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Abstract: Recently, AI has been used in industry for very precise quality control of various products
or in the automation of production processes through the use of trained artificial neural networks
(ANNs) which allow us to completely replace a human in often tedious work or in hard-to-reach
locations. Although the search for analytical formulas is often desirable and leads to accurate
descriptions of various phenomena, when the problem is very complex or when it is impossible
to obtain a complete set of data, methods based on artificial intelligence perfectly complement the
engineering and scientific workshop. In this article, different AI algorithms were used to build a
relationship between the mechanical parameters of papers used for the production of corrugated
board, its geometry and the resistance of a cardboard sample to edge crushing. There are many
analytical, empirical or advanced numerical models in the literature that are used to estimate the
compression resistance of cardboard across the flute. The approach presented here is not only much
less demanding in terms of implementation from other models, but is as accurate and precise. In
addition, the methodology and example presented in this article show the great potential of using
machine learning algorithms in such practical applications.

Keywords: corrugated board; edge crush resistance; artificial intelligence; artificial neural network;
deep learning; Gaussian processes

1. Introduction

The increasingly demanding packaging market forces manufacturers to provide solu-
tions that ensure not only the ease of shaping the packaging, but also its sufficient strength
and attractive appearance in the case of shelf-ready packaging (SRP) retail-ready packaging
(RRP). Moreover, in the light of the growing global environmental awareness, there is an em-
phasis on materials that can be recycled, biodegraded and easily disposed of. Corrugated
cardboard and packaging made from it fit perfectly into this trend and are widely utilized
in many branches of industry, for instance, by cosmetics, food [1], transportation [2,3],
agriculture [4] or furniture [5] companies.

Corrugated board is a type of sandwich structure with individual alternating layers
consisting of flat and corrugated papers [6], the most often used cardboards ranging
from two to seven layers. The profile of the corrugated layer, called fluting, is classified
by the letters A (the tallest flute height), B, C, E, and F (the lowest flute height). The
layered structure of the corrugated board results in two characteristic in-plane directions of
orthotropy impacting on the mechanical strength of the cardboard, namely, the machine
direction (MD) perpendicular to the main axis of the fluting and parallel to the paperboard
fiber alignment, and cross direction (CD), which is parallel to the fluting.

When designing the corrugated cardboard packaging, it is crucial that they meet a
certain load-bearing capacity, which is directly related to the mechanical properties of the
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paperboard, bearing in mind that the paper is an anisotropic material whose properties
depend on the fibers alignment. The ease of shaping, which is considered a great advantage
of the cardboard, may reduce the load capacity of the packaging, e.g., by introducing the
ventilation holes, perforations and indentations [3,7–10] or creases [11,12]. Another factors
that can diminish the strength of the cardboard are storage time, humidity and tempera-
ture [13,14] or stacking load [5,15,16]. The recycled or kraft papers, which can be applied
in the corrugated cardboard lowering the cost, have the reduced mechanical parameters.
Therefore, the optimal selection of the composition of the corrugated cardboard layers is of
great importance for the load capacity of the packaging [17,18]. The strength of paper and
corrugated board is affected also by geometrical and material imperfections [19,20].

In the light of the above, determining the material parameters and strength of the
cardboard is a very demanding task, and the paper industry strives for effective, econom-
ical, straightforward solutions that, consequently, lead to the dynamic development of
scientific research in this direction. Over the years, starting in the 1950s, the analytical
formulas for typical box design have been developed [21–23], subsequently expanding into
more complex approaches [7,19,24–31]. Hybrid [7,10,24,25,32,33] or purely numerical ap-
proaches [3,34,35] with the implementation of the finite element method (FEM) [2,3,36–38]
are widely applicable as well. Considering the layered structure of the cardboard and
the anisotropy of the paper, performing numerical analysis is a challenging task since the
knowledge of material properties of each layer is a precondition. The procedure of reducing
a multi-layered system to a single layered is called homogenization. This technique can be
applied while using analytical [39,40] or numerical approach [8,34,41,42].

To unify the procedures of designating the mechanical properties of corrugated board
standard tests have been developed. The most widespread are the box compression test
(BCT) [7,11,25,30,35,43] and the edge crush test (ECT) [44–48]. In the ECT, four methods,
contingent on the specimen shape, have been constituted. The first, called the edge clamp-
ing method [49] makes use of a specimen with the dimensions 50 mm × 50 mm, regardless
of the board type. In the second, the edge-reinforced method [50,51], unsupported samples
with waxed edges are tested, and their height is specifically customed for the common
flute types A, B, and C. The samples are less restrained than in the previous test, and
thus, in this case, the lower ECT values may occur. Another common compression test,
called the neck-down method [52], utilizes the specimens with narrowed width in the
middle, thus concentrating the stress there. Comparing to other methods, it might give the
highest ECT value for lightweight boards. As the last procedure of ECT, the rectangular
test specimen method can be mentioned [53,54]. Considering the correlation between the
specimen height and ECT, it has been observed that ECT values decrease as specimen
height increases, due to the sample buckling rather than sample compression [55]. The
discussion of certain aspects of ECT testing, including specimen height, test duration, and
fixture-clamping effects was presented in [56], and the influence of reduction in sidewall
surface cutouts on ECT was presented in [57]. For gathering the measurement data from
the outer surface of the specimen, the non-contact optical measurement method, e.g., video
extensometry [44,58], can be used.

