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Abstract: A series of bifunctional Schiff base metal catalysts (Zn-NPClR, Zn-NPXH, and M-NPClH)
with two quaternary ammonium groups were prepared for carbon dioxide (CO2) and epoxide
coupling reactions. The effects of the reaction variables on the catalytic activity were systematically
investigated, and the optimal reaction conditions (120 ◦C, 1 MPa CO2, 3 h) were screened. The
performances of different metal-centered catalysts were evaluated, and Co-NPClH showed excellent
activity. This kind of bifunctional catalyst has a wide range of substrate applicability, excellent
stability, and can be reused for more than five runs. A relatively high TOF could reach up to 1416 h−1

with Zn-NPClH as catalyst by adjusting reaction factors. In addition, the kinetic study of the coupling
reaction catalyzed by three catalysts (Zn, Co, and Ni) was carried out to obtain the activation energy
(Ea) for the formation of cyclic carbonates. Finally, a possible mechanism for this cyclization reaction
was proposed.

Keywords: carbon dioxide; bifunctional metal complexes; cyclic carbonate; atmospheric pressure;
activation energy

1. Introduction

Since the industrial revolution, large amounts of CO2 emissions are causing its concen-
tration in the air to increase every year; it is now about 400 ppm (mg/L), leading to a series
of environmental and social problems [1,2]. However, CO2 can be used as a non-toxic,
cheap, easily available, and abundant C1 resource for constructing C-C, C-N, and C-O
bonds to produce high-value chemicals such as carboxylic acids, oxazolidinones, urea,
isocyanates, cyclic carbonates, etc. [3–9]. The synthesis of cyclic carbonates using carbon
dioxide has been extensively studied. One is due to the 100% atomic utilization of the
reaction, and the other is that the products have favorable physicochemical properties such
as environmental friendliness, high boiling point, low odor, and low toxicity, and can be
used as an alternative solvent to the high boiling point polar solvents DMF and DMSO [6].
In addition, cyclic carbonate can be applied to fuel additives, electrolytes for lithium-ion
batteries [10,11], and polycyclic carbonate synthesis [12,13].

The thermodynamic and kinetic inertness of CO2 make its conversion require a large
energy input (e.g., high temperature and pressure), and the search for suitable catalysts is
a focus of research on whether CO2 can be used efficiently [6]. From a mechanistic point
of view, in the synthesis of cyclic carbonates using CO2 and epoxides, catalysts have an
important role in the ring opening of epoxides: (1) acting on the oxygen atom of the ring via
Lewis acid or the formation of hydrogen bonds, and (2) nucleophilic reagents attacking the
carbon atom of the epoxide to promote its ring opening [14]. Based on these presumptions,
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many catalytic systems have been developed for applications in the cycloaddition reactions
of epoxides with carbon dioxide, such as ionic liquids [15–18], N-heterocyclic carbenes
(NHCs) [19], porphyrins [20], organometallic framework materials (MOF) [21], inorganic
catalysts [22], metal complex catalysts [23,24], carboxylic acid compounds [25–27], and
quaternary ammonium salt-based catalysts [28,29].

Based on the need for catalytic systems to have both electrophilic and nucleophilic
centers, various “bifunctional catalysts” have been developed [30–32]. In this paper, a
variety of quaternary ammonium salt-based bifunctional metal catalysts were designed
and synthesized for the cycloaddition reaction of epoxides with carbon dioxide (Scheme 1).
The results show that such bifunctional catalysts can effectively promote the formation of
cyclic carbonate from epoxide and CO2 at low catalyst loadings (1 mol%) and relatively
mild conditions (atmospheric pressure). In addition, since the reaction is heterogeneously
catalyzed, catalyst recycling is simple and convenient. The catalyst recycling experiments
and IR analysis of the catalysts showed that the prepared bifunctional catalysts can be
effectively recycled five times without deactivation.
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Scheme 1. Cycloaddition of CO2 to epoxides with bifunctional quaternary ammonium metal com-
plexes as catalysts.

2. Materials and Methods
2.1. Chemicals and Analytical Methods

The information on materials is listed in Table S1: Provenance and mass fraction
purity of the materials. All the chemicals were used as received except for the epoxides,
which were purified by distillation from CaH2 before utilization. The general procedure
for the cycloaddition of CO2 to epoxides and spectra copies of all synthesized complexes
and carbonate products are provided in the Supporting Information (SI). The yield and
selectivity are determined by 1H NMR characterization.

