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Abstract: This study deals with the effect of fly ash and recycled sand on the flexural behavior
of SFRCCs (steel fiber-reinforced cementitious composites)-filled steel tubes. As a result of the
compressive test, the elastic modulus was reduced by the addition of micro steel fiber, and the fly ash
and recycled sand replacement decreased the elastic modulus and increased the Poisson’s ratio. As a
result of the bending and direct tensile tests, strength enhancement by the incorporation of micro
steel fibers was observed, and a smooth descending curve was confirmed after initial cracking. As a
result of the flexural test on the FRCC-filled steel tube, the peak load of all specimens was similar, and
the applicability of the equation presented by AISC was high. The deformation capacity of the steel
tube filled with SFRCCs was slightly improved. As the elastic modulus of the FRCC material lowered
and the Poisson’s ratio increased, the denting depth of the test specimen deepened. This is believed
to be due to the large deformation of the cementitious composite material under local pressure due
to the low elastic modulus. From the results of the deformation capacities of the FRCC-filled steel
tubes, it was confirmed that the contribution of indentation to the energy dissipation capacity of steel
tubes filled with SFRCCs was high. From the comparison of the strain values of the steel tubes, in the
steel tube filled with SFRCC incorporating recycled materials, the damage was properly distributed
between the loading point and both ends through crack dispersion, and consequently, rapid curvature
changes did not occur at both ends.

Keywords: SFRCCs; steel tube; flexural behavior; indentation; deformation capacity

1. Introduction

Concrete-filled steel tube (CFST) members have recently been widely used for struc-
tural applications, as they have superior performance compared to conventional reinforced
concrete (RC) and steel tube members in terms of not only mechanical properties, such
as high strength and stiffness [1–10], but also their excellent ductility, energy dissipation
ability [11–15] and fire resistance [16–20]. The outstanding performance of CFSTs is due to
the complex action between concrete and steel, and the strength of the infilled concrete is
greatly improved due to the confining effect of the outer steel tube.

Recently, studies on the structural performance of CFST members using steel-fiber-
reinforced cement composites have been conducted in various fields. In fiber-reinforced
cementitious composites, the reinforcing fiber exists in the form of short discrete fibers
in the cement matrix and enhances the dispersion of microcracks and tensile strength,
depending on the tensile strength of the fiber and its adhesion behavior with the cement
matrix [21]. The reinforcing fibers can improve brittle fracture characteristics such as the
low tensile strength and deformability of cement composites. In addition, engineered
cementitious composite (ECC) [22], high-performance fiber-reinforced cement-based com-
posite (HPFRCC) [23] and strain-hardening cement-based composite (SHCC) [24] show
strain-hardening characteristics after initial cracking. Among the reinforcing fibers, steel
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fibers can improve brittle fracture characteristics such as the tensile strength and deforma-
tion capacity of concrete more distinctly due to their large cross-sectional area and high
strength and stiffness compared to micro-synthetic fibers, such as polyethylene (PE) or
polyvinyl alcohol (PVA). Steel fibers show different behavior characteristics depending on
the aspect ratio or shape of the fiber [25,26]. In addition to the material properties of fiber-
reinforced cementitious composites, many studies on the structural behavior characteristics
of steel-fiber-reinforced concrete-filled tubes have also been conducted [27–32]. Moreover,
studies are being conducted to improve material and structural behavior characteristics
by utilizing recycled resources, such as waste lathe fibers or steel wires from waste tires as
reinforcing fibers in concrete [33–36].