Despite the numerous, advanced, constantly developed methods of determining the
material parameters of the cardboard, there are situations when it is a really challenging
task. In such cases, solutions based on artificial intelligence (AI) turn out to be a remedy. AI
can be defined as the simulation of human intelligence processes by machines, in particular
by computer systems, basing on three main processes, namely, learning, reasoning and self-
correction. A prime example of AI is deep learning providing the possibility of mimicking
a human brain’s neural network, using an artificial neural network (ANN). ANN is a
non-linear statistical model that demonstrates a complex relationship between input and
output to discover a new pattern. ANN’s architecture comprises an input layer, one or
more hidden layers and an output layer and works as feedforward or feedback neural
network [59].
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Among the numerous applications of ANN one can mention a few, e.g., medical
diagnosis [60,61], image recognition [62], economics [63], biosystem engineering [64] or
automobile guidance systems [65]. ANN is also utilized in the paper industry. An approach
based on the machine learning intended for evaluating the effects of refining on the fibers
morphology was discussed in [66], where ANN was applied and trained with experimental
data to prognosticate the fibers length as a function of refining process variables. The
prediction of paper characteristics, namely, apparent density, breaking length and tear
resistance, based on refined chemical pulp properties using the neural network approach
was demonstrated in [67,68]. A multilayer perceptron model to predict the laboratory
measurements of paper quality while applying the instantaneous state of the papermaking
production process has been described in [69]. The results of ANN application for the
pulping process control can be found in [70,71]. To the best knowledge of the authors,
no work concerning the application of ANN for estimation of mechanical parameters of
corrugated board has been presented.

The objective of the presented paper is applying machine learning algorithms to create
a relationship between the mechanical parameters of papers used for the production of
corrugated board, its geometry and the resistance of a cardboard sample to edge crushing.
Comparing the analytical, empirical or advanced numerical models described in the litera-
ture, which are used to estimate the compression resistance of cardboard across the flute,
with the approach presented in the article, one can conclude that it is not only much less
demanding in terms of implementation than other models, but it is as accurate and precise.

As is well known, AI can, in a similar way to the human brain, find relationships
between certain parameters or features of an object or assign it to a certain group of
objects. This is especially helpful when these relationships cannot be clearly described
mathematically or when the set of data is incomplete, which is very common in practice.
In large laboratories that deal with quality control, simple empirical models are usually
used. The voices of scientists and their advanced analytical or numerical models do not
reach practitioners who are looking for simple and reliable procedures. This article fills the
gap. The advanced machine learning tools included here are increasingly commercially
available. The presented procedure shows how to use these methods and what should
be the protocol of laboratory tests in order to correctly estimate the ECT parameter of
corrugated board based on an incomplete set of parameters of component papers.

2. Materials and Methods
2.1. Paperboard and Cardboard Laboratory Tests

Typical component papers and six popular types of corrugated cardboard were used
for the research carried out in the accredited laboratory in Aquila Września. The aim of the
research was first to thoroughly examine the papers that are later used in the production of
selected cardboards, and then to examine the cardboards samples in the edge crush test
(ECT). Corrugated board samples are usually tested only in the CD direction, i.e., across
the direction of the flute and, at the same time, across the direction of the cellulose fibers
in paper. In corrugated board, the direction of the fibers in all flat and corrugated layers
coincides with the direction of the wave, which results from the production process of both
paper and corrugated board. However, the cardboard used for packaging is not always
loaded in the CD direction only; therefore, in this study, the samples are cut and tested at
different angles to the CD direction (see Figure 1).

Finally, six different directions of loading the cardboard samples were selected, i.e., clas-
sically in the CD direction, and samples were cut at 15, 30, 45, 60 and 75 degrees. In the
conducted research, the testing of samples cut at an angle of 90 degrees was abandoned due
to the very unreliable measurement results. This is due to the fact that in the MD (machine
direction), i.e., rotated by 90 degrees in relation to CD, the sample transfers the load only
through flat layers (liners), which, especially at the edges, are very flaccid and undergo
global buckling very quickly.
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Figure 1. ECT samples cut at different angles: (a) 0 degrees (CD); (b) 15 degrees; (c) 30 degrees;
(d) 45 degrees; (e) 60 degrees; (f) 75 degrees.