2.2. Synthesis of Quaternary Ammonium Modified Metal Complexes Zn-NPClR, Zn-NPXH,
M-NPClH

The synthetic route for catalysts is shown in Scheme 2.

2.2.1. Synthesis of 5-Chloromethyl Salicylaldehyde (PX, NPX)

The ligand precursors PX and NPX (X = Cl, Br, I) were prepared and characterized
according to the method reported by Ji et al. (Scheme 2) [33,34]. For comparison, a complex
C0 was synthesized as a non-bifunctional catalyst.

2.2.2. General Procedure for Synthesis of Quaternary Ammonium Modified Metal
Complexes Zn-NPClR, Zn-NPXH

To a 100 mL dry round-bottom flask equipped with a magnetic stir bar, an ethanol
solution (20 mL) of quaternary ammonium modified salicylaldehyde NPX (0.01186 mol)
and an ethanol solution (10 mL) of 0.01533 mol amine C6H6R (R = H, Cl, NO3, CH3, C4H9)
were added sequentially. The obtained mixture was heated and refluxed for 4 h. Then zinc
acetate anhydrous (7.74 mmol) was added to the mixture. After another 6 h reflux, a large
amount of precipitates were obtained. These precipitates were filtered and washed with
ethanol several times, then dried in vacuum to obtain quaternary ammonium-modified
salicylaldehyde-zinc catalysts. Details of these complexes are shown in SI.
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Scheme 2. Synthesis of the quaternary ammonium catalysts.

2.2.3. Synthesis of Other Metal Center (Cobalt, Plumbum, Nickel, Copper)
Complexes M-NPClH

Following the procedure of Zn-NPClH, we have also prepared different metal-centered
quaternary ammonium salt complexes using other metal salts (cobalt chloride hexahydrate,
lead acetate, nickel chloride hexahydrate, copper chloride dihydrate). The physicochemical
information of these complexes is shown in Supporting Information.

2.3. Catalytic Performance for CO2/Epoxide Cycloaddition Reaction

The cycloaddition reaction of CO2 and epoxide was conducted in a 50 mL stainless steel
autoclave. The required catalyst and epoxide were added, and then CO2 was pressurized
into the reactor at a certain pressure. The autoclave was immersed in an oil bath at a preset
temperature, with stirring. After a proper time, the autoclave was cooled down to room
temperature and then vented slowly. The resulting mixture was analyzed by 1H NMR to
give the yield and the selectivity.

3. Results and Discussion
3.1. The Effect of Time on Cycloaddition of Propylene Oxide (PO) and CO2

To optimize the reaction conditions for the cyclization reaction of epoxide and carbon
dioxide, Zn-NPClH was used as a catalyst and PO as a substrate. The effect of time on the
reaction was investigated at 120 ◦C and 1 MPa CO2, as shown in Figure 1A. The propylene
carbonate (PC) content increased steeply with time, reaching 3 h. It is obvious that within
the initial 3 h, both the reaction rate and the PC yield increased rapidly. After 3 h, the PC
yield still increased, but not as dramatically as before. The possible reason is that as the
reaction proceeds, the PC concentration increases and the PO concentration decreases; in
addition, the generated PC increases the viscosity of the system, which leads to a reduced
opportunity for contact between the catalytically active site and the reaction substrate [35].
Therefore, 3 h was chosen as the optimal reaction time.
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Figure 1. Effects of different reaction parameters on PC yield. (A) Reaction time effect on PC yield:
PO (10 mL,0.143 mol), catalyst Zn-NPClH (1.43 mmol,1 mol%), T = 120 ◦C, P = 1 MPa; (B) Reaction
temperature effect on PC yield: PO (10 mL, 0.143 mol), catalyst Zn-NPClH (1.43 mmol, 1 mol%),
t = 3 h, P = 1 MPa; (C) CO2 pressure effect on PC yield: PO (10 mL, 0.143 mol), catalyst Zn-NPClH
(1.43 mmol,1 mol%), t = 3 h, T = 120 ◦C; (D) The mole ratio of PO to catalyst effect on PC yield: PO
(10 mL, 0.143 mol), catalyst Zn-NPClH (1.43 mmol), t = 3 h, T = 120 ◦C, P = 1 MPa. The selectivity of
PC was >99%.

