volutional layer is followed by a ReLU activation parameter for downsampling of original
data. At each downsampling step, the number of feature channels is doubled. In the de‑
convolution of the expanding path, every step consists of a 2× 2 unpadded convolutional
layer (also followed by the activation parameter ReLU) and two sets of 3 × 3 unpadded
convolutional layers. At the same time, each deconvolution is followed by an addition of
the featuremap cropped from the corresponding contracting path (clipped tomaintain the
same shape). The final layer of the network is a 1 × 1 unpadded convolutional layer that
is used to map the 64‑channel feature vector to the desired number of classes. Finally, the
U‑Net used in this paper has 23 layers in total. The advantage of U‑Net is that it has no
requirement on the shape and size of the input image, especially when extremely large
images are processed. Figure 2 illustrates the U‑Net architecture used in this paper.
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In this paper, cross entropy is used as the loss function of image segmentation, and
its principle is as follows:

H(y(i)◦ ŷ(i) = −
q

∑
j=1

y(i)j log ŷ(i)j ) (2)

where, y(i)j with a subscript is an element equal to either 0 or 1 in the vector y(i). In

the vector y(i), only the y(i)th element, y(i)y(i), equals 1, and all the rest elements equal 0.

Therefore, H
(

y(i)◦ ŷ(i) = − log ŷ(i)y(i)

)
. That is, cross entropy focuses only on the predic‑

tion of correct classes. If the value of cross entropy is large enough, it indicates that there
is no problem with the classification.

Assuming the number of samples in the training dataset is n, the cross‑entropy loss
function is defined as:

l(Θ) =
1
n

n

∑
i=1

H
(

y(i)◦ ŷ(i)
)

(3)

where Θ is the model parameter. Similarly, if each sample has only one label, the cross‑

entropy loss can be expressed as l(Θ) = − 1
n

n
∑

i=1
logŷ(i)y(i). From another perspective, we

know that minimizing l(Θ) is equivalent to maximizing exp(−nl(Θ)) =
n
∏
i=1

ŷ(i)y(i), that is,

minimizing the cross‑entropy loss function is equivalent tomaximizing the joint prediction
probability for all label classes in the training dataset.

The two feature vectors output byU‑Net are the category label vector L =
(

L1, · · · , Lη

)
and the correlation confidence degree F =

(
F1, · · · , Fη

)
, where Li, Fi = F(Li) are the cate‑

gory label of the ith pixel and the corresponding confidence degree respectively.
Li ∈

{
c1, c2, · · · , cτ

∣∣cj ∈ N
}
is a class label; 0 ≤ Fi ≤ 1 is the confidence value for the

ith pixel classified as li. In the above definition, 1 ≤ i ≤ η, η is the maximum order value
obtained by sequencing the training image pixels in the way of the first method.

3. Experiment
3.1. Dataset

A total of 200 metallographic samples with a diameter of 10 mm were prepared with
hot‑rolled ribbed bars as the test samples. After grinding, polishing and corrosion, the sam‑
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ples showed clear ferrite–pearlite two‑phase microstructures and ferrite
grain boundaries.

The LabelMe platform was used to distribute grain size images for experts, and the
circle intercept procedure was used for the measurement and statistics of intersections and
the calculation of grain size. It should be noted that hidden boundaries do not need to
be marked manually, except for visible contour lines. Figure 3 shows an example of a
single grain size image and its three‑circle intercept calibration. In this paper, 2000 valid
grain size images and their annotation files were finally collected, with the image size of
2048 × 1536. The grain sizes of these images were calibrated and classified by experts and
then imported into the dataset.
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3.2. Data Augmentation
For deep learning, the size of the dataset has a great impact on the effect of the

model [23]. A too‑small dataset will lead to overfitting of the model and thus inaccurate
prediction results. The dataset used in this paper only included a few metallographic im‑
age samples, making it difficult to obtain good results. Therefore, the existing data were
augmented to expand the dataset. For this dataset, the data were mainly augmented by
random rotation, flipping and scaling, and random erasing. Data augmentation mainly
serves two purposes: (1) to increase the data volume for training, so that when the data
volume is large, there will be many characteristics, resulting in an improvement in the
generalization ability of the model; (2) to eliminate the impact of noise data that increases
with the volume of the effective data, so as to improve the robustness of the model. Tak‑
ing random erasing as an example, the model sometimes shows high consistency with the
training data, but does not work very well in data verification, that is to say, the model is
overfitting. An important factor to image overfitting is that the training data samples are
not rich enough. For example, in actual metallographic images, there may be overexpo‑
sure, underexposure, ambiguity, occlusion of some areas, etc. If we want to improve the
prediction and recognition ability in respect of such images and enhance the generaliza‑
tion ability and robustness of the model, it is necessary to add similar forms of data input
during training. This is the function of random erasing.

