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Abstract: Calcareous sand is one of the main building materials in the construction of islands and
reefs, and its shear property is very important for predicting their strength and deformation. However,
the correlation research on the shear properties of calcareous sand is limited. In this paper, a series
of the triaxial consolidation drainage shear tests of calcareous sand with relative densities (Dr) of
70% and 90% under confining pressures of 100, 200, 400 and 800 kPa were carried out by a triaxial
testing apparatus, and the effects of relative density and confining pressure on the deformation and
strength characteristics of calcareous sand were analyzed. The results show that the stress–strain
curves of calcareous sand show a strain softening characteristic, and both peak deviatoric stress and
failure strain increase with confining pressure, but the increase in failure strain is restrained when the
confining pressure is larger than 400 kPa. The initial shear modulus of calcareous sand is positively
correlated with confining pressure. Additionally, the molar circular envelope of calcareous sand
is linear in the range of 100~400 kPa, but it deviates from linear when confining pressure exceeds
400 kPa. The critical state line (CSL) of calcareous sand is nonlinear, with almost the same exponent
for calcareous sand with different relative densities. The research results have important reference
value for the foundation construction of islands and reefs.

Keywords: calcareous sand; relative density; confining pressure; triaxial consolidation drainage shear

1. Introduction

Calcareous sand is a special type of sand mainly composed of coral detritus and
contains some other substances, such as coral algae, shells and porifera detritus [1]. It is
mainly found in coral islands and reefs and their surrounding environments in tropical
and subtropical marine areas, with a main component of CaCO3. After long-term physical,
biological and chemical actions, calcareous sand forms a unique spatial structure, with
distinctive characteristics such as having an irregular particle shape and multi-porosity,
and being easy to break [2,3].

Most islands and reefs are far away from the mainland, and in the construction and
engineering of islands and reefs, the cost of transporting materials from land is high, so
calcareous sand is often used locally as a foundation material for infrastructure such as road
embankments and airport runways [4,5]. Extensive research has shown that the physical
and mechanical properties of marine biogenic calcareous sand are quite different from those
of common terrestrial sand, and the results of existing research cannot be directly applied
to calcareous sand [6–15]. Therefore, it is significant to understand the shear characteristics
of calcareous sand foundation.

Some studies have been carried out on the shear properties of calcareous sand. In
the direct shear test, Fahey [16] found that the yield point of calcareous sand was obvious
under low confining pressure, but not obvious under high confining pressure. Ma et al. [17]
studied the effects of moisture content, dry density and mineral composition on the shear
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properties of calcareous sand. It was found that the internal friction angle of calcareous sand
increases with the increase in dry density, the apparent cohesion increases with the increase
in particle size and the effect of water reduces the strength of calcareous sand. Li et al. [18]
investigated the effects of axial compression, shear rate and gradation on the mechanical
properties of calcareous sand. The study found that the shear strength increases with the
decrease in shear rate and the increase in axial pressure and the coarse particle content. In
the cyclic simple shear test, Ji et al. [19] found that the shear stress of calcareous sand is
obviously lower than that of ordinary quartz sand at the stage of shear stress difference,
up to 14.7%. In the triaxial test, some scholars [20–23] found that calcareous sand shows
dilatancy under low confining pressure. The weakening trend of dilatancy gradually
turns into shrinkage with the increase in confining pressure, and it shows absolute shear
shrinkage when the confining pressure reaches more than 800 kPa [24]. Mo et al. [23] and
Sun et al. [25] found that the stress–strain curve of calcareous sand gradually changed from
strain softening to hardening with the increase in confining pressure. Li [24] pointed out
that the specimens with low confining pressure and high relative density showed strain
softening and strain hardening in samples with high effective confining pressure and low
relative density. Wang et al. [26] found that the peak friction angle and critical friction angle
decreased with the increase in confining pressure. Weng et al. [27] found that when the
relative density of calcareous sand is greater than 70%, the internal friction angle decreased
with the increase in relative density.