3.2. The Effect of Temperature on Cycloaddition of PO and CO2

The PC yield was low at 100 ◦C (Figure 1B), while increasing the temperature greatly
improved the catalytic activity, which confirms the fact that the temperature has a sig-
nificant effect on the reaction activity, and the fact that a high temperature can promote
the PO conversion also indicates that this cycloaddition reaction is thermodynamically
favorable [36–38]. When the temperature was increased from 100 ◦C to 120 ◦C, the PC yield
increased steeply from 16% to 93%, but there was no significant change in the PC yield
when the temperature was continued to increase to 140 ◦C (Figure 1B). This is because
the cycloaddition reaction of CO2 and PO is exothermic, so too high a temperature will
hinder the formation of cyclic carbonate. In addition, high temperatures will also lead
to the polymerization of cyclic carbonate [39,40]. Based on the above study, 120 ◦C was
chosen as the optimal reaction temperature.

3.3. The Effect of CO2 Pressure on Cycloaddition of PO and CO2

CO2 pressure affects the mass transfer kinetics of this cycloaddition reaction as well
as the yield and selectivity of PC [41], so the relationship between pressure and yield was
explored in the range of 0.5–5 MPa (Figure 1C). The yield of PC increased from 35% to
96%when the pressure was increased from 0.5 MPa to 1 MPa and decreased slightly to
94% when the pressure was continually increased to 2 MPa. Further raising the reaction
pressure to 3 MPa and 5 MPa, the PC yield lowered to 73% and 66%, respectively. The
increase in pressure makes the concentration of CO2 in PO higher, which promotes the
reaction. However, too high pressure will reduce the concentration of PO in the vicinity of
the catalyst, which will bring down the catalytic activity and thus reduce the reaction rate
and the PC yield [42,43]. Experimental results show that the optimal CO2 pressure for this
reaction is 1 MPa.
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3.4. The Effect of the Ratio of PO to Catalyst on Cycloaddition of PO and CO2

Figure 1D shows the effect of catalyst loadings on PC yield at 120 ◦C and 1 MPa CO2.
When the amount of catalyst was varied from 0.1 to 1 mol%, the PC yield dramatically
improved from 10.2% to 93.2%. As the catalyst dosage increases, more catalytic active
centers can be supplied to the catalytic system, so the PC yield is significantly increased [44].
However, further increasing the amount of the catalyst cannot lead to a big increase in the
yield of carbonate; this may be due to the fact that the presence of excess catalyst makes
its dispersion low in the system, thus hindering mass transfer between the catalyst active
center and the reactants [45,46]. Therefore, the optimal ratio of catalyst to PO is 1:100.

3.5. Cycloaddition of CO2 to PO by Various Bifunctional Catalysts

The catalytic performances of various bifunctional catalysts were investigated for
the cycloaddition reaction of PO and CO2 under optimal conditions (120 ◦C, 1 MPa, 3 h,
1:100). The corresponding results were summarized in Table 1. With the non-bifunctional
complex C0 or Et3N as the sole catalyst, very low activity was observed (Table 1, entries
1,2). Using TBAC/Et3N or C0/Et3N as two-component catalysts, the catalytic activity was
clearly improved (Table 1, entries 4,5). However, under the same conditions, a high yield of
93.2% was obtained using a quaternary ammonium salt bifunctional complex of Zn-NPClH
as the catalyst (Table 1, entry 6). The electron effect of different substituents on ligands
can affect the catalytic activity, so the effect of different ligands with electron-donating
or electron-withdrawing substituents on the catalytic results was investigated. Under
the same condition, the catalytic activity of the catalyst differs as follows: Zn-NPClNO2
> Zn-NPClCl > Zn-NPClH > Zn-NPClCH3 > Zn-NPClC4H9 (-NO2 > -Cl > -H > -CH3 >
-C4H9) (Table 1, entries 6–10). This result demonstrates that the catalytic effect was related
to the electronegativity of the substituents on the catalyst, and catalysts with a strong
electron-withdrawing substituent showed better catalytic activity. It could be attributed
to the ability of the strong withdrawing substituent, which can reduce the electron cloud
density of the metal complexes and enhance their Lewis acidity. We also studied the effect
of different metal centers in coordination compounds on catalytic activity (Table 1, entries
6,11–14). The results showed that cobalt, zinc, lead, and nickel metal center complexes
have relatively good catalytic activity but poor activity for the copper center; the activity
order is Co-NPClH > Zn-NPClH > Pb-NPClH > Ni-NPClH > Cu-NPClH (Co > Zn > Pb
> Ni > Cu). The catalytic activity of different metal centers is highly dependent on the
metal center type, which may be related to the different coordination abilities of metal
centers with PO, while the low activity of bifunctional complexes with Cu metal centers
may be attributed to the low acidity of Cu centers [47,48]. The anion plays an important
role in the reaction of the epoxide with CO2 by nucleophilically attacking the epoxide
to form a C-X bond to open its ring, so the anion species are screened. Accordingly, the
more easily departed anion exhibits the best catalytic effect, which is consistent with the
experimental results: I− > Br− > Cl− (Table 1, entries6, 15, 16). To our delight, by adjusting
reaction factors (0.1 mol% Zn-NPClH, 150 ◦C, 0.5 h), a relatively high TOF could reach up
to 1416 h−1 with Zn-NPClH as catalyst (Table 1, entry 17).

