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Abstract: Bridges are essential structures in the logistic chain of countries, making it critical to
design them to be as resilient as possible. One way to achieve this is through performance-based
seismic design (PBSD), which involves using nonlinear Finite Element (FE) models to predict the
response and potential damage of different structural components under earthquake excitations.
Nonlinear FE models need accurate constitutive models of material and components. Among them,
seismic bars and laminated elastomeric bearings play an important role in a bridge’s response to
earthquakes; therefore, properly validated and calibrated models should be proposed. Only default
parameter values from the early development of the constitutive models widely used by researchers
and practitioners for these components tend to be used, and low identifiability of its governing
parameters and the high cost of generating reliable experimental data have prevented a thorough
probabilistic characterization of their model parameters. To address this issue, this study implements
a Bayesian probabilistic framework using Sequential Monte Carlo (SMC) for updating the parameters
of constitutive models of seismic bars and elastomeric bearings and proposes joint probability density
functions (PDF) for the most influential parameters. The framework is based on actual data from
comprehensive experimental campaigns. The PDFs are obtained from independent tests conducted
on different seismic bars and elastomeric bearings, to then consolidate all the information in a
single PDF for each modeling parameter by means of the conflation methodology, where the mean,
coefficient of variation, and correlation between calibrated parameters are obtained for each bridge
component. Finally, findings show that the incorporation of model parameter uncertainty through a
probabilistic framework will allow for a more accurate prediction of the response of bridges under
strong earthquakes.

Keywords: Bayesian estimation; bridge components; constitutive material models

1. Introduction

New design and analysis methodologies for structures, such as performance-based
seismic design (PBSD), require detailed finite element (FE) models to accurately capture the
nonlinear behavior of systems under earthquake excitations [1–4]. In the past few decades,
academic and engineering communities have carried out cutting-edge research regarding
the performance and modeling of bridges and their components under severe ground
motions. For example, Hube et al. [5] evaluated the damage in Chilean bridges during the
Maule 2010 earthquake and studied the impact of diaphragms in the seismic performance
of such bridges. Elnashai et al. [6], in their investigation of typical failures produced in
Chilean bridges, showed the significance of using shear keys as sacrificial elements to reduce
damage to columns and beams. Wilches et al. [7] discussed, statistically, the importance
of bridge components on the transverse and vertical responses of typical Chilean bridges,
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highlighting the importance of seismic bars (SBs) in reducing the probability of deck uplift.
Aldea et al. [8] emphasized the necessity of proper modeling vertical components, such as
laminated elastomeric bearings (EBs), to avoid underestimating displacement demands
in multi-span, simply supported, reinforced concrete (RC) bridges. These studies have
shown the importance of bridge components (e.g., SBs and EBs) in the response of bridges
and the need to accurately model these components to develop detailed finite element
models that can provide crucial insights into the effectiveness of methodologies, such as
performance-based seismic design (PBSD), in bridge engineering.

SBs are a vertical element made of ductile steel bars that connect the superstructure
slab to its abutment or cap beams, as shown in Figure 1. These bars resist vertical forces and
provide lateral stiffness to the deck during a large lateral displacement of the superstructure
such as during earthquake motions [7,9]. On the other hand, EBs support the longitudinal
beams (as shown in Figure 1). These bearings are designed to meet service-level require-
ments by sustaining vertical dead-loads and accommodating horizontal movements of the
superstructure due to service actions and eventual actions such as ground motion. The
behavior of EBs varies based on their installation method, which separates them into two
main categories: unanchored EBs (UEBs) and anchored EBs (AEBs). The AEBs are those
having the top and bottom surfaces securely anchored to the superstructure and substruc-
ture, while UEBs are usually placed directly between the superstructure and substructure
without any connection other than friction at the contact surfaces. The installation method
affects the behavior of EBs under dynamic lateral loads, with the surface friction and rubber
shear stiffness providing lateral resistance and deformation in UEBs, while AEBs derive
their lateral strength from the full shear stiffness and strength of the bearing [10].
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Since the performance of SBs and EBs play a fundamental role in the response of
bridges subject to earthquakes, several studies have focused on the structural behavior of
these components as well as their numerical modeling. Aviram et al. [11] and Steelman
et al. [12] have proposed EB numerical models that utilize elastic perfectly plastic and linear
elastic behavior, respectively. Filipov et al. [13] developed an analytical model for EB that
accounts for two force peaks in the hysteretic behavior—the first one referring to when it
starts sliding and the other when it stops sliding. Kostantinidis et al. [14] suggested that
yielding of EB occurs at shear deformations ranging from 150–225% of the rubber height.
Rubilar [15] conducted an extensive experimental campaign to develop a two-dimensional
nonlinear model for the seismic response of overpasses, including a constitutive model for
unanchored elastomeric bearings. Martinez et al. [9] proposed a constitutive model for SBs
based on experimental data.
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The implementation in the engineering practice of state-of-the-art constitutive models
for SBs and EBs, as previously mentioned, is developed under assumption of the correct
values of the model parameters used in their formulation. Nevertheless, calibrating these
constitutive models to account for accurate and precise numerical responses of bridges is
essential due to the presence of various sources of uncertainty, such as modeling errors,
parameter uncertainty, and measurement noise [16]. A probabilistic approach, such as
the Bayesian framework for model updating (e.g., [17,18]), is, therefore, recommended
for calibration of bridge components. This method allows the incorporation of different
sources of uncertainty and subsequently provides the most probable model parameter
values based on recorded data. The result is the generation of posterior probability density
functions (PDFs), which give a probabilistic description of the model parameters.