Regarding the recycling of waste, studies have been conducted to replace the main
constituent materials of concrete, such as aggregate and cement, with recycled materials.
In the case of aggregates that are consumed in large amounts in the production of concrete,
not only recycled concrete aggregate [37–42] obtained by crushing waste concrete but
also various industrial and household wastes, such as ground glass powder, crushed
waste glass [43–45] and marble wastes, are the subjects of research on the utilization of
alternative materials [46]. As part of an effort to reduce CO2 emissions from the cement
manufacturing process, industrial by-products such as fly ash and blast furnace slag, as
well as household waste such as waste glass or waste marble powder, have been used
as cement substitutes for cement-based materials, and the structural application of the
materials have been evaluated [47–51]. It has also been reported that the incorporation of fly
ash into FRCC enhances the adhesion between the reinforcing fibers and the cement matrix,
thereby improving the tensile performance of fiber-reinforced cement composites [52,53].

The CFST member can partially restrain local buckling occurring in steel tubes and
thus is effective in delaying or preventing severe structural damage and collapse due to
local forces, such as collisions with vehicles or ships [54]. When a hollow steel tube member
is subjected to a local impact load, the deformation by the impact energy is distributed to
indentation and overall bending deformation [55], resulting in a high energy dissipation
capacity [56–58]. However, in the case of the CFST member, indentation hardly occurs
due to filled concrete, resulting in the formation of a local plastic hinge at an early stage,
significantly reducing the energy dissipation ability of the member [59,60].

As described above, because indentation is dominant in hollow steel tubes, a hammer
with a knife-edge shape is commonly used in the experiment [56–58]. On the other hand,
because indentation rarely occurs in CFST, the influences of the different shapes of drop
hammers on the behavior of CFSTs may not be significant [61], and various shapes of drop
hammers are used in the experiment [59,60,62]. However, FRC and FRCC mixtures show a
decrease in the elastic modulus as the fiber volume fraction increases, and in the case of
FRCC, the decrease in the elastic modulus is greater than that of FRC because there is no
coarse aggregate [63]. Such a decrease in elastic modulus can indicate an increase in the
deformation of FRCC, so when an experiment is performed using a drop hammer with a
knife-edge shape, the indentation depth of the FRCC-filled tube can increase. However, in
studies on FRC-filled steel tubes [64,65], this indentation effect has not been considered.
Moreover, only the overall bending performance has been evaluated, and the deformation
capacity affected by indentation has not been considered.

In this study, Steel-Fiber-Reinforced Cement Composites (SFRCCs), which improve
the brittle fracture characteristics, crack distribution and fracture toughness of existing
cement composites such as concrete, were applied as steel tube fillers, and the flexural
performance was evaluated experimentally. In the case of ECC or HPFRCC, fine silica
sand is generally used to maximize the adhesion between the reinforcing fibers and the
matrix, and the cement composite consequently exhibits strain hardening characteristics
after cracking. However, considering that the material in this study was applied as a steel
tube filler, the application of silica sand lowers the economic feasibility. Therefore, in this
study, a fine aggregate was applied in consideration of the performance and economic
feasibility when manufacturing fillers for steel tubes. As part of efforts to expand the
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application of recycled aggregate as construction waste increases due to redevelopment
projects, some of the natural fine aggregate was replaced with recycled fine aggregate when
manufacturing FRCCs. To evaluate the indentation effect during the lateral loading of
FRCC-filled steel tubes, a hammer with a knife-edge shape was used for the flexural test.
The contributions of bending and indentation on the deformation capacities of FRCC-filled
steel tubes were compared and discussed.

2. Experimental Program
2.1. Test Specimens

In this study, to evaluate the effect of fly ash and recycled fine aggregate on the flexural
behavior of a steel tube filled with SFRCCs, a total of three specimens were planned with
the type of steel tube filler as a variable. The steel tube was S355 grade [66] with a yield
strength of 415 MPa, a tensile strength of 505 MPa and an elongation of 30% (test value
provided by the manufacturer). The shape and dimensions of the steel tube are shown in
Figure 1, and the conditions and variables of the specimen are summarized in Table 1.
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Table 1. List of test specimens.