As reported in the above literature, the shear properties of calcareous sand are complex
and affected by many factors such as density, confining pressure, shear rate, particle
gradation and so on. However, and a mature and unified understanding of the effect of
density and confining pressure on the shear properties of calcareous sand has not been
formed; compared with quartz sand, this makes it difficult to provide practical projects
with reasonable and effective guidance. Therefore, it is necessary to study the effect of
density and confining pressure on the shear properties of calcareous sand.

In this paper, the triaxial consolidation drainage shear tests were carried out on two
sets of calcareous sand samples with relative densities of 70% and 90% under the confining
pressures of 100, 200, 400, and 800 kPa. The effects of relative density and confining
pressure on deformation and strength characteristics were analyzed. A flow chart for the
methodology of this paper in provided in Figure 1. The triaxial shear characteristics of
calcareous sand are further understood, which can provide valuable reference for island
and reef foundation construction.
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2. Materials and Methods
2.1. Calcareous Sand

The content of CaCO3 is the main index that distinguishes calcareous sand from gen-
eral terrigenous sand. According to international standards, it is classed as calcareous soil
when the content of CaCO3 in marine soil is more than 50% [28]. Before the experiment, an
X-ray diffractometer (XRD) was adopted to obtain characteristics of chemical compositions
of calcareous sand, and the diffraction pattern is shown in Figure 2. Its mineral composition
is mainly aragonite (CaCO3), and it also contains a small amount of magnesian calcite
(Mg.129ca.871 (CO3)) and other trace impurities. Meanwhile, a large number of coral am-
putated limbs, shellfish and other biological debris were observed in the sample (Figure 3),
which has the genetic characteristics of marine bioclasts, and it is veritable calcareous sand.

Materials 2023, 16, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Flow chart for methodology. 

2. Materials and Methods 
2.1. Calcareous Sand 

The content of CaCO3 is the main index that distinguishes calcareous sand from gen-
eral terrigenous sand. According to international standards, it is classed as calcareous soil 
when the content of CaCO3 in marine soil is more than 50% [28]. Before the experiment, 
an X-ray diffractometer (XRD) was adopted to obtain characteristics of chemical compo-
sitions of calcareous sand, and the diffraction pattern is shown in Figure 2. Its mineral 
composition is mainly aragonite (CaCO3), and it also contains a small amount of magne-
sian calcite (Mg.129ca.871 (CO3)) and other trace impurities. Meanwhile, a large number 
of coral amputated limbs, shellfish and other biological debris were observed in the sam-
ple (Figure 3), which has the genetic characteristics of marine bioclasts, and it is veritable 
calcareous sand. 

 
Figure 2. Diffraction pattern of calcareous sand. Figure 2. Diffraction pattern of calcareous sand.

Materials 2023, 16, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. Calcareous sand sample. 

The typical SEM morphology of calcareous sand particles was obtained by electron 
microscope, as shown in Figure 4. It can be found that calcareous sand particles contain 
many internal pores, some of which are uniform and dense with deep grooves, and some 
pores are honeycomb, filled with biological detritus. Additionally, they show irregular 
shape and high angularity, which is because the calcareous sand has not been transported 
for a long distance in the process of sedimentation, and retains the structure of the primary 
biological skeleton. 

  

  

Figure 4. SEM morphology of calcareous sand. 

Figure 3. Calcareous sand sample.

The typical SEM morphology of calcareous sand particles was obtained by electron
microscope, as shown in Figure 4. It can be found that calcareous sand particles contain
many internal pores, some of which are uniform and dense with deep grooves, and some
pores are honeycomb, filled with biological detritus. Additionally, they show irregular
shape and high angularity, which is because the calcareous sand has not been transported
for a long distance in the process of sedimentation, and retains the structure of the primary
biological skeleton.
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The maximum and minimum dry densities of calcareous sand are 1.536 and 1.183 g/cm3,
and the specific gravity is 2.78. The maximum and minimum void ratios of calcareous sand
are 1.48 and 1.00, respectively, according to Equation (1).

emax =
Gsρw

ρdmin
− 1, emin =

Gsρw

ρdmax
− 1, (1)

where Gs is the specific gravity of calcareous sand, ρw is the density of water and ρdmax and
ρdmin are the maximum and minimum dry density, respectively.