This study proposes joint PDFs for the state-of-the-art constitutive model of SBs and
EBs using comprehensive datasets from experimental campaigns conducted by Rubilar [15],
Martinez [9], and test results reported herein. The posterior distributions for each dataset
are obtained through a conflation approach and grouped by bridge component, allowing
for efficient sampling of the model parameters. The calibrated results show consistent
parameter correlations among datasets, which are condensed in a proposed correlation
matrix for general sampling of SB and EB model parameters. By means of this approach,
more reliable fragility curves of components and bridge structures can be generated,
making use of more robust methodologies and seismic databases, and accounting for the
model parameter uncertainties present in the problem of fragility assessment of bridges
during earthquakes.

2. Experimental Data
2.1. Seismic Bars (SBs)

The experimental data used to calibrate model parameters were collected from tests
conducted by Martinez et al. [9]. These tests were designed to simulate the behavior of SBs
in bridges with (SBs-WD) and without (SBs-WOD) diaphragms. The experimental setup
for the tests consisted of a reinforced concrete (RC) block at the bottom representing the
bent cap of the substructure, a RC block at the top representing the diaphragm or slab,
and two seismic bars connecting both blocks. The clear height between blocks (hl) was the
distance from the bottom of the bent cap to the slab of the bridges. Four specimens were
used in the study: WD1, WD2, WOD1, and WOD2 with different hl; see Table 1.

Table 1. Test specimens of SBs used in this study.

Specimen hl (cm)

WD1/WD2 10
WOD1/WOD2 72

The SBs were 16 mm in diameter and made of A440–280H steel with a yield and
an ultimate strength of 280 MPa and 440 MPa, respectively. The reinforcing bars of RC
elements were made of A630–420H steel with a yield and an ultimate strength of 420 MPa
and 630 MPa, respectively. The concrete used in the specimens had a maximum compress
strength of 20 MPa and a maximum aggregate size of 20 mm. More information on the
setup for the specimens can be found in Martinez et al. [9].

2.2. Elastomeric Bearings (EBs)
2.2.1. Unanchored Elastomeric Bearing (UEB)

The experimental data used in this study to calibrate the constitutive model of unan-
chored (or unbonded) elastomeric bearings (UEB) were collected by Rubilar [15] in a
campaign focused on characterizing the experimental behavior of these bearings under
cyclic and monotonic displacements. In this campaign, six identical UEBs with dimensions
of 400 mm × 500 mm × 90 mm, reinforced with 3 mm thick steel plates and a rubber
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height of 72 mm, were tested under vertical compression loads of 400 kN and 600 kN. The
bearings were subjected to incremental lateral displacements of 9 mm, 22.5 mm, 45 mm,
90 mm, 135 mm, and 144 mm, corresponding to shear deformations of 10%, 25%, 50%,
100%, 150%, and 160%, respectively. These tests were conducted at the testing speeds
provided in Table 2. During the test, the bearings were placed between two RC blocks
with the lower block having a rough surface to simulate the leveling mortar in real beams
and the upper block having a smooth surface to represent the bottom web of a prestressed
RC girder.

Table 2. Testing speed for each UEB specimen used in this study.

Test Tag Cyclic Test Velocity (mm/s)

B1 25
B2 25
B3 10
B4 50
B5 75
B6 100

2.2.2. Anchored Elastomeric Bearing (AEB)

For the analysis of anchored elastomeric bearings (AEB), a database of 22 tests con-
ducted on AEB is employed in this study. Table 3 provides the relevant information for the
tested bearings that are used in the uncertainty quantification process.

Table 3. Database of anchored elastomeric bearings.