Specimen
Steel Tube

Mixture
L 1 (mm) D 2 (mm) t 3 (mm) L/D D/t

STC
STF

STFR
1000 114.3 3.2 8.75 25.4

OPC
OPCF

F25S50F
1 Net length, 2 Diameter, 3 Thickness.

2.2. Materials

In this study, through a preliminary experiment on the mechanical properties of
SFRCCs according to the replacement ratio of recycled materials, the volume fraction of
steel fiber was set to 1.0% of the cement volume ratio to ensure optimal mixing and tensile
performance. In addition, in a preliminary experiment, a 25% fly ash replacement rate
and a 50% recycled fine aggregate replacement rate, which are levels that do not decrease
the mechanical performance (compression, bending and tension) of cement composites by
more than 10%, were applied. The water-to-binder ratio was set to 0.4. Through numerous
preliminary experiments on the mixing performance, flowability and mechanical properties
of steel-fiber-reinforced cementitious composites, the best design mixture was derived,
which is shown in Table 2. As presented in Table 2, a total of three mixtures were considered:
an OPC mixture using ordinary Portland cement, an OPCF mixture mixed with steel fiber
and an F25R50F mixture in which the cement and natural aggregate of the OPCF mixture
are substituted with 25% fly ash and 50% recycled fine aggregate, respectively.

As cementitious materials, Class 1 ordinary Portland cement that satisfies KS L
5201 [67] and Class F fly ash produced in Boryeong thermal power plant that satisfies
KS L 5405 [68] were used in this study. The natural sand was sea sand, obtained from
Jumunjin, Gangwon Province. Recycled sand is an aggregate that is produced by crushing
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waste concrete during the dismantling process of the existing old RC structure and satisfies
KS F 2573 [69]. The fine aggregates and steel fiber used in this study are shown in Figure 2.
The percentages of the grain sizes of fine aggregates used in this study were determined
by conducting sieve tests as per Korean standard KS F 2502 [70]. Figure 3 shows the size
distribution of the fine aggregates. Both natural and recycled sand fall between the upper
and lower limit. The chemical composition of fly ash used in this study and the material
properties of natural sand and recycled sand are listed in Tables 3 and 4, respectively, and
the physical properties of steel fiber are provided in Table 5.
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Figure 2. Fine aggregates and steel fiber used in this study: (a) Natural sand; (b) Recycled sand;
(c) Steel fiber.
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Figure 3. Sieve analysis result.

Table 2. Mix proportions of cement composites.

Mix
W/B
(%)

Weight (kg) *

W 1 C 2 FA 3 NS 4 RS 5 SF 6 SP 7

OPC
0.40

323 807 - 1090 - - 0.16
OPCF 323 807 - 1090 - 20.12 0.81

F25S50F 323 605 202 545 545 20.12 0.81
1 Water, 2 Cement, 3 Fly ash, 4 Natural sand, 5 Recycled sand, 6 Steel fiber, 7 Superplasticizer. * Air content for
calculating the mix proportion was assumed to be 2.0%.

In this study, to evaluate the mechanical properties of each cement composite, test
specimens for compressive and flexural strength tests were manufactured in accordance
with KS L ISO 679 [71]. In addition, the direct tensile strength test specimen had a dumbbell
shape. The tensile behavior characteristics were quantitatively evaluated using the direct
tensile strength test machine shown in Figure 4. All specimens for the evaluation of
mechanical properties were demolded after one day of casting and were cured in water in
a constant-temperature water bath (20 ± 2 ◦C) for 28 days.
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Table 3. Chemical and physical characteristics of cementitious materials.

Parameter Type I Portland Cement Class F Fly Ash

SiO2 (%) 33.44 50.72
Al2O3 (%) 15.03 20.73
Fe2O3 (%) 0.57 6.37
CaO (%) 44.12 3.61

Free CaO (%) 0.82 -
MgO (%) 3.55 1.08
SO3 (%) 3.45 0.54

Ig. loss (%) 1.27 3.04
C3S (%) 61.24 -
C2S (%) 12.09 -
C3A (%) 13.14 -

C4AF (%) 6.12 -
Blaine (cm2/g) 3500 3990

Table 4. Physical properties of fine aggregates.