3.6. Study of Catalytic Performance at Atmospheric Pressure

The catalytic activity of these bifunctional catalysts at atmospheric pressure has also
been studied to meet the needs of sustainable development and green industrialization.
The cycloaddition reaction of CO2 with isopropyl glycidyl ether was used as a model
reaction to study the catalytic activity of the bifunctional metal catalysts M-NPClH at
0.1 MPa (Figure 2). All catalysts showed good to excellent activity. Overall, the order of
catalytic activity of different metals at atmospheric pressure was consistent with that at high
pressure: Co-NPClH > Zn-NPClH > Pb-NPClH > Ni-NPClH > Cu-NPClH. Zn-NPClH,
Co-NPClH, Pb-NPClH, and Ni-NPClH all catalyzed glycidyl isopropyl ether better, with
the catalyst Co-NPClH reaching 96.4% yield after 14 h of continuous reaction.
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Table 1. Effect of different kinds of catalyst systems on the coupling of CO2 with PO a.

Entry Catalyst Yield (%) b TON c TOF (h−1) d Selectivity (%) b

1 C0 2.5 2.5 0.8 >99
2 Et3N 0.6 0.6 0.2 >99
3 TBAC 20.3 20.3 6.8 >99
4 TBAC/Et3N 40.4 40.4 13.5 >99
5 C0/Et3N 68.8 68.8 22.9 >99
6 Zn-NPClH 93.2 93.2 31.1 >99
7 Zn-NPClCl 95.4 95.4 31.8 >99
8 Zn-NPClNO2 96.9 96.9 32.3 >99
9 Zn-NPClCH3 90.8 90.8 30.3 >99

10 Zn-NPClC4H9 89.5 89.5 29.8 >99
11 Co-NPClH 98.6 98.6 32.9 >99
12 Pb-NPClH 89.0 89.0 29.7 >99
13 Ni-NPClH 83.3 83.3 27.8 >99
14 Cu-NPClH 61.2 61.2 20.4 >99
15 Zn-NPBrH 95.6 95.6 31.9 >99
16 Zn-NPIH 96.3 96.3 32.1 >99

17 e Zn-NPClH 70.8 708 1416 98
a Reaction conditions: PO (10 mL, 0.143 mol), Catalyst loading = 1 mol%, t = 3 h, T = 120 ◦C, P = 1 MPa. b Results
determined by 1H NMR. c TON = n (product)/n (catalyst). d TOF = TON/reaction time. e Reaction conditions:
PO (10 mL, 0.143 mol), Catalyst loading = 0.1 mol%, t = 0.5 h, T = 150 ◦C, P = 1 MPa.
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Figure 2. The quaternary ammonium catalyst system reaction of carbon dioxide and glycidyl iso-
propyl ether at atmospheric pressure. Reaction conditions: glycidyl isopropyl ether (5 mL, 0.071 mol),
catalyst Zn-NPClH (0.71 mmol, 1 mol%), T = 120 ◦C, P = 0.1 MPa. The selectivity of PC was >99%.

3.7. Substrate Scope of CO2/Epoxide Coupling

In order to investigate the generalizability of the bifunctional catalyst to other cycload-
dition reactions of epoxides with CO2, we examined the adaptation of the bifunctional
catalyst Zn-NPClH to a variety of epoxyalkane substrates under the above-mentioned
optimized conditions, and the results are shown in Table 2 (Condition A). The results show
that the catalyst system is effective in converting the studied common epoxides to their cor-
responding cyclic carbonates. For terminal epoxides, better yields of substrates with either
electron-absorbing or electron-donating groups attached were obtained with the activation
of the catalyst (Table 2, entries 1–2, 7–9). The nucleophilic attack of the epoxide by chloride
ions is hindered by the high spatial site resistance of the epoxide environment, resulting
in very low yields of dimethyloxirane, cyclohexene oxide, and 1,2-epoxyphenylethane
(Table 2, entries 3–6), as previously reported in the literature [49–51]. In addition, the
epoxide substrates of the glycidyl ether series can also be coupled with carbon dioxide,
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as in the case of dicyclic oxides, which can also be well formed as cyclic carbonates of
the corresponding dicyclic ring. It is worth pointing out that bicyclic carbonates can be
used as raw materials to produce non-isocyanate polyurethanes (NIPUs) by reacting with
polyfunctional primary amines, which have important applications in industry [52,53].