Random rotation and scaling mean randomly rotating the training image by random
angle or scaling by random magnification for data augmentation. For a training sam‑
ple, the augmented sample obtained by image flipping and image rotation can enable the
model to learn features that are not deformed by rotation during training, while the aug‑
mented sample obtained by image scaling can better enable themodel to realizemulti‑scale



Materials 2023, 16, 1974 7 of 15

training. Let (x, y) be the pixel coordinates of the original image, (x1, y1) be the pixel co‑
ordinates after rotation, (x2, y2) be the pixel coordinates after scaling, θ be the rotation
angle, (a, b) be the rotation center, (left,top) be the coordinates of the upper left corner of
the rotated image, sx and sy be the scaling factors. The rotation and scaling formulas are
as follows:

[
x1 y1 1] = [x y 1

] 1 0 0
0 −1 0
−a b 1

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 1 0 0
0 −1 0

le f t top 1


[
x2 y2 1] = [x y 1

]sx 0 0
0 sy 0
0 0 1


The results are shown in Figure 4.
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Random erasing is a new data measurement technique, which erases the pixels with
random values in the randomly selected rectangular areas in training, so as to obtain more
occlusions or erase pixel values and images with different areas for data enhancement.
This technique can reduce the risk of fitting and make the model robust to occlusion and
erasure. The results are shown in Figure 5.
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3.3. Algorithm Steps
The algorithm used in this paper falls into five modules: metallographic image acqui‑

sition module, contour extraction network module, visible intersection statistics module,
hidden intersection statistics module and automatic rating module.

The image acquisition module measures the metallographic samples and calculates
their grain size number by the conventional three‑circle intercept procedure through ex‑
perts of equivalent level, labels the images with the LabelMe v5.1.1 software and uploads
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them to this dataset for image acquisition. The module contains 2000 effective images of
grain size numbers and their labeling files, which are used as the training set of the contour
extraction network module.

The contour extraction network module is mainly for image preprocessing and grain
boundaries contour extraction. One of the most critical steps is the training of the model,
which is specifically divided into the following substeps: (1) Calibrate the original data of
image size 2048 × 1536 with LabelMe, mark the visible boundary and fill the prolongable
boundary. Name the images with id_magnification used_level.png (See Figure 6).
(2) The Labeled image of Figure 6b is binarized and then a randommask is applied to form
Figure 7a. Segment the labeled images into images of size 256× 256 with a step size of 128
and segment the labels in the same way (See Figure 7). (3) Input the dataset into U‑Net for
training, use the PyTorch framework formodel building and training, and save the trained
model files.
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Start the test after the model is trained. Enter a metallographic image of size
2048 × 1536. The program first segments the image, runs the contour extraction model
for model extraction, and finally splices the segmented images, and processes the overlap‑
ping part with the mean value. In this way, a complete contour extraction image will be
obtained. Both model training and prediction are carried out in an end‑to‑end manner.
Extraction of contours by sections greatly reduces the complexity of model training and
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improves the running speed of the model. The formula for dealing with overlapping parts
is as follows:

xavg = average(x1, x2 · · · xn) , xn ∈ {0, 1}

xnew =

{
1 , xavg > α
0, xavg ≤ α

, α ∈ (0, 1)

where, n represents the number of overlaps, xn represents the value of the nth overlap
prediction, and the value is 0 or 1,0 represents that this pixel is not predicted to be the
contour, 1 represents that this pixel is predicted to be the contour, average is the mean
operation, the result is xavg, α is the classification threshold, and the value in this paper
is 0.8, xnew represents the type of the overlap region after processing. Contour extraction
results are as Figure 8:

Materials 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

contour, 1 represents that this pixel is predicted to be the contour, average is the mean 
operation, the result is 𝑥 ，𝛼 is the classification threshold, and the value in this paper 
is 0.8, 𝑥  represents the type of the overlap region after processing. Contour extraction 
results are as Figure 8: 

 
(a) (b) 

Figure 8. Grain-boundary contours identified by the model. Original image (a) and image of model 
predictions (b). 

