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Abstract: Traditional research and development (R&D) on biomedical materials depends heavily
on the trial and error process, thereby leading to huge economic and time burden. Most recently,
materials genome technology (MGT) has been recognized as an effective approach to addressing this
problem. In this paper, the basic concepts involved in the MGT are introduced, and the applications of
MGT in the R&D of metallic, inorganic non-metallic, polymeric, and composite biomedical materials
are summarized; in view of the existing limitations of MGT for R&D of biomedical materials, potential
strategies are proposed on the establishment and management of material databases, the upgrading
of high-throughput experimental technology, the construction of data mining prediction platforms,
and the training of relevant materials talents. In the end, future trend of MGT for R&D of biomedical
materials is proposed.

Keywords: biomedical material; material genome technology; database; high-throughput technology;
algorithm model

1. Introduction

As a dynamic and fast-growing branch of materials science, biomedical materials are
used to diagnose and treat physiological diseases, repair or replace biological tissues or
organs to enhance or restore their functions. Biomedical materials have been extensively
applied in clinical practice in forms of various medical devices including sutures, scaffolds,
dentures, artificial bones, and even artificial hearts, etc. The research and development
(R&D) of innovative biomedical materials involves the breakthrough in a wide range of
knowledge including materials science, engineering, medicine, and life science, etc.

The utilization of biomedical materials dates back to 3500 B.C. Since the first use of
horsehair as suture, the fast-growing developments in life science and materials science
have led to extensive applications of biomedical materials. However, the tissues or organs
are extremely complex, the ability of biomedical materials to precisely regulate the growth,
regeneration, and repair is far from satisfaction. The growing curiosity on the structure–
property relationship of biomedical materials as well as the interactions between biomedical
materials and cells/tissues/organs may lead to the investigation of these topics to foster the
R&D of new biomedical materials. It is often achieved by development of novel chemical
structure, combination of materials, or fusion of materials with living cells, etc.

Traditionally, most biomedical materials are developed via the trial-and-error method.
In detail, different material components and synthetic techniques could be explored based
on existing theories or experiences to achieve desired material properties. During this
process, repeated experiments are usually required to validate the design or formulation,
which would inevitably lead to the sacrifice and waste of material/time. Such trial-and-
error approach may be effective at small scale, but would greatly hinder the innovation of
materials and the development of related industries in the case of complex tasks or large
scale. In terms of economic and time costs, there is an urgent need for a new method to
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overcome the drawbacks of traditional trial-and-error method in the R&D of biomedical
materials [1–4].

Materials genome technology (MGT) is a superior tool of materials research to the
traditional trial-and-error method. MGT utilizes high-throughput experimental technique
while adding data management and computational tools. The data are analyzed using
computational tools to explore potential links between material parameters and material
properties. In this way, the ideal material can be discovered more efficiently. This can
improve experimental efficiency, reduce costs, and perhaps reduce experimental errors.

This review presents the recent progress of the application of MGT in the R&D of
biomedical materials to halve their development cycle and cost. Core concepts of biomedical
materials and MGT are briefly introduced, followed by the application of MGT in the
R&D of metallic, inorganic non-metallic, polymeric, and composite biomedical materials.
Finally, future trends in the MGT empowered R&D of innovative biomedical materials
are proposed.

2. Materials Genome

As the first program on materials genomic study, the Materials Genome Initiative (MGI)
was launched in 2011 and includes three major aspects covering database establishment,
experimental techniques, and means of material calculation (Figure 1b) [5–8]. Through
“simulation and prediction followed by experimental verification” approach, the MGI aims
at establishing the link between composition, process, microstructure, and performance
(Figure 1c) to facilitate the R&D of materials [5]. Such link could be subsequently used in
the design and optimization of new materials to meet the demand for material performance.
As a consequence, the MGT may also halve the development cycle of new materials as well
as the development cost in industry, which is almost impossible through the traditional
trial and error approach (Figure 1a).
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Database: It is hard to find valid and high-quality data from the massive amount of
data when data are the basis for materials research, and the creation of databases becomes
even more important. Ideal material database should be able to store large amount of data,
manage the data in a standardized way, and be retrieved and stored easily by users.

Famous material information databases have been established, such as Materials
Project, AFLOW, and OQMD, etc. In China, efforts have been devoted for the establishment
of various large-scale general material databases since the [10,11] data from different
sources and categories are integrated to meet the varied needs of users such as non-ferrous
metal database, alloy steel database, material corrosion database, and aviation material
database (Table 1) [12–14].

Table 1. List of the large databases.

