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Abstract: In order to significantly reduce the computing time while, at the same time, keeping the
accuracy and precision when determining the local values of the density and effective atomic number
necessary for identifying various organic material, including explosives and narcotics, a specialized
multi-stage procedure based on a multi-energy computed tomography investigation within the
20–160 keV domain was elaborated. It consisted of a compensation for beam hardening and other
non-linear effects that affect the energy dependency of the linear attenuation coefficient (LAC) in
the chosen energy domain, followed by a 3D fast reconstruction algorithm capable of reconstructing
the local LAC values for 64 energy values from 19.8 to 158.4 keV, and, finally, the creation of a set of
algorithms permitting the simultaneous determination of the density and effective atomic number of
the investigated materials. This enabled determining both the density and effective atomic number
of complex objects in approximately 24 s, with an accuracy and precision of less than 3%, which is a
significantly better performance with respect to the reported literature values.

Keywords: X-ray multi-energy computed tomography; algorithm; confident identification; organic
material; density; effective atomic number

1. Introduction

The uninterrupted development of international trade, besides the beneficent effects
related to market globalization, has encountered a negative influence due to the increased
use of illicit drugs and explosive trafficking, which have proved serious problems for law en-
forcement agencies, anti-narcotic police, and customs on border management. As the problem
of fast and confident explosive detection represents one of the most fundamental aspects of
passenger security, until present, a multitude of non-invasive techniques were proposed that
were mainly based on the differential attenuation or diffraction of nuclear radiation. It is the
case of X-ray single [1,2], dual [3,4], phase contrast [5], multiple-energy [6,7], diffraction [8], or
even neutron computed tomography (CT) [9]. In addition to these techniques, Raman [10] or
nuclear quadrupole resonance [11] spectroscopy as well as infrared photothermal imaging [12]
gave remarkable results in this field, just to mention some alternative methods not involving
the use of X-rays.

Different from the medical applications of dual and multiple-energy CT, which pro-
duce more precise images necessary for a better diagnostic [13,14], the forensic use of dual
and multiple CT permits the simultaneous determination of the effective atomic number
Ze f f and density ρ of controlled material, accurately differentiating explosives from the
other organic materials in the luggage. In this regard, it is worth mentioning that densities
or effective atomic numbers alone cannot differentiate explosives; this can only be achieved
if they are simultaneously used [6,15].
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Therefore, there is a strong motivation for the development of automated and non-
invasive systems used to control the content of luggage or different parcels before being
admitted to shipping or selected for manual examination. This control should be fast and
reliable given the increasing volume of air, land, and sea traffic. In this regard, it is worth
mentioning that the screening is not without errors, but the reason for its use is to reduce to
an absolute minimum the number of false positive or false negative results.

The development of X and gamma-ray solid-state spectrometric detectors such as CdTe
or Cd(Zn)Te [16,17], which are able to record the energy spectrum of incident radiation on a
large domain of energies subdivided into numerous bins, has stimulated the development
of the multi-spectral CT (MSCT) [4,6,18–20]. This new variant of classical dual-energy
CT (DECT) has permitted determining the entire energy spectrum of linear attenuation
coefficients (LACs), which, given their complex dependency on photon energy and the
atomic number, have shown to be extremely useful in identifying diverse materials, even if
their ρ and Ze f f are close.

In the case of DECT, for each voxel of the considered section, there are two different
values of the LAC corresponding to the two involved energies necessary to simultaneously
determine Ze f f and ρ. On the contrary, the use of multiple energy has presented the advan-
tage of a better resolution concerning Ze f f and ρ, which significantly increases the ability of
MSCT to differentiate elements whose parameters are relatively closer. On the other hand,
the number of photons per energy bin decreases with increasing the bin numbers, which, in
turn, increases the quantum noise. To maintain a good spatial and discriminant resolution
by keeping, at the same time, both the acquisition and processing time reasonably low,
more techniques were elaborated to reduce the number of projections [21,22] or to find new
algorithms [6,23,24].

In this regard, the use of neural networks (NNs) has brought impressive improvements
for object and material identification [25,26]. Once well trained, a neural network can, in
this particular case of CT, significantly increase the image quality by reducing the noise,
optimizing the contrast, or better evidencing the contours [27,28]. To accomplish this task,
the NN should be trained by processing a significant number of images, which, in our
case, could be accomplished by using more samples consisting of known materials, such as
explosive simulants, cosmetics, various organic compounds, etc.