The calcareous sand was dried and the particles larger than 5 mm in the specimen were
removed. The gradation curve was obtained according to the Geotechnical Test method
Standard (GB/T50123-2019), as shown in Figure 5. It can be known that the average particle
size of calcareous sand is 0.43 mm, the non-uniformity coefficient is 10.10 and the curvature
coefficient is 1.29. It belongs to non-uniform medium sand.

2.2. Test Methods

Calcareous sand has good water permeability; the water between particles of saturated
calcareous sand in the natural environment can dissipate quickly under the action of external
force. The stress state of calcareous sand in engineering can be simulated by a consolidation
drainage shear (CD) test in the laboratory. The relative density of calcareous sand was
designed as Dr = 70% and Dr = 90%; for it to generally reach a compact state after foundation
treatment, the confining pressure was set as 100, 200, 400 and 800 kPa, and two parallel tests
were designed for each group. According to the design density, calcareous sand samples
were prepared by the dry method. Calcareous sand particles are angular and rich in internal
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pores, so the sample was saturated by a combination of various methods. It was first pumped
through CO2 to replace the air in it, then saturated with water head, and finally, the back
pressure was applied to saturate the sample. The sample is considered completely saturated
when the saturation is greater than 95%. The equipment adopted in this experiment is shown
in Figure 6. The displacement was controlled by the precision displacement sensor installed
on the base with a shear rate of 0.02 mm/min, and the test was stopped when the axial strain
reached 20%. The experimental process is shown in Figure 7.
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3. Results
3.1. Stress–Strain Curve

Shear failure modes generally include bulging and splitting in the triaxial test. In this
paper, obvious shear failure zones can be observed after the completion of the consolidated
drainage shear of calcareous sand, so the failure mode is splitting failure, as shown in
Figure 8. The deviatoric stress and axial strain curves (hereinafter referred to as stress–strain
curves) of calcareous sand with relative densities of 70% and 90% under different confining
pressures are shown in Figure 9.
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As can be seen in Figure 9, the stress–strain curves of the two calcareous sand samples
in each test are almost close, and the test results are reliable. The peak deviatoric stress
and failure strain of the calcareous sand samples with relative densities of 70% and 90%
is smaller under lower confining pressure, and both of them increase with increasing
confining pressure. The stress–strain curve under different confining pressure shows a
strain softening characteristic. Additionally, the post-peak curve decreases slightly with an
unobvious softening characteristic under the lower confining pressure, but the softening
characteristic increases gradually with increasing confining pressure. This is because the
relative density of the calcareous sand sample in this study is larger, and the sand has
formed a relatively stable structure. Compared with the sand samples with low relative
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density, it has a short compaction process, the stress reaches the peak value quickly and
is destroyed, and then the strength begins to decrease gradually. Therefore, the softening
phenomenon of the sample with high relative density is more obvious.

The peak values of deviatoric stress and failure strain are shown in Table 1. Addition-
ally, the relationship between the peak value of deviatoric stress and confining pressure is
exhibited in Figure 10. It can be seen that the peak values of deviatoric stress of calcareous
sand with different relative densities increase linearly with increasing confining pressure.
The relationship between failure strain and confining pressure is shown in Figure 11; the
failure strain is 10~15.02% for calcareous sand with a relative density of 70%, larger than
8.50~13.50% for that of 90%. The higher the relative density is, the more calcareous sand
particles are needed with a constant volume of the sample, and the particles of the sample
are arranged more closely. During shearing, the sliding of calcareous sand particles in the
sample becomes more and more difficult. Further analysis also found that the failure strain
increases by 40~50% when confining pressure increases from 100 kPa to 400 kPa and 4~10%
when confining pressure increases from 400 kPa to 800 kPa, and the increase in failure
strain is restrained when the confining pressure reaches 400 kPa.

Table 1. Peak deviatoric stress and failure strain of calcareous sand.