As for the visible intersection count statistics module, the binary image of edge con-
tour output by the contour extraction network is input, and based on the three-circle trun-
cation method, the edge contour line is judged to intersect the circle, and the position of 
the pixel where the intersection point is recorded, so as to conduct preliminary statistics 
of the truncation point, so the number of visible cut-off points P is calculated. 

As for the hidden intersection count statistics module, the binary image of the grain 
boundary contour output by the contour extraction network is input, and the intersection 
count of the pearlite area is estimated based on confidence. The calculation of grain size 
number is a description of the overall ferrite properties. It may be assumed that the size 
of each grain boundary in a ferrite section is approximately normally distributed after the 
hidden boundary is delineated. The specific steps are as follows: After the grain boundary 
segmentation of the first part, we obtain a set of grain boundary sizes 𝑋 ={𝑥1, 𝑥2, 𝑥3. . 𝑥𝑛}, 𝑥  represents the Manhattan distance between two adjacent grain bound-
aries. For some steel, we solve 𝑋 = 𝐴𝑣𝑒𝑟𝑔𝑒 {𝑥 |𝑥 < 𝑥 < 𝑥 } , where 𝑥 ，𝑥  meet 𝑃𝑟(𝑥 < 𝜇 < 𝑥 ) = 𝛼, which means the calculated average of the confidence interval of the 
distribution serves as the statistical magnitude describing the overall grain size number 
of the steel. 𝛼 varies in different types of ferrites (with different carbon contents), and 
parameters need to be adjusted for optimization. After computing, x  contains hidden 
grain boundary cutoff points 𝑥  (𝑥 ∈ {𝑥 |𝑥 < 𝑥 , 𝑖 = 0,1 ⋯ 𝑛}), finally, present 𝑥 =⌊𝑥 ÷ �̅�⌋ + 1 to calculate processed grain boundary points (including the number of hidden 
grain boundary). 

The automatic rating module accumulates the visible and hidden intersection count 
to obtain the final intersection count and calculates the grain size number by Formula (1). 

The model architecture is shown in Figure 9. Capture the target field of view to obtain 
the image to be rated as the input of the system. Slice the image and input the sliced im-
ages into the contour extraction network module for processing, and then integrate them 
to obtain the contour extraction image. Input the obtained contour into the visible inter-
section statistics module and the hidden intersection statistics module respectively for cal-
culation. Then, input the results into the automatic rating module for processing to obtain 
the final rating results and the labeling results by the three-circle intercept procedure. 
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As for the visible intersection count statistics module, the binary image of edge con‑
tour output by the contour extraction network is input, and based on the three‑circle trun‑
cation method, the edge contour line is judged to intersect the circle, and the position of
the pixel where the intersection point is recorded, so as to conduct preliminary statistics of
the truncation point, so the number of visible cut‑off points P is calculated.

As for the hidden intersection count statistics module, the binary image of the grain
boundary contour output by the contour extraction network is input, and the intersection
count of the pearlite area is estimated based on confidence. The calculation of grain size
number is a description of the overall ferrite properties. It may be assumed that the size of
each grain boundary in a ferrite section is approximately normally distributed after the hid‑
den boundary is delineated. The specific steps are as follows: After the grain boundary seg‑
mentation of the first part, we obtain a set of grain boundary sizes
X = {x1, x2, x3..xn}, xn represents the Manhattan distance between two adjacent grain
boundaries. For some steel, we solve X = Averge {xi|xa < xi < xb}, where xa, xb meet
Pr(xa < µ < xb) = α, which means the calculated average of the confidence interval of
the distribution serves as the statistical magnitude describing the overall grain size num‑
ber of the steel. α varies in different types of ferrites (with different carbon contents),
and parameters need to be adjusted for optimization. After computing, xn contains hid‑
den grain boundary cutoff points xnew (xn ∈ {xi|xb < xi, i = 0, 1 · · · n}), finally, present
xnew = x ÷ x + 1 to calculate processed grain boundary points (including the number of
hidden grain boundary).