Table 2. Cycloaddition between CO2 and various epoxides catalyzed by Zn-NPClH.

Entry Epoxide Product

Condition A a Condition B b

t (h) Yield
(%) t (h) Yield

(%)

1

Materials 2023, 16, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 2. The quaternary ammonium catalyst system reaction of carbon dioxide and glycidyl iso-
propyl ether at atmospheric pressure. Reaction conditions: glycidyl isopropyl ether (5 mL, 0.071 
mol), catalyst Zn-NPClH (0.71 mmol, 1 mol%), T = 120 °C, P = 0.1 MPa. The selectivity of PC was > 
99%. 

3.7. Substrate Scope of CO2/Epoxide Coupling 
In order to investigate the generalizability of the bifunctional catalyst to other cy-

cloaddition reactions of epoxides with CO2, we examined the adaptation of the bifunc-
tional catalyst Zn-NPClH to a variety of epoxyalkane substrates under the 
above-mentioned optimized conditions, and the results are shown in Table 2 (Condition 
A). The results show that the catalyst system is effective in converting the studied com-
mon epoxides to their corresponding cyclic carbonates. For terminal epoxides, better 
yields of substrates with either electron-absorbing or electron-donating groups attached 
were obtained with the activation of the catalyst (Table 2, entries 1–2, 7–9). The nucleo-
philic attack of the epoxide by chloride ions is hindered by the high spatial site resistance 
of the epoxide environment, resulting in very low yields of dimethyloxirane, cyclohexene 
oxide, and 1,2-epoxyphenylethane (Table 2, entries 3–6), as previously reported in the 
literature [49–51]. In addition, the epoxide substrates of the glycidyl ether series can also 
be coupled with carbon dioxide, as in the case of dicyclic oxides, which can also be well 
formed as cyclic carbonates of the corresponding dicyclic ring. It is worth pointing out 
that bicyclic carbonates can be used as raw materials to produce non-isocyanate polyu-
rethanes (NIPUs) by reacting with polyfunctional primary amines, which have important 
applications in industry [52,53]. 

The application of various epoxides with a higher boiling point (> 110 °C) to couple 
with CO2 was also tested at atmospheric pressure. Although a longer time was necessary 
for the challenging epoxides (Table 2, Condition B), these bifunctional catalysts are gen-
erally still workable for a wide scope of epoxides, even under 0.1 MPa. 

Table 2. Cycloaddition between CO2 and various epoxides catalyzed by Zn-NPClH. 

Entry Epoxide Product 
Condition A a Condition B b 

t (h) 
Yield 
(%) 

t (h) 
Yield 
(%) 

1   
3 96 - - 

2 O

Cl

N O

N
Zn

N

NCl

 
O

Cl

N O

N
Zn

N

NCl

 
3 97 - - 

O O

O O

Materials 2023, 16, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 2. The quaternary ammonium catalyst system reaction of carbon dioxide and glycidyl iso-
propyl ether at atmospheric pressure. Reaction conditions: glycidyl isopropyl ether (5 mL, 0.071 
mol), catalyst Zn-NPClH (0.71 mmol, 1 mol%), T = 120 °C, P = 0.1 MPa. The selectivity of PC was > 
99%. 

3.7. Substrate Scope of CO2/Epoxide Coupling 
In order to investigate the generalizability of the bifunctional catalyst to other cy-

cloaddition reactions of epoxides with CO2, we examined the adaptation of the bifunc-
tional catalyst Zn-NPClH to a variety of epoxyalkane substrates under the 
above-mentioned optimized conditions, and the results are shown in Table 2 (Condition 
A). The results show that the catalyst system is effective in converting the studied com-
mon epoxides to their corresponding cyclic carbonates. For terminal epoxides, better 
yields of substrates with either electron-absorbing or electron-donating groups attached 
were obtained with the activation of the catalyst (Table 2, entries 1–2, 7–9). The nucleo-
philic attack of the epoxide by chloride ions is hindered by the high spatial site resistance 
of the epoxide environment, resulting in very low yields of dimethyloxirane, cyclohexene 
oxide, and 1,2-epoxyphenylethane (Table 2, entries 3–6), as previously reported in the 
literature [49–51]. In addition, the epoxide substrates of the glycidyl ether series can also 
be coupled with carbon dioxide, as in the case of dicyclic oxides, which can also be well 
formed as cyclic carbonates of the corresponding dicyclic ring. It is worth pointing out 
that bicyclic carbonates can be used as raw materials to produce non-isocyanate polyu-
rethanes (NIPUs) by reacting with polyfunctional primary amines, which have important 
applications in industry [52,53]. 