In spite of remarkable performances in identifying a large category of materials, due
to the simultaneous use of a great number of energy bins, the processing time sometimes
exceeds a reasonable value, thus reducing the number of objects that can be examined in a
considered time interval.

Under these circumstances, the main task of this project consisted of the elaboration of a
novel, faster MSCT volumetric reconstruction method that serves as the basis for a rapid and
non-invasive system to evidence the presence of prohibited materials, especially explosives,
based on the real-time determination of both Ze f f and ρ values of controlled items.

In order to perform this task, it was necessary to: i. elaborate a procedure to compen-
sate for the beam hardening and other effects that may alter the energy dependency of
the LAC in the domain of 20–160 keV used for X-ray CT; ii. develop a 3D reconstruction
method that can deliver the accurate results needed for material identification while using a
reduced number of projections and having a low computation time, such that it can be used
in a production environment; iii. refine the state-of-art iterative reconstruction algorithms
presented in [21,23] to ensure a faster convergence that permits, by analysing the corrected
LAC multi-energy spectra, the simultaneous determination of both Ze f f and ρ values.

It is worth mentioning that, for a higher accuracy and precision, we used the LAC
published by the National Institute of Sciences and Technologies (NIST) https://physics.
nist.gov/PhysRefData/XrayMassCoef/tab4.html (accessed on 12 January 2023).

The results of this project will be further presented and discussed.

https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
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2. Materials and Methods
2.1. Samples

To obtain more data necessary to elaborate a reliable set of correction, we have con-
structed five staircases shaped test-pieces made of Certified Reference Material (CRM)
Polyethylene terephthalate (PET), Polytetrafluoroethylene (PTFE), Polyethylene (PE), and
Polyvinyl-chloride (PVC), as well as Al. PE, PTFE, PER, PBC, and PVC thicknesses ranged
from 10 mm to 100 mm in 10 mm steps, while the Al sample have only six steps of which
thickness varied between 2.8 and 51.9 mm (Table 1). The accuracy and precision of our algo-
rithms was checked using the explosive simulants PA12, XM03X, XM04X1, and XM08X, all
of them provided by XM Materials http://www.xm-materials.com/xray_equivalency.html
(accessed on 12 January 2023).

Table 1. Ze f f and ρ values of chosen CRM used for calibration.

CRM Ze f f ρ (g/cm3)

PET 5.65 1.38
PTFE 7.30 1.45
PVC 9.20 1.37
PPH 7.60 0.91
Al 13 2.70

2.2. Computed Tomograph

We have used a home-made Computed Tomograph (CT) provided with a tung-
sten cathode microfocus Gilardoni AION X-ray source (Gilardoni S.p.A.), https://www.
gilardoni.it/en/company/ (accessed on 10 January 2023) operating under 150 kV acceler-
ation voltage and 0.5 mA current and a classic transmission set-up (Figure 1a). Samples
were placed on a rotary table permitting also to adjust their vertical position with respect
to the X-ray fan beam, so that to scan different slices. The distances source-rotation center
and source-detector were of 315 mm and, respectively, of 687 mm, assuring a magnification
of approximately 2.2. Five in-line MultiX ME-100TM detectors, (Detection Technology
Plc., Oulu, Finland), https://www.deetee.com/company/ (accessed on 10 January 2023),
each of them consisting of 128 pixels of 0.8 × 0.8 mm2 configured by manufacturer with
64 equal-energy bins of 2.2 keV, were used (Figure 1b,c). This arrangement covering an
energy range from 20 keV to 150 keV matched the entire generator energy spectrum, per-
mitting a simultaneous acquisition in 23 min of 64 sets of 36 projections corresponding to
each energy bin. Under these circumstances, finally resulted 640 × 4000 pixels images at
an optical resolution of 64 dpi. The chosen number of projections represented a trade off
between the quality of reconstructed images and acquisition time, so that the real error in
determining both Ze f f and ρ to be less than 3%.

Data acquisition was performed using a Detector Technology Plc. software while
LabVIEWTM programs (National Instruments, Austin, TX, USA), https://www.ni.com/ro-
ro.html (accessed on 12 January 2023) was used to adjust the sample vertical positioning,
perform the incremental rotations, as well as other operations.