Institute Dataset Content

Duke University
AFLOW

(http://www.aflowlib.org/, accessed on
24 February 2023)

Band structures, Bader charges, elastic properties,
thermal properties, binary systems, binary entries,
ternary systems, ternary systems, ternary entries,

quaternary systems, quaternary entries

Northwestern University
OQMD

(http://oqmd.org/, accessed on
24 February 2023)

DFT calculated thermodynamic and structural properties
of materials

University of California at Berkeley
Materials Project

(https://materialsproject.org/, accessed
on 24 February 2023 )

Inorganic compounds, band structures, molecules,
nano-porous materials, elastic tensors, piezoelectric

tensors, intercalation electrodes, conversion electrodes

A group of engineers
MatWeb

(http://www.matweb.com/, accessed on
24 February 2023)

Thermoplastic and thermoset polymers, metals, and
other engineering materials.

Key to Metals AG
Total Materia

(https://www.totalmateria.com/,
accessed on 24 February 2023)

Metal, polymer, silicate, composite materials

National Institute for Materials
Science (NIMS)

MatNavi
(https://mits.nims.go.jp/, accessed on

24 February 2023)

Polymer database, Inorganic Material database, Metallic
Material database, and Computational Electronic

Structure database

Stahlschlüssel
Key to Steel

(http://www.keytosteel.com/, accessed
on 24 February 2023)

Structural and constructional steels, Tool steels, Valve
steels, High temperature steels and alloys,

Non-magnetizable steels, Heat-resisting steels, Heat
conducting alloys, Stainless steels, Stainless steel castings,

Welding filler materials

ASM International

ASM Online Databases
(https://www.asminternational.org/
materials-resources/online-databases,

accessed on 24 February 2023)

Alloy Center Database, Alloy Phase Diagram Database,
Failure Analysis Database, Heat Treater’s Guide Online,

Medical Materials Database, Micrograph Database
Pearson’s Crystal Data

Technical University of Denmark
Computational Materials Repository

(https://cmr.fysik.dtu.dk, accessed on
24 February 2023)

Computational 2D Materials Database, ABSe3 materials,
A2BCX4 materials, Ag-Au nanoparticles, PV and PEC
materials, ABS3 materials, ABX2 materials, Monolayer

transition metal dichalcogenides and -oxides,
Perovskites, Porphyrin based dyes, New Light
Harvesting Materials, CatApp database et al.

Springer Nature
Springer Materials

(https://materials.springer.com/,
accessed on 24 February 2023)

Metal, alloys, ceramics, semiconductors, polymers, and
many more material types

Uppsala University
The Electronic Structure Project

(http://gurka.fysik.uu.se/ESP/, accessed
on 24 February 2023)

Electronic structure related information for
inorganic compounds

Fritz Haber Institute
Novel Materials Discovery

(https://nomad-lab.eu/, accessed on
24 February 2023)

Metal, nonmetal, conductor, ferromagnet,
antiferromagnet, diamagnetic, semimetal, paili
paramagnet, intermediate valence, luminescent,

ferroelectric, ferrimagnet, intercalation compound, spin,
thermoelectric, birefringent

http://www.aflowlib.org/
http://oqmd.org/
https://materialsproject.org/
http://www.matweb.com/
https://www.totalmateria.com/
https://mits.nims.go.jp/
http://www.keytosteel.com/
https://www.asminternational.org/materials-resources/online-databases
https://www.asminternational.org/materials-resources/online-databases
https://cmr.fysik.dtu.dk
https://materials.springer.com/
http://gurka.fysik.uu.se/ESP/
https://nomad-lab.eu/
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Table 1. Cont.

Institute Dataset Content

FIZ Karlsruhe
ICSD

(https://icsd.products.fiz-karlsruhe.de/,
accessed on 24 February 2023)

Crystal structure data includes unit cell, space group,
complete atomic parameters, site occupation factors,

Wyckoff sequence, molecular formula and weight, ANX
formula, mineral group, etc.

U.S. Department of Commerce
NIST

(https://data.nist.gov/sdp/#/, accessed
on 24 February 2023)

Crystal structure data of nonorganic compounds
(including inorganics, ceramics, minerals, pure elements,

metals, and intermetallic systems)

Chinese Academy of Sciences
Data Cloud of CAS

(http://www.csdb.cn/, accessed on
24 February 2023)

Covering physics, chemistry, astronomy and space,
materials, biology, geosciences, resources, environment,

energy, ocean, and many other disciplines

Institute of Metal Research, Chinese
Academy of Sciences

Material Science Database
(http://www.matsci.csdb.cn/, accessed

on 24 February 2023)

Metal materials, inorganic nonmetal materials,
scintillation materials, silicon carbide materials, nano

materials, organic polymer materials

Beijing University of science
and technology

Materials Scientific Data Sharing Network
(http://matsec.ustb.edu.cn/, accessed on

24 February 2023)

Material foundation, non-ferrous materials and special
alloys, ferrous materials, composite materials, organic
polymer materials, inorganic non-metallic materials,
information materials, energy materials, biomedical
materials, natural materials and products, building

materials and road traffic materials

Beijing University of science
and technology

Materials Genome Engineering Databases
(http://www.mgedata.cn/, accessed on

24 February 2023)

First principles calculation database, material
thermodynamics/kinetics data, energy materials,

catalytic materials, special alloys, rare earth functional
materials, biomedical materials, composite materials,

hydrogen embrittlement and stress corrosion,
superconducting materials, ferrous materials, etc.