The automatic rating module accumulates the visible and hidden intersection count
to obtain the final intersection count and calculates the grain size number by Formula (1).
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Themodel architecture is shown in Figure 9. Capture the target field of view to obtain
the image to be rated as the input of the system. Slice the image and input the sliced images
into the contour extraction network module for processing, and then integrate them to ob‑
tain the contour extraction image. Input the obtained contour into the visible intersection
statistics module and the hidden intersection statistics module respectively for calculation.
Then, input the results into the automatic rating module for processing to obtain the final
rating results and the labeling results by the three‑circle intercept procedure.
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Figure 9. Model architecture.

4. Results and Discussion
The training datasets in this paper are all about hot rolled ribbed steel bar samples

(HRB400). A trained model is used to test the grain sizes of four different grades of steel,
namely SWRCH6A (with a carbon content of 0.05%, close to that of industrial pure iron),
HRB400E (with a carbon content≤ 0.23%), 35K (with a carbon content of 0.32%) and S45C
(with a carbon content of 0.45%). With different chemical compositions, they are all of
a ferrite–pearlite microstructure. The two‑phase ratio of samples with different carbon
contents is different. Generally, the higher the carbon content, the higher the pearlite ratio.

4.1. Grain Boundary Segmentation Results
The original image size of the datasets used in this paper is 2048 × 1536, and the sub‑

images of 256 × 256 are cut out with a step size of 128, which fall into the training dataset,
verification dataset and test dataset, accounting for 70%, 20% and 10% of the total data
respectively. On top of that, the grain size number of three types of steels for which no
training data collected are tested.

During model training, the authors adjust the number of iteration rounds, learning
rate, batch size and other parameters. The results of grain boundary segmentation of vari‑
ous types of steels are shown in Figure 10. It can be seen that the images arewell segmented
and spliced, showing no obvious splicing joints compared with the original. In different
sample images, the grain boundaries inside the ferrite and the ferrite–pearlite interface
are all correctly identified and segmented into grain boundary contours as a whole. The
pearlite does not show internal grain boundaries, it is treated as a grayscale part as awhole,
and its internal hidden grain boundaries are predicted as ferrite.
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Figure 10. Grain‑boundaries segmentation results.

4.2. Rating of Grain Size Number by Circle Intercept Procedure
A three‑circle intercept procedure is used to count and calculate the grain boundary

intersections in the segmented grain boundary images. Three concentric, isometric circles
with a total perimeter of 500 mm are used to form a measurement grid, and the point
of intersection between the grid and the grain boundary is the intersection. The num‑
ber of visible intersections in the ferrite microstructure is obtained by counting the binary
images of the edge contour with the three‑circle intercept procedure. The intersections
of the four materials are shown in Figure 11. It can be seen that the intersections of fer‑
rite grain boundaries among the four materials are accurate, and the intersection areas of
circumference and ferrite grain boundaries and ferrite–pearlite boundaries are identified
as intersections.
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In the end, the automatic ratingmodule integrates the visible intersections and hidden
intersections to output the rating results and the labeled image of the three‑circle intercept
procedure. Then, calculate the average grain size number of the samples according to
Formula (1). The rating results of the grain size number of the four samples are shown in
Table 1. Compared with the manual rating results of experts, the average error is lower
than Grade 0.5, meeting the requirements of the allowable error in the detection standard.

Table 1. Detection Results of Various Types of Steel.

Material Average Error Accuracy Rate

SWRCH6A 0.3064 96.67%
HRB400E 0.3160 90.00%

35K 0.2843 96.70%
45K 0.2897 93.33%

The average error and accuracy are defined as follows:

ei,j =
∣∣si,j − ri,j

∣∣
where i represents the sample number and j represents the sample category. ei,j represents
the error of the ith sample of class j; si,j represents themanual rating result of the ith sample
of class j samples; ri,j represents the model rating result of the ith sample of class j samples.

ej =
∑

nj
i=1 ei,j

nj
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ej is the average error of the class j. nj represents the total number of class‑j samples.