2.3. Linear Attenuation Coefficient Corrections

As mentioned before, given the complex dependence of LAC on atomic number and
photons energy, as well as different perturbative effects which imply the interaction of
incident X-ray with sample and detectors, the LAC energy dependency different from the
expected ones as those provided by NIST. In this regard, potential cross-talk and charge
sharing between neighbouring detectors, pulse pile-up or incomplete charge collecting
together with the Compton scattering and local X-ray fluorescence radiation at the detectors
level or beam hardening effect [29] at the sample level make the attenuation no longer
obeying an exponential decay function of material thickness.

http://www.xm-materials.com/xray_equivalency.html
https://www.gilardoni.it/en/company/
https://www.gilardoni.it/en/company/
https://www.deetee.com/company/
https://www.ni.com/ro-ro.html
https://www.ni.com/ro-ro.html
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c
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Figure 1. The CT setup (a), the experimental 83.6 keV X-ray spectrum as recorded by the MultiX
ME-100TM detector (b) and a 83.6 keV experimental image of the PET test piece (c).

To correct these, using the NIST data, we have calculated, for each segment of test-
sample, 64 values of the LAC following the exponential attenuation law:

µij =
1
l

n
I0

Iij
(1)

where µij represents the LAC corresponding to object length xi and energy j for each bin
between 20 to 160 keV, I0 and Iij represents the intensity of incident and emergent photons
beam as measured on transmitting geometry.

The influence of scanned area on LAC values was reduced by manually selecting the
region of interest for each image.

Due to the fact that resulted LAC experimental spectra showed significant differences
with respect to the NIST ones, we have calculated for each energy bin and each material
thickness a correction coefficient:

dij =
µNIST,i,j

µmeas,i,j
(2)

where µNIST,i,j and µmeas,i,j represents the experimental and, respectively, the NIST values
of the considered material thickness i and energy j.

The calibration was executed using the LAC of PET, PTFE, and PE, while all five
samples were used to evaluate the correction quality. Further, by using a smoothing spline
interpolation, we have calculated for each energy bin a correction set of values to be used
for further scans. The resulting spline curve was resampled at a smaller rate to reduce
the computing time. As a result, the energy dependence of LAC has gained a remarkable
resemblance with the NIST data, especially in the case of PET, PTFE, and PE, as the bi-plots
reproduced in Figures A1 and A2 illustrate. These observations were confirmed by an
ANOVA multi-sample Mann–Whitney which has shown that the best fit was realized
for materials consisting of light elements H, C, N, and F, while the presence of heavier
Al (Z = 13) and especially Cl (Z = 17) reduced the probability the corrected dependencies to
be closer to NIST values, which according to (Table A1) was zero. In our opinion, this result
reflects the predominance of photoelectric in the case of higher atomic number elements at
X-ray energies below 35–40 keV (Figures A1 and A2).
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All data calibration and correction steps were performed using the MATLAB environ-
ment, using the existing data fitting tools while statistical analysis was performed by PAST
4.09 freeware [30].

3. Materials Reconstruction

The second stage of this project consisted of developing fast 3D reconstruction method
needed for an accurate material identification based on a reduced number of projections.

In this regard, the inverse problem of finding the volumetric reconstruction given
a set of CT projections consists in determining the optimal values of the voxels volume
such that the error between the forward projection through the volume and the acquired
sinograms reaches a minimum. Depending on the number of projections and preliminary
knowledge on the reconstructed volume, there are multiple ways of approaching this
problem. Our proposed implementation relies on an iterative method for approximating
the voxel values based on the forward projection error. Using an adjustable scaling factor
for the data corrections, as well as an adaptive threshold based on the reconstruction
stage, we were able to achieve convergence with considerably fewer iterations compared to
similar algorithms. Since we are working with multi-spectral images, our method will also
include a data regularization routine for using information from other energy bands, based
on the gradient’s correlation across the acquired energy spectrum.

3.1. Mathematical Formulation

Let u ∈ RM×N , where um,n is the m-th pixel from the reconstructed image correspond-
ing to the n-th energy bin, A represents the forward projection operator through u, while
p ∈ RN×K, where pn is the sinogram corresponding to the i-th energy bin. The data fitting
problem of reconstructing the images aims to minimize the error ‖Au− p‖2.

However, this type of solver reconstructs each image separately, not taking advantage
of the known similarities that exist between the images at different energies. To address
this issue, we introduce a data regularization scheme L∞ − VTV to the mathematical
formulation of the problem. This regularization parameter represents the sum of the
maximum of the gradients of a multiple channel image. This norm correlates the gradients
strongly, while allowing some outliers. A weighting parameter is used to balance the two
terms when solving the minimization problem and represents the trade-off between the
data misfit term and the regularization term [31].