National Center for Nanoscience and
Technology

Nano Research Scientific Database
(http://www.nano.csdb.cn/, accessed on

24 February 2023)

Carbon nanotubes, graphene, magnetic
nanoparticles, etc.

Beijing University of science and
technology

National Materials Corrosion and
Protection Data Center

(http://www.corrdata.org.cn/, accessed
on 24 February 2023)

Ferrous metals, non-ferrous metals, building materials,
coating materials and polymer materials, and more than

600 kinds of materials.

Institute of Chemistry, Chinese
Academy of Sciences

Polymer Materials Database
(http://polynavi.iccas.ac.cn/, accessed on

24 February 2023)

Contains data resources related to plastics, rubber, fiber,
organic coatings, adhesives, and polymer additives

China Iron and Steel Research Institute
Asteel

(http://www.atsteel.com.cn/, accessed on
24 February 2023)

All kinds of steel and welding materials

High-throughput experimental tools: As the essential part of the MGT, high-throughput
synthesis and characterization of materials refers to the preparation and characterization
of samples with different structures or components in parallel and in large quantities in
a relatively shorter time [15]. Usually, only very limited and inefficient data could be
acquired through individual experiments with inevitable human errors. High-throughput
experiments can help improve the accuracy and reproducibility of the data at higher
efficiency, and consequently accelerate the establishment of material databases, testing
the accuracy of theoretical models, and screening of new materials. Nowadays, high-
throughput/combinatorial methods have been successfully applied to the development
and production of metallic, ceramic, inorganic, and polymeric materials [16–21].

Materials calculation methods: Materials calculation methods usually refers to vari-
ous types of materials computing software and algorithmic models. Facing the complex
potential connections between material components, structures, processes, and properties,
which usually cannot be discovered directly by researchers, the help of some material
computational means is urgently required. Although high-throughput first-principles
calculations and density functional theory have achieved appreciable success in predicting
and optimizing new materials, the huge amount of calculation makes it impossible to obtain
ideal results quickly when the structure is more complex or the material search space is

https://icsd.products.fiz-karlsruhe.de/
https://data.nist.gov/sdp/#/
http://www.csdb.cn/
http://www.matsci.csdb.cn/
http://matsec.ustb.edu.cn/
http://www.mgedata.cn/
http://www.nano.csdb.cn/
http://www.corrdata.org.cn/
http://polynavi.iccas.ac.cn/
http://www.atsteel.com.cn/
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larger [21]. Because of their ability of establishing accurate material performance prediction
models from existing theoretical and empirical data, machine learning techniques have
received great attention in predicting material properties [18,22,23], optimizing material
composition [24,25], and discovering new materials [26].

3. Algorithmic Models in Material Genome Technologies

Because of the large volume of computational tasks and the automatic processing of
computational results, it is extremely challenging to make full use of the huge and complex
data and to reveal potential connections between relevant parameters and performance of
materials. Computational tools, including various software and algorithm models, could
be harnessed to solve the challenges in the processing of large amounts of data.

Regression, classification, or clustering tasks are usually employed in the processing
of biomaterial data. Regression tasks mainly deal with continuous or real number, while
classification or clustering tasks result in discrete outcome by inputting data with or without
label. Both regression and classification aim at discovering the relationship between data
points through a predictive model, and achieve reliable predicted outcome; for these
purposes, some algorithms, such as support vector machines (SVM), random forests, and
Bayesian neural networks, etc., can be used for both regression and classification tasks in
case of biomedical materials data (Table 2).

Table 2. The introduction of some common algorithms.

Task The Algorithm The Idea of Algorithm Feature Application

3.1 Regression
Back Propagation
Neural Network

(BPNN)

A multi-layer feedforward
network trained according to

the error back propagation
algorithm, which continuously

adjusts the weights and
thresholds of the network

through back propagation to
minimize the sum of squared

errors of the network.