Test Series N Width (mm) Length (mm) Diameter (mm) Total Height (mm)

S1 5 650 650 - 98
S2 4 - - 500 100
S3 6 320 320 - 53

S4
4 700 700 - 194
4 1000 1000 - 230

S5 1 585 600 - 168

3. Constitutive Models
3.1. Seismic Bars (SBs)

The constitutive model for SBs is based on the model proposed by Martinez et al. [9],
for both cases SBs-WD and SBs-WOD. It is built on the load-displacement relationship
shown in Figure 2, which includes two points and an unloading stiffness. The displacement
of the first point denoted by d1 can be determined using Equation (1), and defines the
transition from a predominantly flexural behavior to a tensile behavior, while the displace-
ment of the second point denoted by d2 (Equation (2)) corresponds to an approximation
of the maximum displacement (dmax) observed in the specimen tests. g1 and g2 are two
dimensionless parameters controlling the amplitude of d1 and d2, respectively.

d1 = g1 ∗ h1 (1)

d2 =

{
hl , SB−WD

g2 ∗ hl , SB−WOD
(2)

The lateral force at each point on the hysteretic curve (F1 and F2) of SBs can be
calculated using Equation (3), where i takes the values 1 and 2 for each point. In this
equation, the actual yield stress ( f ∗y ) is estimated as 1.2 times the nominal yield stress of
steel

(
fynominal

)
and Asb corresponds to the total transverse area of SBs. The dimensionless

factor, γi, is used to estimate the lateral forces on the hysteretic curve of SBs (F1 and F2) and
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considers the ratio of lateral stress in SBs to the yield stress of steel and the rotation of SBs
during loading. The values of γi are provided in Table 4 according to Martinez et al. [9]

Fi = γi ∗ f ∗y ∗ Asb (3)
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Table 4. Values of γi as proposed by Martinez et al. (2017) [9].

Type of Seismic Bar γ1 γ2

SBs-WD 0.04 0.71
SBs-WOD 0.07 0.31

The unloading stiffness (kd) is calculated using Equation (4). It is determined by
multiplying the second loading stiffness (k2) by a factor that depends on the absence or
presence of the diaphragm.

kd =

{
20 ∗ k2, SB−WD
15 ∗ k2, SB−WOD

(4)

The behavior of seismic bars is modeled in OpenSees [19] using a zero-length element
with transverse and longitudinal behavior adjusted to the combination of the uniaxialMa-
terial Hysteretic and uniaxialMaterial MinMax materials. The former generates a bilinear
hysteretic curve with the three points in the envelope and the latter allows for the definition
of displacement under which the bridge component remains without failure.

3.2. Elastomeric Bearings
3.2.1. Unanchored Elastomeric Bearing (UEB)

The constitutive model for UEB, as proposed by Rubilar et al. [15], is based on the
assumption of perfect elastoplastic behavior that is characterized by the hysteretic rela-
tionship between the lateral stiffness (kle) and the yield force (Fby) of the bearing. This
relationship is depicted in Figure 3a.
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kle can be calculated using Equation (5). It is obtained by the product of the shear
modulus of the bearing (Geb) by the ratio of the area of the bearing (Aeb) to the height of
the rubber (Hr).

kle = Geb ∗ Aeb/Hr (5)

Fby dependents on the rubber friction coefficient (µe) and the normal force on the UEB and
can be computed using Equation (6).

Fby = µe ∗ σcd ∗ Aeb (6)

where σcd is the design compressive stress, which is 1.15 times the normal stress σc due to
the dead load on the bearing.

OpenSees [19] software is used to model the lateral response of UEB by means of
a zero-length element, where the transverse and longitudinal behavior of the model is
determined by combining the uniaxialMaterial Steel01 and uniaxialMaterial MinMax materials.
The uniaxialMaterial Steel01 material generates a bilinear curve, while the uniaxialMaterial
MinMax material allows the imposition of the limit displacements under which the bridge
components work.

3.2.2. Anchored Elastomeric Bearing (AEB)

The behavior of AEB can be achieved by means of two approaches as proposed
in [7,20]. The first approach (AEB-model 1) uses an elastic-plastic model and it is defined
by two fundamental slopes (see Figure 3b): the loading and unloading slope (kle) and the
slope after the yield point (kc). kle can be calculated using Equation (5). This value has
a similar definition to that of UEB. The yield deformation (Dy) and failure deformation
(d f ) of AEB are then determined based on the height of the rubber (Hr), as expressed in
Equations (7) and (8), respectively:

Dy = 0.05 ∗ Hr (7)

d f = 1.5 ∗ Hr (8)

Using these parameters, the failure force (Ff a) of AEB can be calculated using Equation (9):

Ff a = Fya + kc ∗
(

d f − Dy

)
(9)



Materials 2023, 16, 1792 7 of 20

where kc is defined as in Equation (10) and Fya is the yield force.

kc = Fya/Dy (10)

The AEB-model 1 can be implemented in OpenSees [19] using a zero-length element
with transverse and longitudinal actions that are adjusted to the combination of the uniaxi-
alMaterial Hysteretic and uniaxialMaterial MinMax materials. The uniaxialMaterial Hysteretic
material allow for the definition of the two fundamental slopes of the constitutive model,
kc and kle. The uniaxialMaterial MinMax material is used to incorporate the maximum
displacement under which the bridge component functions.