The reconstruction problem can now be expressed as:

min
u>0

λ
1
2
‖Au− p‖2 +

M

∑
m=1

[
max

16i6N

∂

∂x
ui,m + max

16i6N

∂

∂y
ui,m

]
(3)

3.2. Reconstruction Implementation

In practice, we are using an iterative algorithm to approximate the solution to the
minimization problem. Prior to the reconstruction phase, the scanning system’s geometry
was calculated, so we know through which voxel each X-ray passes, as well as the corre-
sponding path length. The number of rays was calculated as the detector pixels number
multiplied by the number of projections. In this arrangement it was necessary to compute
the geometry once, since it is the same for all reconstructions. Each voxel has a size of
2 × 2 mm2, a parameter which can be set in the geometry generation algorithm. To calcu-
late the scanning setup’s geometry, the reconstruction area was divided into equally sized
squares, defined by a grid of equal spaced parallel and perpendicular lines. By knowing
the coordinates of the X-ray source and of every detector pixel, we can determine where
the ray intersects each of the lines defining our reconstruction grid.

From these coordinates, we can then determine the pixel indices intersected by a
specific ray and the ray length through it (Figure 2). This path tracing method is an
implementation adapted from Siddon’s algorithm [32]. Given the nature of this algorithm,
it is easily scaled to benefit from multiple processor threads, thus reducing the computing
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time and taking full advantage of available resources. In our application, however, the
geometry data can be computed in advance, and it need only to be loaded from disk for
the reconstruction step. However, the geometry parameters, such as source to detector
distances, detector panel angles, and spacing, need to be finely adjusted to account for
measurement and construction errors in the physical setup.

Figure 2. The simplified geometry of projects acquisition. The grey nuances can be correlated with
the length of X-ray beam through each voxel.

3.3. Direct Data Fitting Term

For each reconstruction iteration, we have iterated through the array of computed
rays r, and for each ray ri, we have calculated the forward projection through that ray,
and compared it with the corresponding sinogram pixel pn,i, n being the current energy
bin. The correction thus calculated were distributed to all pixels the ray passes through,
according to each pixel’s weight. The weights are either constant for all pixels or depend
on the ray’s length through them. The decisive factor in calculating these weights is how
far we are in the reconstruction process. Accordingly, the first two iterations gave constant
weights, then they will be changed for better data fidelity. This process, independently
repeated for each energy bin, represents the first part of the minimization problem.

Since the process is identical and independent for all energy bins, further we will
restrain to one energy bin. Let lm = 1.13l be the length of the m-th ray through m-th voxel
µm the LAC of the m-th pixel and L the total length of the ray through the object. The
sinogram value corresponding to ray ri is ui. The forward projection through the ray is
µtotal = ∑N

m=1 lm · µm, N being the number of voxels crossed by the m-th ray while the error
ei = pi − µtotal is such that the corrected value for the m pixel becomes: µ

q+1
m = uq

m + k·e·lm
L .

Here, the value k represents the gain/relaxation factor which is used to prevent overshoots
too big in the process estimation. In our implementation, the amplification factor decreases
from 1.5 to 1.0 over the all 11 iterations. This allows significant changes at the process
beginning followed by a reduction in corrections magnitude, ensuring in this way the
convergence. Before updating the reconstructed image, an adaptive threshold was applied
to the modified pixels to eliminate values which are too small. The threshold is calculated
as a lower percentage of the range of the pixels’ values. The percentage is changed every
few iterations and is defined at run time, just like the amplification factor.

In this regard, as this part of the reconstruction is performed independently for each
energy bin, the computations can be performed in parallel to increase performance. In our
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experiments, the reconstruction time was reduced between 9 and 10 times when running
the reconstruction in parallel, rather than doing them sequentially. This improvement was
observed on a consumer personal computer, so the use of a high-performance workstation
may not be necessary.

3.4. Data Regularization Term

After the independent data fitting step is over, the images for every energy bin are
processed together by a regularization algorithm. The best results were obtained using the
Duran’s implementation of the Lm −VTV algorithm [33] of which ANSI C source code is
provided either.