It has nonlinear mapping
capabilities, strong self-learning
and self-adaptation capabilities,
high generalization capabilities

and fault tolerance; but the
convergence speed is slow, and

local minimization problems are
prone to occur; high sample

dependence

[27–39]

3.2 Regression &
Classification

Radial Basis Function
Neural Network

(RBFNN)

RBF is used as the activation
function of the hidden layer

neurons, and the output layer
is a linear combination of the

output of the hidden
layer neurons

The structure is simple, the
training is concise, the learning
convergence speed is fast, it can

approximate any nonlinear
function, and overcome the local

minimum problem.
Approximation ability,

classification ability and learning
speed are better than BPNN. But

need more neurons

[33,40–47]

3.3 Classification
Probabilistic Neural

Network
(PNN)

It is a branch of RBFNN, which
combines density function
estimation and Bayesian

decision theory on the basis of
RBF network

The fault tolerance is good, the
classification result is not sensitive

to the choice of radial basis
function, the number of neurons in
each layer is fixed, and there is no
need to retrain when the sample
changes. But every sample has to

be calculated and stored.

[48–53]

3.4 Regression &
Classification

Support Vector
Machine & Support
Vector Regression

(SVM&SVR)

Establish the maximum
separation line or hyperplane
for sample classification, and
find a balance between model
learning accuracy and learning

ability to obtain the best
promotion ability.

It can solve nonlinear problems
with high precision and good

generalization ability; it is difficult
to implement large-scale training
samples and it is difficult to solve

multi-classification problems.

[20,33,54–65]
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Table 2. Cont.

Task The Algorithm The Idea of Algorithm Feature Application

3.5 Regression &
Classification Random forest

Create multiple decision trees
in a random manner. Different
trees have different prediction

results for the same sample.
Combining these results, the

final result is the average of all
decision tree results.

For unbalanced data sets, errors
can be balanced, high-dimensional

data can be processed, and with
good accuracy; but in the face of

small samples, good classification
results may not be obtained, and it

is easy to overrun in some noisy
regression problems combine.

[20,66–74]

3.6 Clustering K-means Clustering

Use distance as the similarity
evaluation index to cluster the
samples with high similarity

into a cluster

The algorithm is simple and fast,
with strong interpretability, good

clustering effect, difficult to
determine parameters, sensitive to
noise and abnormal points, poor

clustering effect on severely
unbalanced data, and it takes a

long time to process large sample
sizes.

[75–81]

3.7 Regression &
Classification

Convolutional
Neural Network

(CNN)

Multi-layer representation of
the target using convolution

and multi-layer network
structure. It is expected that

the abstract information
contained in the data can be

expressed through the
multi-layer high-level features

to obtain better feature
robustness

Local connection and
weight-sharing greatly reduce the
number of parameters, and there is
no pressure on high-dimensional
data processing, reducing the risk
of overfitting, no need to manually

select features, no complicated
preprocessing process when

processing image data, but when
adjusting parameters, a large

sample size is required, GPU is
best for training, and the physical

meaning is not clear

[82–88]

3.1. Back Propagation Neural Network

Back propagation neural network (BPNN) [89] is characterized by two processes: for-
ward propagation and error back propagation. In forward propagation, data are processed
layer by layer, and the error was evaluated between the result of the output layer and that
of the actual sample. In back propagation, the calculated error is back propagated, and
then the weight and threshold of the network were continuously adjusted to minimize the
error sum of squares of the network. Because of its good nonlinear mapping ability and
strong self-learning and self-adaptive ability, BPNN has become one of the most widely
used neural networks at present. However, in the case of a complex target task, the network
converges slowly and easily to a local minimum, and the global optimal result cannot
be obtained.

3.2. Radial Basis Function Neural Network

Radial basis function neural network (RBFNN) is a single hidden layer, function
approximation-based feedforward neural network [90]. After selecting the radial basis
function such as Gaussian function and multiquadric function, the output is obtained
according to the distance between the sample and the center point. Compared with BPNN,
RBFNN is structurally simpler, exhibits higher convergence speed, and rarely produces
local optimum. In addition, RBFNN not only has powerful nonlinear approximation
capability which transforms linearly indistinguishable problems into linearly divisible ones,
but also can be applied to data classification problems. However, it is difficult to determine
the center point of the hidden layer, the width of the path base, as well as and the number
of nodes, which may have a substantial impact on the output.
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3.3. Probabilistic Neural Network

Probabilistic neural networks (PNN) is a simple structured neural network based on
Bayesian decision theory, which is often used for pattern classification; PNN can also be
regarded as a branch of RBFNN, it combines density function estimation and Bayesian
decision theory [91]. The unique advantage of PNN is that it is not necessary to retrain the
network when adding or reducing samples, and the classification results are insensitive
to the choice of radial basis functions. In addition, the number of neurons in each layer of
the network is relatively fixed, which is easy to implement in hardware. The drawback
of PNN lies in the high complexity in computation and space of the network; in addition,
individual computation and storage are required for each sample.