Type Density (g/cm3)
Water Absorption

(%) Fineness Modulus

Natural sand 2.59 0.76 2.44
Recycled sand 2.44 4.32 2.99

Table 5. Physical properties of micro steel fiber.

Dia. (mm) Length (mm) Elastic Modulus
(GPa)

Tensile Strength
(MPa)

0.18–0.23 12–14 206 2580
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2.3. Mechanical Properties of Cement Composites

In this study, to evaluate the effect of fly ash and recycled aggregate on the bending
behavior of SFRCC-filled steel tubes, three types of cement composites for steel tube filling
were set as variables, as shown in Tables 1 and 2. Table 6 lists the mechanical properties of
the cement composites for each mixture. The compressive strength showed slight differ-
ences of around 50 MPa in all combinations. In the case of the F25R50F combination, which
showed the lowest compressive strength, it was about 3.5% lower than that of OPCF, and



Materials 2023, 16, 1958 6 of 16

there was almost no decrease in compressive strength due to the replacement of recycled
materials. According to the research results on the effect of fiber mixing on the compressive
strength of existing FRCCs, it has been reported that the fiber mixture shows different
results depending on the fibers and blends that are used, such as increasing [72–74] or de-
creasing [75,76] the compressive strength due to fiber mixing. In this study, the compressive
strength and modulus of elasticity of cement composites tended to decrease somewhat due
to the incorporation of steel fibers, and the Poisson’s ratio tended to increase slightly.

When fine aggregate is used instead of silica sand, it has been reported that it is
difficult to express strain hardening characteristics, such as in the case of existing ECC or
HPFRCC [77–79]. As shown in Figure 5, strain hardening characteristics did not appear in
the tensile strength test results of this study. As a result of analyzing the difference in tensile
behavior characteristics in each mixture, a brittle fracture occurred in the OPC mixture
after the initial tensile crack, whereas the brittle fracture was delayed in the OPCF and
F25S50F mixture with steel fibers, due to fiber-bridging action. After the initial tensile crack,
the F25S50F mixture showed higher tensile stress than that of the OPCF mixture. This is
thought to be due not only to the application of fly ash, which has a higher fineness than
cement, but also to the increase in the amount of fine powder in the aggregate generated
during the crushing of waste concrete in the process of producing recycled fine aggregate.
It is believed that this is because the fly ash and the fine powder enhanced the adhesion
area with the cement matrix, which is essential for the adhesion behavior of steel fibers.
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Figure 5. Tensile strength–strain curves of test specimens.

In terms of flexural strength, the mixture containing steel fibers had 15 to 16% higher
strength than that of the OPC mixture, but the tendency seen in the direct tensile strength
test results did not appear. It is believed that this was because the position of the flexural
crack that is initially generated and propagated is different for each specimen because
no notch is provided in advance, and thus, the bending moment used for calculating the
flexural strength shows some deviation.

Table 6. Twenty-eight-day strength characteristics of cement composites.

Mix
Compression Bending

Strength
(MPa)