The algorithm computes the image gradients in the x and y directions for each energy
bin independently, then penalizes the maximal gradients difference across the spectrum
by adjusting the pixel values to decrease the gradient value in that spot. In this way, the
high9 gradient discrepancies are adjusted such that the multi-spectral images present a
strong coupling between gradients. This procedure permits smaller gradients to be sensitive
to energy bins, which is desirable, since materials interact differently with incident rays at
different energies.

4. Results

The reconstruction algorithm was implemented in C++, configuring the data fitting
computation to run in parallel, one thread for each energy bin image. In our test, we
achieved convergence in roughly 15 iterations, so that any further iterations did not produce
significant improvements (Figure 3a).

As mentioned before, the first four iterations determined the most important reduction
in the correction factor. However, even though there are no major changes in image pixels
after the fourth iteration, they should continue to refine object contours. Figure 3b presents
the corresponding reconstruction after 11 iterations. To illustrate the capability of our
algorithm to produce clear margins on interfaces between materials, we have scanned a
sample consists of two stair-shaped objects of different materials joined together (Figure 3b).

Figure 3. Average pixel change for each iteration, showing convergence after 11 steps (a) and the
resulted image after 11 iteration of two joined objects evidencing a boundaries between materials (b).

The procedure showed to be very fast. Usually, for 64 sinograms, each of them with a
width of 640 pixels and a height of 36 pixel which correspond to 36 projections finally it
resulted 64 reconstructed images of 300 × 300 pixels, one image for each energy bin. Below
we provide the program execution metrics averaged over 40 runs with input and output
images of the same size as mentioned above. The tests were performed on a computer
equipped with an AMD Ryzen 5 2600 CPU (Advanced Micro Devices, Inc., Santa Clara,
California, US), https://www.amd.com/en (accessed on 14 February 2023) and 32 GB of
3000 MHz DDR4 RAM resulted in a 23.3 s total execution time (Table 1).

https://www.amd.com/en
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5. Discussion
5.1. System Calibration

As the final goal of this study consisted of material identification with as low as possi-
ble false results, we have used a simplified equation which describes the energy dependence
of LAC µ(E) upon the Ze f f and ρ of a specific material [34]. In this regard, Equation (4)
describes the relation between the LAC and the material properties by considering only
photoelectric and Compton incoherent scattering:

µ(E) = p
[

Zn−1
e f f · p(E) + c(E)

]
(4)

where: p(E) and c(E) are two parameters which quantify the contribution of photoelectric
and Compton effects, and of which values depends only on the photon energy while 3 < n < 4.

To check the program performances, we have selected, as mentioned before, 5 CRM
with known Ze f f as well as ρ values for calibration (Table 1) and 5 other different materials
for validation (Table 2).

Table 2. The execution metric for 40 runs which generated 64 images of 300 × 300 pixels.

Total Execution Time (s) RAM Usage Average CPU Usage

23.37 1.33 GB 88%

For calibration, we have determined the experimental LAC values for each material
and for each energy bin on the reconstructed CT images, by following the procedure
previously described. Accordingly, the reconstruction for each material started from a stack
of its 64 single channel images, each of them with a size of 300 × 300 pixels. An automated
process of thresholding and erosion was used to isolate the Region of Interest (RoI), which
once selected was used for all images corresponding to each of the 64 energies. The erosion
step was necessary to select the relevant attenuation coefficients, since the object bordering
pixels have lower values. Further, for each CRM and each image, the pixel values were
averaged inside of each ROI to estimate the LAC average values. Finally, this procedure
generated a 5 × 64 LAC attenuation matrix.

The LAC attenuation matrix were used to calculate, using a least squares approxima-
tion, the numerical values of the p(E) and c(E) parameters of which values were further
considered identical for all materials. Thus obtained values of p(E) and c(E) were used to
determine both Ze f f and ρ values of the other 5 elements based also on the reconstructed
CT images, as in the case of CRMs (Table 3).

Table 3. The Speraman’s correlation coefficient as well as the probabilities the reconstructed CT
image to be similar to Jumanzarov et al. [22] and van Aarle et al. [35] consistent with Tukey’s Q,
Mann–Whitney and Dunnett post hoc tests.

Spearman’s ρ Tukey’s Q Mann-Whitney Dunnett

Literature Present Work Present Work Present Work Present Work

[22] 0.87 0.53 0.59 0.67
[35] 0.76 0.00 0.1 0.01

Fore an easier matrix representation, the LAC were rewritten as:

µm,k = pm
[
Zm

n−1 · pk + ck
]

(5)
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where m represents the material index whereas k stays the energy bin index, by considering
M materials and K energy bins.