Test No. Relative
Density/%

Confining
Pressure/kPa

Peak Deviatoric
Stress/kPa Failure Strain/%

CD70-100-1

70

100 529.85 8.49
CD70-100-2 100 551.00 9.28
CD70-200-1 200 925.30 12.48
CD70-200-2 200 971.59 11.49
CD70-400-1 400 1771.36 11.97
CD70-400-1 400 1750.66 14.47
CD70-800-1 800 2565.01 15.02
CD70-800-1 800 2646.86 15.80

CD90-100-1

90

100 700.05 8.25
CD90-100-2 100 630.61 8.50
CD90-200-1 200 1131.95 10.50
CD90-200-2 200 1066.29 10.00
CD90-400-1 400 1824.56 12.08
CD90-400-1 400 1766.40 12.75
CD90-800-1 800 2697.40 12.50
CD90-800-1 800 2888.47 13.50
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The peak deviatoric stress of calcareous sand is greater than that of quartz sand under
nearly the same condition. Take calcareous sand with a relative density of 70% as an
example; the peak deviatoric stress is compared with quartz sand [29] with the same
relative density, as shown in Figure 12. Additionally, the same findings are also found in
previous studies [30,31]. This may be due to the higher interlockings between calcareous
sand with more irregular particle shapes than quartz sand. The failure strain of calcareous
sand is 8~15%, which is also larger than the 4~8% of ordinary quartz sand [30]. This is
because calcareous sand has a high content of CaCO3, usually more than 80%. The Mohs
hardness of aragonite is 3.5~4 and that of quartz is 7 [32]. Therefore, calcareous sand with a
high content of CaCO3 is brittle, with a lower strength and a larger failure strain.
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Figure 12. Strength comparison between coral sand and quartz sand [28].

3.2. Initial Shear Modulus

Shear modulus is an important parameter to study the material shear properties, which
represents the ability of material to resist shear deformation. The relationship between the
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initial shear modulus Gi and the initial tangent modulus Ei is shown in Equation (2). In the
Duncan–Chang model [33], the relationship of stress–strain is expressed as Equation (3),
and the initial tangent modulus is defined as the initial slope of the stress–strain curve, as
shown in Equation (4). The initial shear modulus of calcareous sand acquired by (2)~(4) is
provided in Table 2.

Gi =
Ei

2(1 + v)
, (2)

where Gi is the initial shear modulus, Ei is the initial tangent modulus and v is Poisson’s
ratio, generally taken as 0.3 for calcareous sand.

ε

(σ1 − σ3)
= a + bε, (3)

Ei =
d(σ1 − σ3)

d(ε)

∣∣∣∣
ε→0

, (4)

Table 2. Initial shear modulus.

Test No. Gi/kPa Test No. Gi/kPa

70-100kPa-1 64.75 90-100kPa-1 105.37
70-100kPa-2 70.18 90-100kPa-2 113.46
70-200kPa-1 82.89 90-200kPa-1 136.39
70-200kPa-2 109.89 90-200kPa-2 200.32
70-400kPa-1 149.65 90-400kPa-1 186.71
70-400kPa-2 198.25 90-400kPa-2 206.78
70-800kPa-1 205.68 90-800kPa-1 278.71
70-800kPa-2 214.87 90-800kPa-2 293.60

The initial shear modulus and confining pressure were converted into dimensionless
by standard atmospheric pressure pa (101.4 kPa), and the relationship between initial
shear modulus and confining pressure is shown in Figure 13. It was found that the initial
tangent modulus increases with the increase in confining pressure; the relationship can
be expressed as straight line, as shown in Equation (5). The parameters of calcareous
sand with relative densities of 70% and 90% were obtained; that is, α1 = 0.20, β1 = 0.60,
α2 = 0.23 and β2 = 1.01. The slope of the two straight lines have little difference, which can
be approximately considered as parallel.

Gi/pa = α1(σ3/pa) + β1, (5)

where α and β are material parameters.