The application of various epoxides with a higher boiling point (> 110 °C) to couple 
with CO2 was also tested at atmospheric pressure. Although a longer time was necessary 
for the challenging epoxides (Table 2, Condition B), these bifunctional catalysts are gen-
erally still workable for a wide scope of epoxides, even under 0.1 MPa. 

Table 2. Cycloaddition between CO2 and various epoxides catalyzed by Zn-NPClH. 

Entry Epoxide Product 
Condition A a Condition B b 

t (h) 
Yield 
(%) 

t (h) 
Yield 
(%) 

1   
3 96 - - 

2 O

Cl

N O

N
Zn

N

NCl

 
O

Cl

N O

N
Zn

N

NCl

 
3 97 - - 

O O

O O
3 96 - -

2

Materials 2023, 16, x FOR PEER REVIEW  8  of  14 
 

 

 

Table 2. Cycloaddition between CO2 and various epoxides catalyzed by Zn‐NPClH. 

Entry  Epoxide  Product 

Condition A a  Condition B b 

t (h) 
Yield 

(%) 
t (h) 

Yield 

(%) 

1     
3  96  ‐  ‐ 

2  O

Cl

N O

N
Zn

N

N Cl

 
O

Cl

N O

N
Zn

N

NCl

 
3  97  ‐  ‐ 

 
   

       

3 
   

10  32  ‐  ‐ 

4 
   

10  91  24  99 

5 
   

10  22  24  21 

6 
   

10  96  24  88 

7 
 

3  94  24  72 

8 
   

3  90  24  90 

9 
   

3  88  24  88 

10 
   

3  61  24  68 c 

11 
 

 

3  52  24  62 

a Reaction conditions: 1 mol % Zn‐NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 

°C,  the  selectivity  was  determined  by  1H  NMR  to  be  >  99%.  b Reaction  conditions:  1  mol% 

Zn‐NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de‐

termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 

The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn‐PPBCl as a cata‐

lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 

performance  under  optimal  conditions  was  investigated.  The  synthesized  Zn‐PPBCl 

could be reused at least five times without significant loss of catalytic activity and selec‐

tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc‐

tures of both  the5‐cycleand  fresh  catalysts were also characterized by  IR. As shown  in 

Figure 4,  the  structure of  the  catalyst was maintained after  five  times of  reuse, which 

proves that the synthesized catalyst is not only efficient but also stable and reusable. 

O O

O O

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW  8  of  14 
 

 

 

Table 2. Cycloaddition between CO2 and various epoxides catalyzed by Zn‐NPClH. 

Entry  Epoxide  Product 

Condition A a  Condition B b 

t (h) 
Yield 

(%) 
t (h) 

Yield 

(%) 

1     
3  96  ‐  ‐ 

2  O

Cl

N O

N
Zn

N

N Cl

 
O

Cl

N O

N
Zn

N

NCl

 
3  97  ‐  ‐ 

 
   

       

3 
   

10  32  ‐  ‐ 

4 
   

10  91  24  99 

5 
   

10  22  24  21 

6 
   

10  96  24  88 

7 
 

3  94  24  72 

8 
   

3  90  24  90 

9 
   

3  88  24  88 

10 
   

3  61  24  68 c 

11 
 

 

3  52  24  62 

a Reaction conditions: 1 mol % Zn‐NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 

°C,  the  selectivity  was  determined  by  1H  NMR  to  be  >  99%.  b Reaction  conditions:  1  mol% 

Zn‐NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de‐

termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 

The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn‐PPBCl as a cata‐

lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 

performance  under  optimal  conditions  was  investigated.  The  synthesized  Zn‐PPBCl 

could be reused at least five times without significant loss of catalytic activity and selec‐

tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc‐

tures of both  the5‐cycleand  fresh  catalysts were also characterized by  IR. As shown  in 

Figure 4,  the  structure of  the  catalyst was maintained after  five  times of  reuse, which 

proves that the synthesized catalyst is not only efficient but also stable and reusable. 