Computing the optimal p and c arrays means minimizing the following objective function:

K

∑
k=1

M

∑
m=1

[
µm,k−ρm

(
Zn−1

m · pl + ck

)]
(6)

To solve Equation (6) it can either fit the exponential term n, which it needs to use a non-
linear least squares solver or to use a fixed n and solve it for p and c using a linear method.

In this case, we have used a fixed n = 3.0 and solved the minimization problem by using
MATLAB’s function lsqnonlin (https://www.mathworks.com/help/optim/ug/lsqnonlin.
html) (accessed on 10 January 2023).

Other proposed methods involved an initial nonlinear calibration, then, using for
n parameter a fixed value determined by the first calibration to perform a second linear
calibration to estimate p and c.

To illustrate the performances of our method, we have reconstructed the image of
a reference sample (Figure 4a) using our algorithm (Figure 4b), Jumanzarov et al. [22]
(Figure 4c), as well as van Aarle et al. [35] ones (Figure 4d) of which reconstructing time
are presented in Table 3. The resulted CT images reproduced in Figure 4b–d show a
significant resemblance. In spite of this, for a more objective characterization of their
similarity, we have compared images histograms (Figure 5), by using more numerical
tests, e.g., Spearman’s correlation coefficient ρ, Tuckey’s Q, Mann–Whitney as well as
Dunnett post hoc tests. These results, reproduced in Table 4, point towards a significant
resemblance between present work algorithm and the Jumanzarov et al. [22] one, as the
image histograms reproduced in (Figure 5) show.

Figure 4. The sample object (a), as well as its reconstructed CT image using present work algorithm
(b), as well as the Jumanzarov et al. [22] (c) and van Aarle et al. [35] ones (d).

https://www.mathworks.com/help/optim/ug/lsqnonlin.html
https://www.mathworks.com/help/optim/ug/lsqnonlin.html
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Jumanzarov et al. 2022

van Aarle et al. 2016

Present work

Figure 5. The histograms of CT images reproduced in Figure 4, e.g., present work algorithm
(Figure 4b), Jumanzarov et al. [22] (Figure 4c) and van Aarle et al. [35] (Figure 4d).

5.2. Effective Atomic Number and Density Calculation

Once the system calibrated, it was possible, by using the experimentally determinated
LACs, values to calculate both Ze f f and ρ values by solving the following equation:

p1 c1
. .
. .
. .

p64 c64


(

µ

ρ

)
=


µ1
.
.
.

µ64

 (7)

This was performed by using a linear least squares solver to approximate the best
solution for the system, in this case the MATLAB lsqnonneg (https://www.mathworks.
com/help/optim/ug/lsqnonneg.html) (accessed on 10 January 2023) routine. Once the
atomic number Z and density ρ are determined, the Ze f f values were calculated using the
relation (8) derived from Equations (5) and (7):

Ze f f =

(
Z
ρ

) 1
n−1

(8)

5.3. Material Identification

For calibration, we used five materials with atomic numbers between 7.2 and 9.8 and
densities between 0.61 and 1.45 g/cm3, e.g., PPH (Polypropylene), as well as four explosive
simulants XM05X, XM06X, XM11GEX, and XM15X (https://www.officer.com/home/
company/10031153/xm-nestt-div-of-van-aken) (accessed on 10 January 2023) (Table 2).

The proposed method of material identification presented and discussed before
was validated by means of another five different materials, i.e., water, PA12 (polyamide
12 known as nylon 12), and explosive simulants XM03X, XM04X1, and XM08X of which
certified as well as experimentally determined effective atomic numbers and densities
(in g/cm3) are presented in Table 2. For all of them we have achieved a relative error of
under 3% for both Ze f f and ρ values which means that, thus, experimentally determined
parameters could be considered coincident with the certified one at p < 0.05.

https://www.mathworks.com/help/optim/ug/lsqnonneg.html
https://www.mathworks.com/help/optim/ug/lsqnonneg.html
https://www.officer.com/home/company/10031153/xm-nestt-div-of-van-aken
https://www.officer.com/home/company/10031153/xm-nestt-div-of-van-aken
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The final results of concerning densities and effective atomic numbers of water, PA12,
and explosive simulants XM03X, XM04X1, and XM08X are illustrated in Figure 6a,b. At
can be remarked, a good identification with respect to provided data was noticed for
all investigated materials, but when considered the reciprocal differences, XM023 and
PA12 appear almost identical. At the same time, using ANOVA Student (same mean) and
Wilcoxon (same median) tests, the best concordance between certified and determined
values of PA12, and explosive simulants XM03X, XM04X1, and XM08X was attained for the
effective atomic numbers (Table 4).