3.3. Shear Strength

Shear strength is one of the important mechanical properties for soil; it can reflect
the ability of soil to resist shear sliding. Additionally, the two important indices of shear
strength are cohesion and internal friction angle. It is widely known that the concept of
cohesion is accepted for clayey soil; sand usually has no cohesion. However, numerous
studies have reported that calcareous sand has cohesion; it is formed by the bite force
between particles, which is called quasi-cohesion.

The molar circle and strength envelope of calcareous sand under different relative
densities is shown in Figure 14 (the strength discreteness of calcareous sand is small and
only one group was selected for analysis). It shows that the strength envelope is linear
within 100~400 kPa of confining pressure. When it exceeds 400 kPa, the strength envelope
begins to deviate from the linear development. Meanwhile, in the range of 100~400 kPa,
calcareous sand with a relative density of 70% has a quasi-cohesion of 29.67 kPa and an
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internal friction angle of 41.88◦, while calcareous sand with a relative density of 90% has a
cohesion of 81.73 kPa and an internal friction angle of 39.81◦. Additionally, the difference
in cohesion and internal friction angle for calcareous sand with relative densities of 70%
and 90% are 47.8% and 4.9%, respectively. Evidently, the influence of relative density on
cohesion is much greater than that on the internal friction angle. The greater the relative
density, the smaller the movement space between the calcareous sand particles, and the bite
force between the particles is enhanced. When the confining pressure is larger than 400 kPa,
the internal friction angle decreases and the cohesion increases slightly. The shear strength
characteristics of calcareous sand are quite different from those of ordinary terrestrial sand.
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3.4. Stress Ratio

Stress ratio can be obtained by dividing the deviatoric stress q by the mean stress p.
The expressions of deviatoric stress q and mean stress p are specified in Equations

(6) and (7). The relationship between the stress ratio q/p and the axial strain of calcareous
sand under different confining pressures is illustrated in Figure 15; the stress ratio increases
rapidly and reaches the peak stress ratio when the strain is small. As the strain continues to
increase, the stress ratio decreases slowly. The (q/p)max decreases with increasing confining
pressure for calcareous sand with a constant relative density, which is opposite to that of
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the stress–strain in Figure 9. The value of (q/p)max is 1.63~2.03 for calcareous sand with
a relative density of 90%, which is greater than the 1.57~1.91 for calcareous sand of 70%.
Additionally, the stress ratio almost converges on a horizontal line with a value of about 1.5
for 70% calcareous sand and about 1.6 for 90% calcareous sand at the final shear stage.

q = σ1 − σ3, (6)

p =
1
3
(σ1 + 2σ2), (7)

where σ1 is the axial stress and σ3 is the radial stress.
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3.5. Stress Path

The change in stress state in the specimen in the process of shear can be reflected
by the stress path on a particular plane. For the same type of sand, the process of stress
change is different when different test methods and loading methods are adopted during
the triaxial shear failure, and the deformation and strength characteristics also exhibit great
difference. Therefore, the failure process of soil and physical meaning can be analyzed
according to the properties of the stress path [34].

The stress path and CSL of calcareous sand are presented in Figure 16. The stress
paths of calcareous sand under different confining pressures are parallel to each other, with
a constant stress ratio of dq/dp = 3. However, the length of the stress path increases with
increasing confining pressure, and the higher the relative density is, the longer the stress
path is. Due to the softening phenomenon of calcareous sand, the stress path first extends
along the line to the peak state, and then turns back. The critical state theory points out
that the soil will eventually reach a limit state with the development of shear strain. When
the sand is in the limit state, the shear stress and void ratio are constant, but the shear
strain is still changing continuously, which is called the critical state [35]. The CSL can be
determined by the triaxial shear failure point [36]. The CSL of ordinary terrestrial sand is a
straight line passing through the origin, which is usually expressed by Equation (8), but the
CSL of calcareous sand under different confining pressures shows nonlinear properties,
which can be fitted by Equation (9). The parameters are M1 = 4.70, N = 0.85 for calcareous
sand of 70% and M1 = 4.47, N = 0.87 for calcareous sand of 90%; the parameters of
different relative densities are almost close. In classical soil mechanics, it is considered that
the sand particles are not compressed and broken, and the CSL in the stress space is only
one straight line, but the particles of calcareous sand are easy to be broken during shearing,
so the CSL is nonlinear.