3.4. Support Vector Machine and Support Vector Regression

SVM is a binary classification model, which aims to find a line or plane with the largest
geometric interval to classify the samples [92]. In case of nonlinear problems, the vector can
be mapped to a higher dimensional space to find the best plane to classify sample. Support
vector regression (SVR) is an application of SVM to regression problems [93]. It finds a
plane to fit all the sample data so that the total variance of the sample distances from the
plane is minimized, instead of separating the sample points. Both of them are powerful
models that harness relatively fewer samples to find a balance between learning accuracy
and learning ability, and obtain the best generalization ability. However, there are still some
difficulties when dealing with multi-classification problems and large-scale samples, and
their results are sensitive to the choice of kernel function.

3.5. Random Forest

Random forest (RF) was proposed as a machine learning algorithm for classification
and regression [94]. The “forest” means that the RF algorithm is a combination of multiple
decision trees, and “random” means that when training each tree, a subset is randomly
selected for training, and the remaining is used for error evaluation. RF has appreciable
accuracy even when applied to large data sample sets and missing data sets. However,
when dealing with small data sets or low-dimensional data sets, RF may not produce
good classification results. In addition, overfitting is likely to occur when processing
some noisy data.

3.6. K-Means Clustering

For some unlabeled sample data, only the similarity between the data can be used to
group the data. For example, the unlabeled sample data with high similarity form a cluster,
which is called clustering [95]. K-means clustering is one of the most classical clustering
algorithms. Given the number of clusters, the initial cluster centroids are randomly set
up. The spatial distance is used as the evaluation index of similarity, so that the sample
points within a cluster are as close as possible, and the sample points of different clusters
are as far away as possible. Such an algorithm is simple, explanatory, and effective, and
therefore is widely used. It was also found that the number of clusters has a great influence
on the clustering results, as well as there is no reference and a lot of trials and experience
are needed. The algorithm is sensitive to outliers and noise, and it is also difficult to obtain
good clustering results for severely imbalanced samples.

3.7. Convolutional Neural Network

Inspired by Hubel’s research on cat visual cortex cells, the convolutional neural
network (CNN) was proposed [96]. The combination of convolutional and pooling layers
of CNN can automatically perform feature extraction, and use local connectivity and
weight-sharing to greatly reduce the number of the model parameters, reduce the risk of
overfitting, and also simplify the complexity of the model. This is what distinguishes CNN
from other neural networks. This advantage is even more evident when processing speech,
image, or video data.
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Although CNN does not require manual feature selection, which reduces human
intervention, the question on what features is automatically extracted remains unanswered
for the time being. In addition, CNN requires a large number of samples for model tuning,
and usually requires GPU for model training. The puzzling functions and uncertain
working principle of CNN have been questioned, but the performance of convolutional
neural networks has been greatly improved over other methods.

The above-mentioned algorithm models have been widely used in processing biomed-
ical data, and improvements have been extensively proposed.

4. Applications of MGT in the R&D of Biomedical Materials
4.1. Metallic Materials

Metals, especially alloys, have excellent mechanical properties, fatigue resistance,
processability, and appreciable biocompatibility, and are widely used in the fabrication of
implantable medical devices for the treatment of orthopedics, dentistry, and cardiovascular
diseases. However, metallic materials are susceptible to the physiological environment
and may lead to a series of problems such as degradation/corrosion, toxicity, and fatigue
failure [97–100].