Certified
Experimentally   
     determined 

Certified
Experimentally
      determined 

Figure 6. The certified and experimentally determined density values (a) and effective atomic number
(b) of water, PA12 (polyamide 12 known as nylon 12), and explosive simulants XM03X, XM04X1, as
well as XM08X.

Table 4. The effective atomic number, density (in gcm−3) of the materials used for validation, as
well as the probability, the experimentally, and the calibrated parameters to be the same according to
Student t (same mean) and Wilcoxon (same median) tests. The relative error in determining both
parameters is expressed in %.

Material Ze f f
Certified

Ze f f
Experi-
mental

Relative
Error

Density
Certified

Density
Experi-
mental

Relative
Error

Water 7.42 7.64 2.94 1.00 1.03 2.98
PA12 7.20 6.99 −2.87 1.02 1.01 −1.11

XM03X 7.20 7.28 1.07 1.68 1.64 −2.65
XM04X1 7.30 7.26 −0.56 1.47 1.50 2.04
XM08X 7.50 7.28 −2.94 1.00 1.03 2.98

t-test same mean 0.81 0.62
Wilcoxon

test
same

median 0.87 0.81

6. Conclusions

Given the final goal to develop a rapid and reliable procedure to identify presumed
explosives or other sensitive materials based on multi-spectral computed tomography
(MSCT), it was necessary to go through the following stages:

• To elaborate a technique to compensate for beam hardening and other non-linear ef-
fects which could natively influence the energy dependency of the Linear Attenuation
Coefficient (LAC) between 20 and 160 keV, i.e., the energy domain currently utilized
in the X-ray MSCT;

• To develop a 3D fast reconstruction algorithm able to furnish confident results con-
cerning the local LAC values corresponding to each utilized energy bin, i.e., 64 values
from 19.8 to 158.4 keV;
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• To create a set of algorithms permitting a simultaneous determination of density and
the affective atomic number of investigated materials.

In view of these commandments, it was possible to determine both density and
effective atomic number of complex objects in less than 24 s, with accuracy and precision less
than 3%, a significantly better performance with respect to the reported literature values.
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Abbreviations
The following abbreviations are used in this manuscript:

CPU Central Processing Unit
CT Computed Tomography
CRM Certified Reference Material
LAC Linear Attenuation Coefficient
MSCT Multy-Spectral Computed Tomography
Polyethylene PE
Polyethylene terphtalate PET
Polytetrafluoroethylene PTFE
Polyvinyl-chloride PVC

Appendix A

Table A1. The results of a Mann–Whitney ANOVA test showing for each material thickness the
probabilities LAC to be closer to NIST one, before (*) and after (**) recalculation. Thickness (in bold)
expressed in mm.

Material 10 20 30 40 50 60 70 80 90 100

PET * 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.24 0.44
PET ** 0.74 0.54 0.48 0.45 0.45 0.46 0.46 0.47 0.50 0.52
PTFE * 0.00 0.00 0.02 0.08 0.27 0.58 0.94 0.74 0.52 0.38
PTFE ** 0.16 0.29 0.37 0.42 0.48 0.52 0.53 0.56 0.60 0.71

PE * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PE ** 0.08 0.35 0.45 0.51 0.66 0.71 0.76 0.81 0.83 0.84
PVC * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PVC ** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Material 0.84 2.80 7.65 21.60 31.50 41.60 51.90

Al * 0.56 0.63 0.69 0.02 0.01 0.01 0.01
Al ** 0.56 0.63 0.69 0.02 0.01 0.01 0.01
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Figure A1. The experimentally determined LAC of Polyethylene terephthalate (PET) (a), Polyte-
trafluoroethylene (PTFE) (c) and Polyethylene (PE) (e) and the same values after recalibration (b,d,f).
For comparison the corresponding National Institute for Standards and Technology (NIST) certified
values were plotted.

Figure A2. The experimentally determined LAC of Polyvinylchloride (PVC) (a) and Aluminum (Al)
(c) and the same values after recalibration (b,d). For comparison, the corresponding National Institute
for Standards and Technology (NIST) certified values were plotted.
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