q = Mp, (8)
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where M is stress ratio, q is deviatoric stress and p is mean stress.

q = M1 pN , (9)

where M1 and N are constant.
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4. Discussion

An accurate understanding of the triaxial shear characteristics of calcareous sand
is very important for the safety of foundations in island and reef engineering. Some
studies [24,37,38] found that the stress–strain curves of calcareous sand with different
densities showed obvious strain softening at low confining pressure, but it gradually
changed to strain hardening with the increase in confining pressure, which is different from
the result in this study. Weng [27] found that there was strain softening in the range of small
particle size (0.075~0.25 mm), but the degree of strain softening decreased with the increase
in confining pressure. With the increase in particle size, strain softening gradually changed
to strain hardening. The type of the stress–strain curves is affected by confining pressure
and the particle size of calcareous sand. The gradation of calcareous sand in this study is
quite different from that in references [24,37,38], and both the non-uniformity coefficient
and the curvature coefficient are larger. The shear failure pattern of calcareous sand in
this paper is consistent with that in the literature [30], both of which formed obvious shear
failure zones. The deviatoric stress of calcareous sand reaches the peak value, then brittle
failure occurs and the deviatoric stress decreases obviously with the increase in strain,
showing the characteristic of strain softening, which is in accordance with the softening
characteristic of the stress–strain curve.

The Molar circle envelope of calcareous sand is linear within the range of 100~400 kPa,
but it deviates from the linear in the range of 400~800 kPa, which is different from the
single linearity in the literature [24,30]. Because the calcareous sand in this paper has a
large non-uniform coefficient, when the confining pressure reaches 400 kPa, a large number
of calcareous sand particles begin to break, resulting in a change in the slope of the Mohr
circle envelope.

However, there are limitations in this study; no more control group experiments on
confining pressure, density and different sand materials have been carried out. Additionally,
calcareous sand particles have irregular shapes; in addition to confining pressure and
relative density, the particle gradation and particle morphology also have great influence
on the mechanical properties of calcareous sand, but no further study has been performed.
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5. Conclusions

Calcareous sand is widely used in the foundation construction and engineering of
islands and reefs, and it exhibits special mechanical properties due to its irregular particle
shape and high void ratio, and the fact that it is easily broken. In order to investigate the
shear properties of calcareous sand, triaxial consolidation drainage shear tests on calcareous
sand samples with relative densities of 70% and 90% under confining pressures of 100, 200,
400 and 800 kPa were conducted, and the effects of relative density and confining pressure
on the deformation and strength characteristics of calcareous sand were analyzed. The
main conclusions are as follows:

1. The stress–strain curves of calcareous sand show a strain softening characteristic,
which was enhanced with the increasing confining pressure. The increment in failure
strain from 100 kPa to 400 kPa is much larger than that from 400 kPa to 800 kPa, and
it is restrained when confining pressure reaches 400 kPa.

2. The initial shear modulus of calcareous sand with relative densities of 70% and 90%
increases linearly with almost the same slope as the increasing confining pressure.

3. The envelope of calcareous sand’s molar circle is linear within the range of 100~400 kPa,
but it deviates from the linear in the range of 400~800 kPa. In the linear stage, the
cohesion and internal friction angle of calcareous sand with relative densities of 70%
and 90% are 93.60 kPa, 36.55◦ and 118.04 kPa, 36.75◦, respectively.

4. The peak stress ratio of calcareous sand decreases with increasing confining pressure. The
stress ratio in the final shear stage of the test almost converges on a horizontal line with
the value of about 1.5 for 70% calcareous sand and about 1.6 for 90% calcareous sand.

5. The CSL of calcareous sand exhibits non-linearity, which can be described by a power
exponential function with almost the same exponent for calcareous sand with different
relative densities.
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