Amorphous alloys possess good strength, hardness, wear resistance, corrosion, and
soft magnetic properties, which are not available in traditional alloys and therefore have
broad biomedical applications [101,102]. Although empirical guidelines have been con-
structive in the design of amorphous alloys, such approaches are characteristically time-
consuming and reckless to some extent [103]. The intervention of artificial intelligence can
not only improve the R&D efficiency, but also explore the unknown parameter space. With
the aid of MG technology, the relationship between the resistivity and glass-forming ability
(GFA) of amorphous Ir-Ni-Ta—(B) alloys was explored via high-thought characterization
of resistance and components. A set of development methods of high-thought amorphous
materials was built including the preparation of composite films, rapid characterization of
composition, structure, and glass-forming ability, and a class of high-temperature amor-
phous materials was successfully designed [104]. Through SVM classification, the predic-
tion of the GFA of binary alloys with random composition was achieved, and the prediction
efficiency was also improved via using a larger database and changing the input descrip-
tors (Figure 2) [54]. In addition, to better understand and predict the GFA of new alloys,
machine learning clustering technique was harnessed to learn the structural properties of
metallic glasses [105].
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soft magnetic properties, which are not available in traditional alloys and therefore have 
broad biomedical applications [101,102]. Although empirical guidelines have been con-
structive in the design of amorphous alloys, such approaches are characteristically time-
consuming and reckless to some extent [103]. The intervention of artificial intelligence can 
not only improve the R&D efficiency, but also explore the unknown parameter space. 
With the aid of MG technology, the relationship between the resistivity and glass-forming 
ability (GFA) of amorphous Ir-Ni-Ta—(B) alloys was explored via high-thought charac-
terization of resistance and components. A set of development methods of high-thought 
amorphous materials was built including the preparation of composite films, rapid char-
acterization of composition, structure, and glass-forming ability, and a class of high-tem-
perature amorphous materials was successfully designed [104]. Through SVM classifica-
tion, the prediction of the GFA of binary alloys with random composition was achieved, 
and the prediction efficiency was also improved via using a larger database and changing 
the input descriptors (Figure 2) [54]. In addition, to better understand and predict the GFA 
of new alloys, machine learning clustering technique was harnessed to learn the structural 
properties of metallic glasses [105]. 
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Pure titanium metal is known for not only its superior mechanical performances but
also the reactivity under certain biochemical environment, thus it is not suitable for the
fabrication of implantable medical devices; titanium alloys with improved resistance to
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corrosion and better biocompatibility could be a substitution to the pure titanium metal in
the manufacturing of clinical implant devices. The participation of artificial intelligence is
helpful to the innovation of titanium alloy [106–108]. Banerjee collected the indentation
hardness and elastic modulus of titanium alloy samples to build a database of composition,
microstructure, and mechanical properties, which became the basis of a fuzzy logic-based
neural network building and predicting; the predicted results were subsequently validated
through experiments [109]. Wan constructed BPNN to predict the high-temperature rheo-
logical stresses of Ti-2.7Cu alloy and provide theoretical support for practical hot forming
of the alloy [110]. Based on the PNN and databases from experimental research on tita-
nium alloys, Kulyk created a software to define the optimal microstructure and properties
of titanium alloy products [48]. Tkachenko described a method for identifying material
categories using second-order Kolmogorov–Gabor polynomials and RF algorithms; this
method was then used to determine the basic properties and identify the category of the
alloy of a material based on parameters such as microstructure and elemental composition
of a titanium alloy powder. This approach can be used to optimize the development of
powdered materials [66]. Izonin also used Ito decomposition and logistic regression to clas-
sify alloys in order to select materials with appropriate properties to design biocompatible
medical products. [111]. Izonin combined Wiener polynomials and SVM to classify medical
titanium alloy implant materials, this combined method exhibited higher accuracy as well
as shorter training time [55]. The above studies have clearly demonstrated the efficacy of
different algorithms in guiding the optimization of microstructure and processing routes of
titanium alloys.

High entropy alloy (HEA), as a rapidly developing new metallic material, is a class
of alloy with high strength, wear, and corrosion resistance, and may have wide clinical
application [112]. However, the composition of high-entropy alloys is complex; and there
is no linear relationship between performance and entropy value, so it is impossible to
design multi-component materials with excellent performance merely by entropy of mix-
ing. In addition, the number of constituent elements of the alloy gradually increases, and
the cost of the alloy also rises accordingly. Through the combination of high-throughput
experimental techniques with artificial intelligence algorithms, the experimental efficiency
could be enhanced and experimental compositions could also be explored to a wider space.
Moorehead explored the composition space of the HEA through high-throughput synthesis
and characterization combined with modeling techniques, and the development of alloys
and assess of the relative stability thereof could be significantly accelerated [113]. Coury uti-
lized high-throughput nano-indentation techniques to effectively predict the yield strength
and hardness trends of HEA, the number of experiments required to find compositions in a
large composition space was greatly reduced, thus promoting the development of multi-
component alloys [19]. Liu prepared 138 alloy samples through full-flow high-throughput
preparation of alloys, and then constructed predictive models using different machine
learning algorithms. The newly proposed method was at least 20 times faster than that of a
permutation-based search in the full-component space (Figure 3) [20].

It is important to distinguish the phases of high-entropy alloys for material design.
Ouyang optimized feature variables and used SVM model for phase distinction. It was
found that the difference in elastic energy and atomic size had a significant effect on the
formation of different phases. Importantly, machine learning (especially the SVM combined
KPCA) showed its powerful role in the prediction of alloy phases [65].
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4.2. Polymeric Materials

The demand of polymeric biomaterials, either natural or synthetic, has become increas-
ingly urgent in recent years. Most polymeric materials including polyethylene, poly(methyl
methacrylate), silicone rubber, cellulose, gelatin, and chitosan are known for their good
biocompatibility. However, most of these polymers suffer from insufficient mechanical
strength and mismatch between material degradation and tissue regeneration [3,114,115].

Chitosan nanoparticles have been widely used as drug delivery matrix due to their
unique biocompatibility, degradability, and antimicrobial activity. Amani analyzed the ef-
fect of four parametric variables in preparation of chitosan nanoparticles on the nanoparticle
size, drug loading, and cytotoxicity using artificial neural networks, and ranked the influen-
tial degree of the variables on the dependent variable and optimized the nanoparticles [116].
In another work, Amani analyzed the effects of time and amplitude of ultrasonication on
the size of nanoparticle during the preparation [23].