O O

O O

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

3 97 - -

3

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

10 32 - -

4

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

10 91 24 99

5

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

10 22 24 21

6

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

10 96 24 88

7

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

3 94 24 72

8

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

3 90 24 90

9

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

3 88 24 88

10

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

3 61 24 68 c

11

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3 
  

10 32 - - 

4 
  

10 91 24 99 

5 
  

10 22 24 21 

6 
  

10 96 24 88 

7 
  

3 94 24 72 

8 
  

3 90 24 90 

9 
  

3 88 24 88 

10   
3 61 24 68 c 

11  
 

3 52 24 62 

a Reaction conditions: 1 mol % Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 
°C, the selectivity was determined by 1H NMR to be > 99%. b Reaction conditions: 1 mol% 
Zn-NPClH, 0.143 mol epoxide; CO2pressure 0.1 MPa; temperature 120 °C; the selectivity was de-
termined by 1H NMR to be > 99%. c Reaction temperature 110 °C. 

3.8. Catalyst Recycling 
The reuse of catalysts in industry will not only reduce costs, but their reusability also 

reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a cata-
lyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability 
performance under optimal conditions was investigated. The synthesized Zn-PPBCl 
could be reused at least five times without significant loss of catalytic activity and selec-
tivity (Figure 3). In addition, to further investigate the stability of this catalyst, the struc-
tures of both the5-cycleand fresh catalysts were also characterized by IR. As shown in 
Figure 4, the structure of the catalyst was maintained after five times of reuse, which 
proves that the synthesized catalyst is not only efficient but also stable and reusable. 

1 2 3 4 5
0

20

40

60

80

100

 

 

Y
ie

ld
 (

%
)

Catalytic Run

 

O

O

O

O

O

O

OO

O

O

O
O

OO O
O

OO

O O

O

O

O

O

O
O

O


OO O
O

O



O
O

O
O O O

O
O

O

O

O

O

O O
O

O O O

OO

O

O

O

O
3 52 24 62

a Reaction conditions: 1 mol% Zn-NPClH, 0.143 mol epoxide; CO2 pressure 1 MPa; temperature 120 ◦C, the
selectivity was determined by 1H NMR to be >99%. b Reaction conditions: 1 mol% Zn-NPClH, 0.143 mol epoxide;
CO2 pressure 0.1 MPa; temperature 120 ◦C; the selectivity was determined by 1H NMR to be >99%. c Reaction
temperature 110 ◦C.

The application of various epoxides with a higher boiling point (>110 ◦C) to couple
with CO2 was also tested at atmospheric pressure. Although a longer time was necessary
for the challenging epoxides (Table 2, Condition B), these bifunctional catalysts are generally
still workable for a wide scope of epoxides, even under 0.1 MPa.

3.8. Catalyst Recycling

The reuse of catalysts in industry will not only reduce costs, but their reusability
also reflects the stability of the catalyst under reaction conditions. Using Zn-PPBCl as a
catalyst to catalyze the formation of PC from CO2 and PO as a model reaction, its reusability
performance under optimal conditions was investigated. The synthesized Zn-PPBCl could
be reused at least five times without significant loss of catalytic activity and selectivity
(Figure 3). In addition, to further investigate the stability of this catalyst, the structures of
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both the5-cycleand fresh catalysts were also characterized by IR. As shown in Figure 4, the
structure of the catalyst was maintained after five times of reuse, which proves that the
synthesized catalyst is not only efficient but also stable and reusable.
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Figure 3. Reutilization of the Zn-NPClH catalyst. PO (10 mL, 0.143 mol), catalyst Zn-NPClH
(1.43 mmol, 1 mol%), t = 3 h, T = 120 ◦C, P = 1 MPa. The selectivity of PC was >99%.
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3.9. Kinetic Studies

Kinetics study of the cycloaddition reaction using glycidyl isopropyl ether (GIE) as sub-
strate using three bifunctional quaternary ammonium metal catalysts M-NPClH (M = Zn,
Co, Ni) at 1 atm CO2 pressure (see the ESI, Table S2: Structure of ligands–S15: Effects of the
reaction time on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure
by Ni-NPClH at 393 K). The activation energies (Ea) for the three catalysts were 30.8 kJ/mol
(Zn), 26.1 kJ/mol (Co), and 32.9 kJ/mol (Ni), respectively, which were consistent with the
order of catalytic activity (Figures 4–6). The higher conversion obtained with Co-NPClH
could likely be attributed to the higher Lewis acidity of the Co center compared with other
metal centers [54].
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4. Proposed Reaction Mechanism