The second approach (AEB-model 2) uses the constitutive model proposed by Bouc–
Wen [21,22] (see Figure 3c). This model can be implemented in OpenSees [19] using
the ElastomericBearingBoucWen element, which in turn requires the definition of models
representing the vertical and rotational behavior of the elastomeric bearings. For this
purpose, a zero-length element is defined, where the vertical and rotational behavior is
represented by a uniaxialMaterial Hysteretic material. The vertical behavior is described by
the vertical stiffness of the bearing (kve), Equation (11).

kve = Er ∗ Aeb/Hr (11)

where Er represents the elastic modulus of rubber and is a function of Geb and the shape
coefficient of the elastomeric bearing (Sb), as shown in Equation (12).

Er = 4.8 ∗ Geb ∗ S2
b (12)

Sb can be calculated using Equation (13), which relates it to the thickness (er), length
(Lr), and width (Br) of the rubber.

Se = Aeb/(2 ∗ er ∗ (Lr + Br)) (13)

The rotational behavior of the elastomeric bearing can then be described using Equa-
tion (14), which represents the rotational stiffness (kθe ) of the bearing. This equation
involves the computation of the plate rotational inertia (Ie) using Equation (15).

kθe = 0.5 ∗ Er ∗ Ie/Hr (14)

Ie = Aeb ∗ L3
r /12 (15)

In addition, the use of the Bouc–Wen model in OpenSees [19] requires the definition
of the initial elastic stiffness in the local direction of shear (kc) as in Equation (10), the post-
yield stiffness ratio of the linear hardening component (a1) as expressed in Equation (16),
and the dimensionless quantities controlling the scale and shape of the hysteresis loop
shown in Table 5. These dimensionless parameters are defined according to the agreement
between the predicted response and experimental data during the calibration process.

a1 = kle/kc (16)

Table 5. Bouc–Wen dimensionless parameters.

Parameter

Post-yield stiffness ratio of non-linear hardening component a2
Exponent of non-linear hardening component µ

Yield exponent β
First hysteretic shape parameter η
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4. Bayesian Parameter Estimation

Bayesian updating of constitutive models of bridge components is a process that
involves using experimental data to properly calibrate and improve the accuracy of these
models; see [17,18]. This calibration process allows for the obtainment of the PDFs of the
constitutive model parameters for SBs and UEB and AEB components. Following Bayesian
updating, the uncertainty quantified in constitutive model parameters of a bridge’s compo-
nents can then be propagated through numerical FE models, leading to more comprehen-
sive probabilistic seismic analysis of bridges.

To address the problem of calibrating constitutive models for bridge components in
this study, a sampling method called Sequential Monte Carlo (SMC) is used. This method
combines techniques such as importance sampling, tempering, and Markov Chain Monte
Carlo (MCMC) to efficiently explore the parameter space and determine the posterior PDFs
of the model parameters. One of the advantages of using the SMC method is its ability to
accurately determine the PDFs in cases where the response has multiple peaks, which can
occur when studying nonlinear finite element models [23,24].

4.1. Bayesian Inversion

In this work, Bayesian inversion is used to infer a vector of model parameters θ that
define a specific model class M from a set of observed data yobs. The data consist of Nobs
observations, each with Nout points. The posterior distribution of θ is defined from Bayes’
theorem as in Equation (17).

P(θ|yobs ) =
P(yobs|θ)P(θ)

P(yobs)
(17)

where P(θ|yobs) is the posterior distribution of θ, P(θ) is the prior distribution of θ,
P(yobs|θ) is the likelihood of M predicting yobs through θ, and P(yobs) = P(yobs|M) =∫ ∞
−∞ P(yobs|θ)P(θ)dθ is the model evidence and normalizes the posterior such that it inte-

grates to 1.
The posterior distribution combines prior beliefs about the value of θ with information

inferred from the data through the likelihood function. If we assume independence between
observations, the likelihood function can be written as in Equation (18).

P(yobs|θ) = ∏Nobs
k=1 P

(
yobs,k

∣∣∣θ) (18)

As a consequence, the posterior distribution represents an “updated” belief by combin-
ing the likelihood inferred from experimental data with the prior beliefs about parameter
values. It is useful to consider different types of prior distributions, as they can provide
varying amounts of information about θ. The likelihood function shows that the number of
observations can have an impact on the posterior distribution, particularly in relation to the
variability between observations. For example, a larger number of observations may result
in a decrease in the marginal contribution of each observation to the posterior, and larger
variability in the observations may result in a wider posterior. Therefore, it is important to
carefully select an adequate dataset for updating. The likelihood of data is often assumed
to follow a normal distribution with a variance term σ2, referred to as model discrepancy.
This term represents non-modeled sources of error in the model M and measurement noise.
It can be modeled as a random variable or considered constant. It is important to assess the
sensitivity of the posterior to the model discrepancy. For example, a larger value of σ may
lead to less restrictive posterior convergence, but also more uncertain predictions.