Aj =
n0.5,j

nj

Aj represents the accuracy of class‑j samples and n0.5,j represents the number of sam‑
ples whose error is less than 0.5.

This paper is based on the model training, prediction and data processing of metallo‑
graphic images, which inevitably relies on the quality of images. An image will be more
representative in characteristics if it has fewer interference items and richer data, and as a
result, the model training effect will be better. The original metallographs do have such
defects as scratches, foreign contaminants and holes, and they all are interference items
for the training and prediction of the deep learning model. In this paper, two methods are
mainly used to eliminate the negative impact of these interference items on the model as
far as possible. Method 1: accurate data calibration. Scratches, foreign contaminants and
holes are different from grain boundaries in form. For example, scratches are mainly long
straight lines, while foreign contaminants and holes are mostly points rather than curves.
They are obviously different from the grain boundaries that we need to identify. In the
preliminary data calibration work, we arranged senior metallographic analysis experts to
identify and calibrate the grain boundaries andwould notmark these interference items as
inclusions. The accurate calibration ensures that, in subsequent training and identification,
the model algorithm is unlikely to identify these interference items in the verification sam‑
ple as grain boundaries. Method 2: Identification through the algorithm. As mentioned
earlier, interference items differ from grain boundaries in size, grayscale or shape, and we
can avoid misjudgment as far as possible by identifying these differences through the al‑
gorithm. For example, in terms of size, grain boundaries are curve segments, so we can
directly use the algorithm to delete particles whose length and width are less than a cer‑
tain value (e.g., 3 µm). In terms of grayscale, the grain boundaries are gray or nearly black.
Itemswith lighter or darker colors are generally foreign contaminants, holes, corrosive wa‑
ter stains, or other interference items. We set a grayscale threshold in the algorithm, and
this can also exclude interference items to some extent.

This testing process is an approximate, simple and fast method, suitable for mass pro‑
duction inspection in factories, and cannot be used for accurate detection of grain size. If
the true and accurate grain size of the sample is required, it is also necessary to detect
the grain size of pearlite (the size of pearlite colonies) besides that of ferrite. In this case,
it is necessary to use a scanning electron microscope to obtain a metallographic image
with higher resolution, which can clearly display the boundaries of pearlite colonies, and
thus the grain size of pearlite can be tested. As we know, the pearlite microstructure is
in colonies due to different orientations of ferrite–cementite lamellae, and the boundaries
between microstructures of different orientations can be regarded as the grain boundaries
of pearlite colonies. Unlike solid boundaries such as ferrite grain boundaries, such bound‑
aries are not solid boundaries formed by lines or specific grayscales or colors, but virtual
boundaries formed only due to different orientations of lamellae. The areas on both sides
of such virtual boundaries have no difference, except the difference in the orientations of
lamellae. Unlike the hidden boundary described earlier as well, this virtual boundary is
objectively present and is not visible to the human eyes simply because of the low reso‑
lution in the optical images. Such boundaries are easy to identify for man, but difficult
for computer. We are studying this aspect and have achieved good results, which will be
presented in the next paper.

5. Conclusions
This paper presents a model for automatic detection and quantitative analysis of the

grain size number of ferrite–pearlite two‑phase microstructure. A U‑Net neural network
model is designed to segment ferrite grain boundaries. In view of the hidden grain bound‑
aries in pearlite microstructure, the number of hidden grain boundaries can be inferred
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based on the confidence of average grain size. The grain size number is rated using the
three‑circle intercept procedure. The results show that the accuracy of this procedure is
greater than 90% in the grain boundary segmentation for the four types of ferrite–pearlite
two‑phase microstructure samples. All of these results deviate from those calculated by
experts using the manual intercept procedure by less than Grade 0.5, the allowable de‑
tection error specified in the standard. In addition, the detection time is shortened to 2 s
from 30min consumed in themanual intercept procedure, greatly improving the detection
efficiency and reducing labor intensity. Accordingly, the method proposed in this paper
can be effectively used for the automatic rating of grain size number of ferrite–pearlite mi‑
crostructure. The results obtained can be applied in steelworks laboratories to control the
grain size of rolled ferrite–pearlitic steel.
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