Alexander and co-workers investigated the preparation drug release matrix through
3D printing of 253 ink formulations in a high-throughput manner, and the functional
properties including the release of paroxetine, cytotoxicity, printability as well as mechanical
properties are screened [117].

After implantation of biomedical materials, the adsorption of protein and the attach-
ment of cells are the main determinants of the applicability of medical implant materials,
especially those applications involving tissue regeneration. Both the surface chemistry
and physics of polymeric implant could affect the protein adsorption; in this term, the
surface chemistry and physics of polymers are complex and a fingerprint profile could be
developed as a characteristic representation of polymers in order to enable a reasonable
discovery of new materials for specific applications. Machine learning models can be then
trained to quickly predict the properties of new polymer formulations and provide uncer-
tainty in the predictions [118]. In addition to study the pathogen infection of the implant,
bacterial cell adhesion on the surface of implant was investigated; machine learning was
utilized to quantitatively predict and screen the polymer surface adhesion, and the screened
polymers can be candidates for implants or indwelling medical devices [119].

Poly(lactic acid)/ploylactide (PLA)-based composites are ideal materials in bone repair,
but PLA suffers from low cell adhesion on the material surface, poor mechanical properties,
and high cost, which greatly limit its clinical applications [120]. Rojek investigated the
customized fabrication of a PLA hand exoskeleton using 3D printing technique, and
the artificial neural network (ANN) optimization method supported by GA was used
to calculate and optimize the process parameters and material selection to achieve the
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maximum tensile force of the hand exoskeleton component. The combination of AI and 3D
printing not only can optimize PLA properties but also has provide a good inspiration for
using artificial intelligence to customize patient solutions [39].

4.3. Inorganic Materials

Inorganic materials are known for their high melting point, hardness, and resistance to
oxidation as well as potential biocompatibility in clinical use. The dissolution of metal ions
from metallic implant may cause toxicity to host tissue, oxide films on the surface of metallic
implant could be used to address this issue; it was found that both the formation and the
thickness of oxide films may significantly affect the surface properties and biocompatibility
of metallic implant, but the effect of process parameters on the film thickness is far from
being elucidated and the general linear fitting methods cannot meet the needs in modeling
such processes. To visually examine the quality of oxide film on the surface of magnesium
alloy, Yang used genetic algorithm (GA) to optimize the initial weights and thresholds of
the BPNN to construct a film thickness prediction model (GA-BP). The GA-BP model was
found to have better prediction accuracy than the BPNN model [121].

Titanium dioxide (TiO2) nanotube arrays have been found to promote cell adhe-
sion, proliferation, and differentiation, and can strongly bind to titanium substrate; such
characteristics of titanium dioxide nanotube arrays could be harnessed to improve the
biocompatibility of titanium/titanium alloy implants and have attracted the attention of
biomaterial researchers. Mou fabricated gradient TiO2 nanotubes micro-patterned films on
the surface of titanium to facilitate the high-throughput screening of protein adsorption,
platelet adhesion, bacterial adhesion, and the effect of octacalcium phosphate membrane
layer construction. The gradient TiO2 nanotube micropatterning proved to be an effective
tool in high-throughput screening for biomedical applications [122].

Besides the oxide films on metal surfaces, metal oxides are also good options for bioma-
terials. In order to select suitable metal oxides quickly and accurately, Hu applied machine
learning and feature selection to predict the physical properties of metal oxides, and found
that the RFR model combining different feature selection methods (Variance Threshold,
Univariate feature selection, and Least absolute shrinkage and selection operator) achieved
better results in terms of prediction accuracy [74].

4.4. Composite Materials

Composites are materials made by combining two or more materials with different
properties in order to effectively make up for the deficiencies in biological and physic-
ochemical properties of a single material, and further improve the applicability of the
material in clinical applications [120,123,124].

Nano-emulsions have been utilized as the carrier for oral drugs, but the cytotoxicity
and low stability hinder their wide application. The artificial neural network analysis
revealed that the concentration of surfactant is the main determinant of stability without
causing dose-dependent cytotoxicity. Such findings paved the way for the preparation of
nano-emulsions with optimized cytotoxicity and stability [125]. The nature of the compos-
ites can have an impact on the drug loading and the release behavior of the loaded drug.
Bikiaris prepared a series of poly(ε-caprolactone)/poly(propylene glutarate) (PCL/PPGlu)
polymer blends at different weight ratios as the matrix using risperidone as the model drug,
followed by the evaluation of the interaction between the polymer and the drug. Artificial
neural network, applied for simulation of the drug dissolution behavior, revealed a higher
fitting and correlation compared with multiple linear regression (Figure 4) [37].