4.2. Markov Chain Monte Carlo (MCMC)

In practice, solving the expression (17) analytically is not feasible for computer models,
so a simulation approach such as MCMC is used. This method helps to sample multiple
chains from the posterior distribution by proposing updates to the prior distribution. At
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each step, the proposed sample’s posterior distribution is evaluated and accepted or re-
jected based on the model’s fit to the observed data. Multiple sampling algorithms are
available for MCMC; in this work, the Metropolis–Hastings (MH) [25] is used. Therefore,
the MCMC allows for the obtainment of parameter posterior PDFs by the sampling of
parameter prior PDFs and the likelihood of observed data conditioned to sampled param-
eters. The posteriors resulting from Bayesian estimation quantify the uncertainty in the
model’s response. The implementation of Bayes’ rule for parameter estimation is further
detailed through reviews of Monte Carlo methods and their implementation available in
Kroese et al. [26] and Wagner et al. [27].

4.3. Tempering

This methodology focuses mainly on the use of an auxiliary temperature parameter to
control the convergence progress of the samples generated using MCMC. This parameter
generates the posterior approach in Equation (19).

p(θ|yobs )β ∝ p(yobs|θ)
β p(θ) (19)

If β = 0, the resultant is the prior PDF, but if β = 1, the resultant is the posterior PDF.
By means of the following steps, the methodology behind SMC is executed [23,28]:

1. Sample each parameter θ from a prior distribution.
2. Simulate a dataset y∗ using a function that takes the parameters and returns the

predicted data (y0), considering the dimension of the observed data.
3. Compare y∗ and y0 using the distance function and a tolerance threshold value.
4. When β = 1, the distance function value is less than the threshold value; if this toler-

ance value is sufficiently small, the distribution obtained will be a good approximation
for the posterior P(θ|y0 ).

4.4. Convergence Criteria

One of the main challenges in statistical analysis is ensuring that the obtained results
accurately reflect the true underlying relationships in the data. This is especially important
when using Monte Carlo techniques, such as MCMC, which involve repeatedly sampling
from a probability distribution to estimate statistical parameters. One way to assess the
accuracy of the results is to calculate the effective sample size (ESS). There are two main
approaches for calculating ESS: univariate and multivariate. The univariate approach
calculates ESS values for each parameter individually, ignoring any correlations between
parameters. This can be useful in cases where the parameters are independent of each
other. However, in many real-world situations, there are correlations between parameters
that need to be taken into account. This is where the multivariate effective sample size
(mESS) method comes in. This method considers the correlations between parameters,
which can provide a more accurate result [29]. This concept is defined below by means
of Equation (20).

mESS = n
(
|Λ|
|Σ|

)1/p
(20)

where Λ represents the covariance of the posterior distribution, while Σ represents the
asymptotic covariance matrix in the Central Limit Theorem for a Markov chain. The symbol
p represents the number of parameters, and the |·| operator denotes the determinant.

To accurately calibrate the parameters of nonlinear FE models, the methodology
proposed by Vats et al. [29] and outlined in Equation (21) can be used. Specifically,
the minimum required value of mESS in order to guarantee convergence must be deter-
mined. This approach has been widely discussed and is a reliable method for solving this
general problem.

mESS ≥ 2
2
p π(

pΓ
( p

2
)) 2

p

χ2
1−α,p

ξ2 (21)
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where, α denotes the level used for constructing confidence intervals, and ξ stands for the
desired fractional error of the Monte Carlo method compared to the error of the posterior.
The symbol Γ represents the gamma function and χ is the inverse chi-squared distribution.

4.5. Conflation Procedure

The conflation methodology is employed to combine the results of independent
parameter calibrations [30]. This approach is an alternative to simply averaging the data or
probabilities. Mathematically, conflation is represented by the symbol &, indicating that
information from multiple PDFs is consolidated. In this scenario, since all parameters have
a normal density function, Equation (22) is applicable.

f (x) =
f1(x) f2(x) . . . fn(x)∫ ∞

−∞ f1(x) f2(x) . . . fn(x)dy
(22)

5. Results and Discussion
5.1. Calibration

This section applies the Bayesian updating procedure, as described in Section 4, to
calibrate the model parameters for each dataset of SBs, UEB, and AEB. Using the MCMC
algorithm, posterior distributions including marginal PDFs and parameter correlations
for each bridge component are obtained. Then, these statistical results are combined
using the conflation method to propose a single PDF that covers all datasets of each bridge
component, from which predictions can be generated. One assumption made in this process
is that the model’s predictive capacity is the same for each dataset, which is represented by
a constant variance in the likelihood function. While newer methods have been proposed
for estimating multi-response likelihood functions that do not make this assumption, it is
preferred to use a simpler probabilistic model consisting of independent estimations for
each dataset. This is because the constitutive models for the hysteretic behavior of SBs,
UEB, and AEB are unidimensional and are expected to produce similar prediction errors
across datasets. While a more sophisticated calibration scheme could be developed using
recent advancements, the primary goal of proposing general use parameter PDFs for each
bridge component can still be achieved using the standard method, as demonstrated by the
good agreement between measured data and numerical response presented below.