Tensile
Strength

(MPa)
Strength

(MPa)
Elastic Modulus

(GPa)
Poisson’s

Ratio

OPC 51.9 24.12 0.16 5.54 2.23
OPCF 61.4 22.49 0.16 6.39 2.62

F25S50F 53.9 16.09 0.19 6.43 2.62

2.4. Flexural Test Method

In this study, the experimental equipment shown in Figure 6 was installed to experi-
mentally evaluate the flexural behavior of SFRCC-filled steel tube members. The loading
frame was fixed to the reaction floor, and both ends of the specimen were fastened to the
loading frame with high-strength bolts to make the boundary condition a fixed end. Static
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loading was applied in the vertical downward direction using an oil jack with a capacity
of 1000 kN, and monotonic loading was performed via displacement control. To simulate
local forces, such as collisions with vehicles or ships, a hammer in the shape of a knife-edge
with a width of 30 mm in contact with the specimen was installed at the loading part of the
oil jack. To measure the deflection of the SFRCC-filled steel tube specimen, a displacement
transducer (LVDT1) was installed at the bottom of the center of the specimen, and a dis-
placement transducer (LVDT2) was additionally installed at the bottom of the knife-edge
shape hammer. The displacement difference between displacement transducers (LVDT2-
LVDT1) was used to calculate the depth of denting at the loading part of the specimen. In
addition, strain gauges were attached to the surface of the steel tube specimen along the
longitudinal direction in order to check the yield and plastic deformation characteristics of
the steel material at each position during the experiment.
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Steel tube specimen

Figure 6. Flexural test set-up.

3. Experimental Results and Discussion
3.1. Failure Modes

Figure 7 shows the final failure modes of the specimens. As shown in Figure 7a, in
the STC test specimen, which was a mortar-filled steel tube without mixing steel fiber, fly
ash and recycled fine aggregate, local damage at the loading part initially occurred slightly.
The damage was then transferred to both ends, resulting in the fracture of the steel at both
ends, showing signs of failure. In the STF test specimen filled with SFRCCs (Figure 7b) and
the STFR test specimen, which was a steel tube filled with a SFRCC incorporating 25% fly
ash and 50% recycled fine aggregate (Figure 7c), fractures occurred at both ends after local
damage to the load section. Instead, the bottom of the center of the specimen was fractured
and finally failed. In relation to this failure mode, Figure 8 shows the strain distribution of
the steel tube specimen according to the increase in displacement. As shown in Figure 8,
the steel strain at the center and both ends of the STC specimen was higher than that of the
STF and STFR specimens, which were SFRCC-filled steel tubes, at the same displacement.
In addition, in the STF and STFR specimens, the strain at both ends was smaller than that in
the central part of the steel tube, but the strain at the ends of the STC specimen was similar
to that in the central part. It is believed that this was because the SFRCCs were filled in the
steel tube, and damage was properly distributed between the central load point and both
ends through crack dispersion. Consequently, rapid curvature changes did not occur at
both ends, which delayed steel fracturing.
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Figure 7. Final failure modes of test specimens: (a) STC; (b) STF; (c) STFR.
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Figure 8. Strain distribution of steel tube: (a) STC; (b) STF; (c) STFR.

3.2. Load–Displacement Relationships

Figures 9 and 10 show the deflection of the central part and the depth of damage to
the load part according to the applied load of the general mortar and SFRCC-filled steel
tubes, respectively, and they are summarized and shown in Table 7. The STC test specimen,
which was a mortar-filled steel tube without mixing steel fiber, fly ash and recycled fine
aggregate, showed a maximum load of 202.42 kN. The local damage depth of the loading
part showed a maximum value of 4.05 mm, indicating that the damage at the loading
part was insignificant. The STF specimen filled with SFRCCs showed a maximum load
of 207.33 kN, and the local damage depth of the loading part at the maximum load was
6.73 mm, which was about 60% deeper than that of the STC specimen. The STFR test
specimen, a steel tube filled with a SFRCC with 25% fly ash and 50% recycled aggregate,
showed a maximum load of 203.98 kN. The local damage depth of the loading part was up
to 9.38 mm, and the damage depth at the loading part greatly increased compared to the
STC and STF specimens. This was because, as shown in Table 6, which presents the material
test results, the F25S50F mixture showed a lower modulus of elasticity than the OPC and
OPCF mixtures. This increased the depth of the primary force part damage and led to a
relatively high Poisson’s ratio. As a result, it is judged that the deformation of the steel
material due to the lateral expansion was caused secondarily. In addition, it is determined
that the damage was redistributed such that the damage was not concentrated on the
supporting parts of the member by increasing the damage depth at the applied portion.