Based on the experimental results, kinetic study analysis, and previously reported
literature [53,54], we proposed a possible mechanism for the cycloaddition reaction of CO2
with epoxide (Scheme 3). The metal center of the catalyst activates the oxygen on the
epoxide, and the halogen ion on the functional group of the bifunctional metal complex
catalyst nucleophilically attacks the less site-resistant carbon on the epoxide, causing the
epoxide to undergo a ring-opening step to form a metal alcohol salt intermediate. At the
same time, CO2 is inserted into this intermediate to form a metal carboxylate. Finally, the
oxygen anion of the intermediate attacks the C-X bond, closing the loop to form propylene
carbonate while completing the catalytic cycle to release the catalyst.
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5. Conclusions

The coupling reactions of various epoxides with CO2 were successfully achieved
by using halogenated quaternary ammonium salt metal complex catalysts without the
addition of co-catalysts and solvents. When using Co-NPClH as a catalyst to promote
the reaction with PO, the conversion was 98.6% and the PC selectivity was 99% under
the optimal conditions (120 ◦C, 1 MPa CO2, and 1.0 mol% Co-NPClH). In addition, the
synthesized bifunctional catalysts can be reused by simple operations and reused at least
five times with essentially no decrease in activity or selectivity. The kinetic studies using
catalysts M-NPClH (M = Co, Zn, Ni) are documented for the cycloaddition of GIE and CO2,
in which the apparent activation energies (Ea) are 26.1, 30.8, and 32.9 kJ/mol, respectively.
The series of bifunctional metal catalysts synthesized in this study exhibited excellent
catalytic performance, high TOF values, and strong stability, which proved the potential of
these catalysts for industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16041646/s1, Table S1: Provenance and mass fraction purity
of the materials. Table S2: Structure of ligands. Table S3: Structure of catalysts. Figure S1: 1H
NMR and 13C NMR spectra for NPCl in DMSO-d6. Figure S2: 1H NMR and 13C NMR spectra
for Zn-NPClH in DMSO-d6. Figure S3: 1H NMR spectrum for Zn-NPClCH3 in DMSO-d6. Figure
S4: 1H NMR and 13C NMR spectra for Zn-NPClCl in DMSO-d6. Figure S5: 1H NMR spectrum
for Zn-NPClNO2 in DMSO-d6. Figure S6: 1H NMR and 13C NMR spectra for Zn-NPClC4H9 in
DMSO-d6. Table S4. Effects of the reaction time on cycloaddition of CO2 and glycidyl isopropyl ether
at atmospheric pressure by Zn-NPClH at 363 K. Table S5: Effects of the reaction time on cycloaddition
of CO2 and glycidyl isopropyl ether at atmospheric pressure by Zn-NPClH at 373 K. Table S6: Effects
of the reaction time on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure
by Zn-NPClH at 383 K. Table S7: Effects of the reaction time on cycloaddition of CO2 and glycidyl
isopropyl ether at atmospheric pressure by Zn-NPClH at 393 K. Figure S7: Logarithmic plots of
(1 − x) versus time by Zn-NPClH at 363–393 K. Table S8: Effects of the reaction time on cycloaddition
of CO2 and glycidyl isopropyl ether at atmospheric pressure by Co-NPClH at 363 K. Table S9: Effects
of the reaction time on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure
by Co-NPClH at 373 K. Table S10: Effects of the reaction time on cycloaddition of CO2 and glycidyl
isopropyl ether at atmospheric pressure by Co-NPClH at 383 K. Table S11: Effects of the reaction time
on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure by Co-NPClH at 393 K.
Figure S8: Logarithmic plots of (1 − x) versus time by Co-NPClH at 363–393 K. Table S12: Effects
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of the reaction time on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure
by Ni-NPClH at 363 K. Table S13: Effects of the reaction time on cycloaddition of CO2 and glycidyl
isopropyl ether at atmospheric pressure by Ni-NPClH at 373 K. Table S14: Effects of the reaction
time on cycloaddition of CO2 and glycidyl isopropyl ether at atmospheric pressure by Ni-NPClH at
383 K. Table S15: Effects of the reaction time on cycloaddition of CO2 and glycidyl isopropyl ether at
atmospheric pressure by Ni-NPClH at 393 K. Figure S9. Logarithmic plots of (1 − x) versus time by
Ni-NPClH at 363–393 K.
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