The constitutive model parameters of each bridge component to be estimated are
presented in Table 6. The other parameters of the constitutive models not included in
Table 6 are geometric quantities or dependent on the test conditions, which implies that
the uncertainty present does not significantly affect the model response. The prior PDFs
were defined as normal in all cases based on available data for the bridge components, and
they were selected such that the range of responses obtained from sampling covered the
range of observed responses of all tests. The means of these prior PDFs were determined
based on available statistical studies, and the COVs were chosen based on extreme values
reported in the literature and the observed variance among tests. Table 6 presents the
mean and coefficients of variation (COV) for the prior distributions employed for the
predicted response and KDE matrix of the representative case discussed in Section 5.1.1 ,
Sections 5.1.2 and 5.1.3. The MH [25] algorithm was employed for MCMC sampling, since
it resulted in lower computation times than other alternatives such as Slice sampling [31].

To determine the number of iterations to be performed, the mESS proposed by Vats
et al. [29] was computed for a confidence interval of 0.99 and relative precision of 0.1. For
these values and the larger number of parameters in the constitutive models (6), the ob-
tained minimum mESS was 1000 for each dataset. Convergence of the chains was assessed
through the Gelman–Rubin estimator R̂ [32] and cross-checked graphically through Kernel
density estimation (KDE), for which traces include PDFs of the parameter and correlation
ρ between the calibrated parameters. Additionally, statistics of interest from traces were
computed, including posterior means µ, standard deviations σ, and 95% confidence in-
tervals (i.e., percentiles 5% and 95%). Finally, posterior information was extracted from
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the combined samples obtained from the chains for each constitutive model for the bridge
components, and the mESS for each dataset was computed to evaluate the termination
condition (i.e., mESS larger than the minimum mESS computed as described above).

Table 6. Prior PDF for calibration of bridge components.

Parameter Distribution Mean COV (%)

SBs-WD (WD2)
fy (MPa)

Normal
235.46 5.82

g1(-) 0.11 36.36

SBs-WOD (WOD1)
fy (MPa)

Normal
266.24 8.40

g1(-) 0.09 22.22
g2 (-) 0.39 10.26

UEB
(B1-C2)

Geb (kN/m2)
Normal

1083.60 3.60
µ (-) 0.31 2.59

AEB—model 1
(S1)

Fya (kN)
Normal

108.00 11.10
Geb (kN/m2) 1033.50 2.5

AEB—model 2
(S1)

Fya (kN)

Normal

98.45 4.89
Geb (kN/m2) 994.00 3.10

a2 0.50 7.98
µ 4.00 7.50
β 0.90 4.33
η 1.05 11.41

5.1.1. Seismic Bars (SBs)

Figure 4a SBs-WD (WD2) and Figure 4b SBs-WOD (WOD1) of SBs, as tested by Martinez
et al. [9] with a calibrated response using posterior means as well as 5th and 95th percentiles,
confirmed an excellent agreement between the experimental and predicted responses.
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Figure 4. Comparison of the responses of (a) SBs-WD (WD2) and (b) SBs-WOD (WOD1) as tested by
Martinez et al. (2017) with a calibrated response at posterior means, 5th and 95th percentiles.

The KDE matrices for SBs-WD (WD2) and SBs-WOD (WOD1), as representative cases,
are presented in Figure 5a,b, respectively. Figure 5a, as well as MCMC traces for SBs-WD,
show that the average correlation between fy and g1 is relatively low (0.26) for SBs-WD. In
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contrast, Figure 5b implies that the average correlation between fy and the parameters g1
and g2 is high for SBs-WOD, with values of 0.72 and 0.54, respectively.
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The low correlation between fy and g1 in SB-WD is due to the presence of the di-
aphragm, which is expected to lead to a more controlled lateral displacement of the bridge.
As a result, the SB-WD acts more like a tensor that controls the uplift of the bridge’s slab. In
contrast, SB-WOD is designed to resist vertical forces (prevent uplift), while also providing
lateral stiffness to the deck during large displacements. This leads to a greater dependence
between fy and the dimensionless parameters (g1 and g2) that control the characteristic
displacements that define the constitutive model of SB-WOD.