In this study, the flexural strength was calculated by applying the plastic stress distri-
bution method of the AISC standard [80], as shown in Equation (1) below.
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MB = FyZsB +
0.95 f ′c ZcB

2
(1)

where Fy is the yield strength of the steel tube, ZsB is the plastic section modulus of the
steel tube, f ′c is the compressive strength of concrete, and ZcB is the plastic section modulus
of concrete.

As shown in Table 7, as a result of comparing the experimental values for the cement-
composite-filled steel tube with the calculated values according to the AISC standard
formula, the error range was within 3%, indicating that the experimental values were
properly predicted. Figure 11 shows the relationship between the midspan deflection and
denting depth of the SFRCC-filled steel tube. As shown in the figure, it was found that
the damage depth increased slightly with the progress of deflection in the STF specimen
compared to the STC specimen.

On the other hand, in the STFR test specimen substituted with fly ash and recycled
fine aggregate, which were resource-recycled materials, it was found that the increase in
the damage depth at the loading part for deflection increased noticeably. This appears to
be because, as described above, the F25S50F mixture showed a lower elastic modulus and a
higher Poisson’s ratio than those of the OPC and OPCF mixtures. On the other hand, the
results of calculating the moment of inertia of the section of the SFRCC-filled steel tubes
showed that it decreased as the denting depth increased, showing a maximum decrease of
9.2% in the case of the STFR test specimen. However, the section modulus applied when
calculating the flexural strength showed a difference of 1.0% from the section without
damage, as presented in Figure 12. Therefore, it is deemed appropriate to apply the section
modulus in the state where no damage occurs when calculating the flexural strength of the
CFT, as found in the plastic stress distribution method of the current AISC standard.
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Table 7. Results of flexural tests.

Specimen
Peak Load (kN) Deflection at

Peak Load
(mm)

Denting Depth
at Peak Load

(mm)

Dissipated Energy (kN·m)

Test (1) AISC (2) (1)/(2) by
Deflection

by
Denting Total

STC 202.42 201.20 1.01 71.10 4.05 15.939 0.872 16.811
STF 207.33 201.08 1.03 82.50 6.73 17.989 1.145 19.134

STFR 203.98 201.18 1.01 79.16 9.38 18.416 1.656 20.072

3.3. Energy Dissipation Characteristics

Figure 13 shows the total energy dissipation capacity, which is the sum of the energy
dissipation capacity due to the bending of the specimen and damage at the loading part.
The energy dissipation capacity due to the bending of the specimen and the damage at
the loading part was calculated by using the area surrounded by the X-axis and the curve
corresponding to each specimen in the load–deflection relationship curve in Figure 9 and
the load–damage depth relationship curve in Figure 10, respectively. As shown in Table 7,
the STFR test specimen, which was a steel tube filled with an SFRCC replaced with 25%
fly ash and 50% recycled fine aggregate, showed the highest energy dissipation capacity
at 20.072 kN·m. However, as shown in Figure 13, the tendency to increase the energy
dissipation capacity according to deflection was similar regardless of the mixture type.

Figure 14 shows the total energy dissipation capacity classified according to the contri-
bution of the bending deformation due to the deflection and denting at the loading part.

As shown in Figure 14a, in all specimens, the energy dissipation capacity at the begin-
ning of the flexural behavior was mostly caused by denting at the loading part, but after
the initial crack, the contribution of the energy dissipation capacity by flexural deformation
increased rapidly. As deflection increased, as shown in Figure 14b, the contribution of the
energy dissipation capacity by flexural deformation increased to more than 90%. More than
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80% of the energy dissipation capacity of the SFRCC-filled steel tube was influenced by
the midspan deflection, and the contribution by the damage at the loading part was found
to be less than 20%. In particular, the STC test specimen, which was a mortar-filled steel
tube without steel fiber and recycled materials, showed the lowest contribution to energy
dissipation capacity due to damage at the loading part. In the case of the STFR specimen,
the contribution to the energy dissipation ability due to damage to the loading part was
9%, which was higher than those of the STC and STF test specimens, and the ability to
redistribute local damage was improved.
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Figure 14. Contribution of deformation and dent to the total energy dissipation capacity: (a) Initial
stage; (b) Overall.