To better predict and optimize the performance of the carrier, the neural network
using other algorithms have been explored. Varshosaz combined genetic algorithm and
artificial neural network to optimize and simulate the synthetic process of agar nanosphere
from agar, calcium chloride, hydroypropyl-β-cyclodextrin, and bupropione hydrochloride.
Satisfactory consistence was achieved between the predicted and actual values of the ANN
model [126]. Wu and co-workers found that the combination of neural network and genetic
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algorithm could better predict and optimize the formulation of nanoparticles than the
response surface method to achieve better controlled release behavior [127].
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Composite materials based on chitosan has good biocompatibility and biodegrad-
ability, so the composite material with chitosan as one of the components surpasses the
traditional materials to a certain extent for potential clinical use [128,129]. Fourier transform
infrared spectroscopy and differential scanning calorimetry were employed to investigate
the interactions of variable chitosan and sodium tripolyphosphate in the formation of
nanoparticles, artificial neural network was built based on these data and used to predict
not only the particle size, but also the yield of nanoparticles [36]. Shang used the relevant
data of fish skin collagen extraction process to establish a BPNN to analyze and study the
different factors and levels in the extraction process, and screen the best parameters. Finally,
the relative error between the predicted value obtained by the network and the actual value
obtained by the orthogonal experiment is not more than 5%, which shows the feasibility
of BP neural network combined with the orthogonal experiment to optimize the collagen
extraction process, and the model has reliable predictive performance [130].

5. Perspectives and Outlook

Materials genome technologies have changed the traditional material R&D paradigm;
however, tremendous efforts on the following topics are required to meet the fast-growing
needs and challenges in the R&D of biomedical materials. Mapping the relationship
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between the components, structures, and properties of biomedical materials is complex and
challenging. This challenge comes mainly from the difficulty in obtaining adequate data of
biomedical materials, which are generally small sample data sets. In this regards, either the
development of high-throughput experimental tools or data enhancement would be highly
desirable [131,132]. In addition, image data of biomedical materials are underutilized;
related tools for image feature extraction can be harnessed in image analysis of biomedical
materials to help extract image information [133].

5.1. Establishment and Management of the Database

As an important foundation in the data-driven material R&D, the present biomedical
material data are characterized by different sources, diverse types, and complexity, which
to some extent hinder the rapid development of the perfect material data standard system
and the establishment of data import template are prerequisite to deal with a variety of
data types and formats as well as the systematic management and storage of data. My SQL
database, which is small in size and low in cost, is a good option for the establishment
of open material database. Artificial intelligence can also be used to automatically collect
and classify the latest literature data. In addition, the experimental parameters have a
huge impact on the performance and structure of the material. Relevant experimental
conditions of the data should be supplemented and refreshed in the database to validate
the simulation results.

In addition, the parameters in animal experiments should also be considered. This is
unique and critical data for biomedical materials.

5.2. Development of High-Throughput Technology

Large-scale automation of the experiment and calculation process may significantly
accelerate the establishment of the database. At this point, high-throughput techniques
can be used to synthesize and characterize materials with high efficiency and precision.
The use of high-throughput equipment is of great significance. It may not only solve the
defects of manual experiments but also can strengthen the combination of high-throughput
equipment with databases and calculation methods, and consequently improve the level of
material development, production, and application. In addition, biomedical materials with
nanometers and microns in size also require a significant reduction in experimental error.

5.3. Innovation of Algorithm

The simulation and prediction ability of algorithm model is essentially important for
the R&D of biomedical materials. Animal models are commonly used in the pre-clinical
investigation of biomedical material. However, the inevitable inconsistency between
the physiological/pathological environments of the animals and humans would lead
to confused results during the clinical translation. New algorithm models are needed
to simulate as much as possible the real human body environment and the situation of
biomedical materials in physiological tissue/organ. In addition, the relatively smaller data
set derived from open databases or high-throughput synthesis/screening of biomedical
materials does not meet the requirement of general machine learning and deep learning.
It would be highly necessary to develop algorithms suitable for small data sets to obtain
material data analysis results with higher accuracy.

5.4. Industrial Involvements

The majority of current efforts on the MGT for biomedical materials have been devoted
to the basic research; however, the ultimate outcome or performance of biomedical materials
strongly depend on the processing and manufacturing parameters, and the involvement of
industry is far from satisfactory. One would foresee that the MGT may add emphasis to its
application in R&D of biomedical materials by receiving more input from the industry.



Materials 2023, 16, 1906 14 of 19

6. Concluding Remarks

MGT has strongly accelerated the R&D of materials, including predicting rapidly
and screening materials, optimizing the properties of biomedical materials. Meanwhile,
the application of MGT in biomedical materials has also promoted the innovation and
development of science and industrial technology, basic theories, key technologies, and
equipment. In the future, the development opportunities of MGT may be harnessed to
facilitate the R&D of biomedical material, and work out the bottlenecks and difficulties in
related fields.
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