After obtaining the calibrated parameters and their uncertainties, the methodology
outlined in Section 4 was applied to merge the PDFs obtained from the calibration of
independent experiments. This resulted in Figure 6, which illustrates the final PDFs of the
constitutive models’ parameters for both SBs-WD and SBs-WOD models. According to the
results shown in Figure 6a,c, the mean values of fy for SBs-WD and SBs-WOD models are
206.4 MPa and 264.6 MPa, respectively. Figure 6b shows that the mean value of g1 for the
SBs-WD model is 0.104, while it is 0.092 for the SBs-WOD model as shown in Figure 6d.
Additionally, the mean value of g2 for the SBs-WOD model is 0.395 as shown in Figure 6e.
The values of g1 and g2 for SB-WOD are consistent with the expected values reported by
Martinez et al. [9] of 0.1 and 0.35, respectively. The consistency of g1 for both SBs-WD
and SBs-WOD models is also in line with the expectation that it should be similar for
both models.
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Figure 6. Conflated PDFs for fy (a) and g1 (b) in the SBs-WD model, and conflated PDF for fy (c), g1

(d), and g2 (e) on in the SBs-WOD model.

5.1.2. UEB

A comparison of the predicted response from the calibration process and the experi-
mental data from the B1 and B2 test (see Table 2), conducted under a compression load of
400 kN, is presented in Figure 7. The predicted responses using posterior means and the
5th and 95th percentiles show a strong agreement with the response measured during the
experimental test.
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Figure 7. Comparison of the response of UEB as tested by Rubilar et al. (2015) with calibrated
response at 5th and 95th percentiles.

Figure 8 shows the KDE Matrix for B1 under the compression load of the 400 kN test,
as the representative case, displaying the PDFs and the correlation of 0.31 between the
calibrated parameters. The overall average correlation of the parameters across all cases
was 0.41.

Materials 2023, 16, x FOR PEER REVIEW 14 of 20 
 

 

calibrated parameters. The overall average correlation of the parameters across all cases 
was 0.41. 

 
Figure 8. UEB KDE matrix for B1-C2 as the representative case. 

The posterior PDFs obtained by conflation of all independent experiments used as 
input are shown in Figure 9. From conflation, it is observed that the mean value of 𝐺 and 𝜇 is 1176 kN/m2 and 0.23, respectively. The predicted mean value of 𝐺 falls within the 
range 981–1275 kN/m2, suggested by AASHTO (2012) [33], while 𝜇 shows a predicted 
mean value similar to those recommend in AASHTO (2017) [20] of 0.2. 

 
Figure 9. Conflated PDFs for 𝐺 and 𝜇 on the unanchored elastomeric bearing model. 

5.1.3. AEB 
The two modeling approaches detailed in Section 3.2.2 are used to calibrate the AEB 

numerical response. The main difference in the calibration between these approaches is 
the complexity in the number of calibrated parameters. The first approach, AEB-model 1, 
requires the calibration of 𝐺  (shear modulus of the elastomeric support) and 𝐹  (yield 
force). In contrast, the second approach, AEB-model 2, which uses elastomericBearing-
BoucWen element, demands the calibration of six parameters, listed in Table 7.  

Table 7. Parameters of element elastomericBearingBoucWen. 

Parameter  
Yield force 𝐹  

Shear modulus of the bearing 𝐺  
Post-yield stiffness ratio of non-linear hardening component 𝑎  

Exponent of non-linear hardening component 𝜇 

Figure 8. UEB KDE matrix for B1-C2 as the representative case.

The posterior PDFs obtained by conflation of all independent experiments used as
input are shown in Figure 9. From conflation, it is observed that the mean value of G and
µ is 1176 kN/m2 and 0.23, respectively. The predicted mean value of G falls within the
range 981–1275 kN/m2, suggested by AASHTO (2012) [33], while µ shows a predicted
mean value similar to those recommend in AASHTO (2017) [20] of 0.2.
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Figure 9. Conflated PDFs for G and µ on the unanchored elastomeric bearing model.

5.1.3. AEB

The two modeling approaches detailed in Section 3.2.2 are used to calibrate the AEB
numerical response. The main difference in the calibration between these approaches is
the complexity in the number of calibrated parameters. The first approach, AEB-model 1,
requires the calibration of Geb (shear modulus of the elastomeric support) and Fya (yield
force). In contrast, the second approach, AEB-model 2, which uses elastomericBearing-
BoucWen element, demands the calibration of six parameters, listed in Table 7.

Table 7. Parameters of element elastomericBearingBoucWen.

Parameter

Yield force Fya
Shear modulus of the bearing Geb

Post-yield stiffness ratio of non-linear hardening component a2
Exponent of non-linear hardening component µ

Yield exponent η
First hysteretic shape parameter β

Figure 10 shows the excellent agreement between the measured responses from the
AEB tests, as recorded in one test of series (see Table 3), and the predicted responses obtained
using both constitutive models and posterior means and the 5th and 95th percentiles.
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Figure 10. Comparison of the AEB from test series S1 with a calibrated response at 5th and 95th
percentiles using (a) AEB-model 1 (b) AEB-model 2.