3.4. Steel Strain Characteristics

In general, in a CFST member, there is almost no local damage to the load part due
to the infilled concrete, and it shows failure by forming a plastic hinge due to bending, as
shown in Figure 15 [81]. Therefore, in this study, strain gauges were installed at the lower
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end of the midspan and the upper end of the supporting part of the steel tube to evaluate
the strain at the plastic hinge generating area, and the strain value was measured.

Figure 16 shows a comparison of steel strains at the bottom of the midspan and the
top of the support part of the specimen. As shown in Figure 16, in all specimens, the steel
strain at the top of the supporting part was larger than that at the bottom of the midspan.
However, as shown in Figure 16b, after deflection of about 6 mm, the steel strain at the
top of the supporting part in the STF specimen mixed with steel fiber was lower than that
of the STC specimen. It is believed that this was due to crack dispersion at the loading
part due to the incorporation of steel fibers. In the STFR test specimen, which was an
SFRCC-filled steel tube with fly ash and recycled fine aggregate, the most stable stress
distribution phenomenon was observed; for example, the steel strain at the top of the
supporting part started to increase after a deflection of about 6 mm.
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4. Conclusions

In this study, flexural tests were performed on FRCC-filled steel tubes subjected to
one-point loading under the fixed end condition. The effects of using micro steel fiber and
recycled materials were experimentally evaluated for the mechanical properties of FRCC
materials and the flexural behavior of structural members, and the contribution of bending
and indentation to the deformation capacity of FRCC-filled steel tubes was investigated.
The conclusions based on the experimental results are summarized as follows.

1. The compressive strength and modulus of elasticity of cement composites tended to
decrease, and the Poisson’s ratio tended to increase slightly, due to the incorporation
of steel fibers and the substitution of recycled materials. In addition, when steel fibers
were mixed, the flexural strength was 15 to 16% higher than that of the OPC mixture,
and the retardation of brittle fractures due to the fiber crosslinking stress after the
initial tensile crack was exhibited during the tensile test.

2. The STF specimens filled with SFRCCs showed a slight increase in denting depth
according to the increase in deflection compared to the STC specimens that were not
reinforced with steel fibers. In particular, for the STFR test specimen with the recycled
material, the denting depth at the loading part tended to increase noticeably due to
the lower elastic modulus and higher Poisson’s ratio of the cementitious composite
compared to the OPC mixture.

3. In all specimens, the tendency to increase the energy dissipation capacity according
to deflection was similar regardless of the type of mixture for the cement composite.
However, in the case of the STFR specimen, the contribution to the energy dissipation
capacity due to the damage at the loading part was larger than those of the STC and
STF specimens, indicating that the ability to redistribute local damage was improved.

4. In all specimens, the steel strain at the top of the supporting part was larger than
that at the bottom of the midspan of the test specimen, which is considered to be
due to the dispersion of cracks at the loading part due to the mixing of steel fibers.
In particular, in the STFR test specimen, which was an SFRCC-filled steel tube with
recycled materials, the lowest steel strain was observed at the top of the supporting
part, and steel deformation was delayed the longest. Thus, it is determined that the
stress distribution was stable.

5. In this study, based on numerous experiments on the mechanical properties of FRCC,
three combinations with the best tensile performance were derived. However, when
retrofitting is required at a construction site, materials such as self-compacting cemen-
titious composites with excellent flowability are required. Therefore, verification of
the structural applications as well as investigation of SFRCC materials that satisfy both
high flowability and mechanical properties are necessary tasks for future research.
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