Figure 11a,b compares KDE matrices for the two modeling approaches representing
the hysteretic behavior of AEB. It is worth noting that PDFs for Geb and fya, which were
previously calibrated for AEB-model 1, are used as prior distribution for AEB-model 2
calibration. The results show that AEB-model 1 has a moderate negative correlation (−0.26)
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between Geb and Fya, while AEB-model 2 has a negligible correlation (0.03) between the
same pair of parameters. Additionally, AEB-model 2 shows moderate positive correla-
tions among pairs β− Geb (0.32) and β− Fya (0.71), and the remaining parameters of the
constitutive model exhibit mostly no correlations with values ranging from −0.01 to 0.03.
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The difference in the correlation of the pair Geb − Fya between AEB-model 1 and AEB-
model 2 can be attributed to the number of parameters used in each constitutive model.
AEB-model 1 uses only two parameters, while AEB-model 2 uses six. The increased number
of parameters in AEB-model 2 improves the numerical modeling of the hysteretic behavior
of AEB because it allows for better characterization of the different branches of the response
of the EB.

Finally, the conflation of the PDFs for the independent calibrated parameters is applied
to both approaches, resulting in the definitive PDFs for each parameter presented in
Figures 12 and 13.
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Figure 13. Conflated PDF for Geb, fya, a2, µ, β, and η on AEB-model 2.

5.2. Proposed PDFs

In summary, Table 8 presents a compilation of the joint PDFs for the constitutive model
parameters of SB, UEB, and AEB, as representative structural components of highway
bridges. These PDFs can be used to account for the uncertainty associated with the material
constitutive models of these elements, thereby providing additional information to improve
the accuracy of seismic response analysis for highway bridges.
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Table 8. PDFs’ calibrated parameters for SBs and EBs.

Component Parameter Distribution Mean COV (%)

SBs-WD
fy (MPa)

Normal
206.4 6.76

g1(-) 0.104 27.6

SBs-WOD
fy (MPa)

Normal
264.4 7.60

g1(-) 0.091 13.8
g2 (-) 0.395 6.25

UEB
Geb (kN/m2)

Normal
1176 1.15

µ (-) 0.230 0.80

AEB-model 1
fya (kN)

Normal
167.6 1.72

Geb (kN/m2) 985 0.39

AEB-model 2

fya (kN)

Normal

157.8 1.19
Geb (kN/m2) 990 0.50

a2 0.50 2.0
µ 3.765 1.74
β 1.122 1.60
η 0.899 1.00

6. Conclusions

In this paper, data from comprehensive experimental campaigns on bridge compo-
nents SBs, UEB, AEB, led by Rubilar (2015), Martinez (2017), and from tests on bearings from
actual projects, are used to conduct Bayesian updating of key parameters of constitutive
models characterizing the hysteretic response of these components.

The PDFs of model parameters are obtained from independent tests conducted on
the components. Then, these independent PDFs are merged in a single posterior PDF
for each parameter by means of a conflation methodology, where the mean and COV
are obtained for each key parameter. The Bayesian updating methodology implemented
through SMC led to getting the KDE matrix, where the correlation between calibrated
parameters is computed. In the particular case of AEB, the Bayesian estimation is carried
out by means of two approaches: (a) an elasto-plastic approach (AEB-model 1) with
two parameters to be calibrated and (b) a Bouc–Wen approach (AEB-model 2) using
the elastomericBearingBoucWen element, which provides a better characterization of the
hysteretic behavior of AEB, but in turn, requires the calibration of six parameters.

The main contribution of the implementation of the Bayesian updating methodology
for these components is the quantification of uncertainty obtained as a result of and ex-
pressed by means of posterior PDFs. The proposed joint PDFs for the governing constitutive
model parameters of SB, UEB, and AEB can be considered to conduct detailed nonlinear
FE analyses of bridges accounting for the model parameter uncertainty in the predicted
responses with the use of the well-calibrated model parameters for bridge components.

It is noted that proposing PDFs for constitutive models of bridge components based
on experimental data allows for the incorporation of the estimation results and the proper
propagation of the associated uncertainties in state-of-the-art nonlinear finite element
models of bridges. This is a crucial aspect to provide a more realistic representation of
the complex seismic behavior of bridges, which is critical for ensuring the safety and
resilience of transportation infrastructure and enhancing findings from new bridge design
and analysis methodologies, such as PBSD. Finally, this research highlights the potential
of Bayesian updates in bridge engineering and contributes to the development of more
advanced and sophisticated design and analysis methodologies for bridges. The proposed
methodology has broad implications for other types of engineering systems that involve
significant uncertainty and variability, where improved accuracy and reliability are critical
for safe and effective design and analysis.
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