In the first part of the research, a series of tests of all the constituent papers of each
of the six selected corrugated boards was carried out. Their thickness (THK), grammage
(GRM), resistance to short-span compression (SCT), and tensile stiffness (TS) were tested.
All tests were carried out in accordance with the actual standards, i.e.,

• SCT according to the ISO 9895 standard (see Figure 2a);
• TS according to the EN ISO 1924-2standard (see Figure 2b).

Figure 2. Laboratory machines and samples used in the research: (a) short-span compression tester
for paperboard; (b) tensile stiffness and strength tester for paperboard.

A TMI device, model 17–36 (Messmer Büchel-Industrial Physics, LLC, Veenendaal,
The Netherlands), was used to measure the SCT parameter, and the Testometric Company
Ltd. (Lincoln Business Park, Rochdale, Lancashire, UK) device, was used to measure the
TS parameter. Standard conditions (according to EN ISO 1924-2 standard) prevailed in
the laboratory, i.e., 23 ◦C +/− 1 ◦C and relative humidity of 50% +/− 2%. Before testing,
paper and paperboard samples were additionally conditioned inside an environmentally
controlled laboratory with standard climatic conditions for a period of 24/48 h, as expressed
by the norm ISO 187.

Since the paper is characterized by strong orthotropy (due to the already mentioned
arrangement of fibers), the test samples were cut in two main directions of orthotropy,
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i.e., machine direction (MD) and transverse direction (CD). In addition, samples were also
cut at an angle of 45 degrees (see Figure 3).

Figure 3. A sheet of paper with marked directions for cutting samples.

In the second part of the research, the resistance of corrugated cardboard to edge
crushing was measured, this parameter is commonly referred to as ECT. In this test, it is
extremely important to correctly cut the samples while maintaining the parallelism of both
cut edges. For professional cutting, a FEMAT CUT-19AP device was used (see Figure 4b).
The device for measuring the ECT parameter used in these studies was also manufactured
by FEMAT (Poznań, Poland), model ECT-10-21 (see Figure 4a). Additionally, in the case of
these tests, standard conditions, as well as sample preconditioning according to the ISO
187 standard, were maintained.

Figure 4. Laboratory machines and samples used in the research: (a) edge crush tester for corrugated
board; (b) device to cut corrugated samples for ECT.

All test characteristics of corrugated board, i.e., declared grammage, flute type, catalog
characteristics of each flute (width, height and take-up factor) as well as the main parame-
ters of the composite papers are listed in Table 1. In order to standardize the records of test
results, from now on, each cardboard is described with a wave symbol and grammage; for
instance, cardboard with a BE flute and a grammage of 590 g/m2 is marked BE-590.
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Table 1. Component papers and geometry of the corrugated boards [72].

Corrugated Board Component Papers Corrugated Layers

Wave Grammage Height Paper
ID

Grammage Thickness Height Period Take-Up
Type (g/m2) (mm) (g/m2) (mm) (mm) (mm) Factor

B 410 2.912
TL3125 124 ± 6 0.27 ± 0.1 - - -
WS120 118 ± 6 0.25 ± 0.1 2.55 6.34 1.337
TL3125 126 ± 6 0.27 ± 0.1 - - -

C 590 4.110
KLB170 168 ± 8 0.36 ± 0.2 - - -
S.C.175 176 ± 8 0.36 ± 0.2 3.63 7.95 1.427
KLB170 169 ± 8 0.36 ± 0.2 - - -

E 480 1.586
TLWC160 158 ± 8 0.17 ± 0.1 - - -

WS135 133 ± 6 0.13 ± 0.1 1.16 3.50 1.236
TLW160 159 ± 8 0.17 ± 0.1 - - -

BC 790 6.740

KLB170 168 ± 8 0.28 ± 0.2 - - -
W135 136 ± 6 0.25 ± 0.1 2.55 6.34 1.337
WS80 79 ± 4 0.22 ± 0.1 - - -
WS135 133 ± 6 0.25 ± 0.1 3.63 7.95 1.427
KLB170 172 ± 8 0.28 ± 0.2 - - -

BE 600 4.150

TLW140 141 ± 7 0.28 ± 0.2 - - -
WS95 94 ± 5 0.22 ± 0.1 2.55 6.34 1.337
WS80 81 ± 4 0.22 ± 0.1 - - -
WS95 94 ± 5 0.22 ± 0.1 1.16 3.50 1.236

TL3125 124 ± 6 0.28 ± 0.2 - - -

BE 590 4.120

TL3125 125 ± 6 0.32 ± 0.2 - - -
WS95 94 ± 5 0.24 ± 0.1 2.55 6.34 1.337
W80 79 ± 5 0.22 ± 0.1 - - -

WS95 96 ± 5 0.24 ± 0.1 1.16 3.50 1.236
TL3125 124 ± 6 0.29 ± 0.2 - - -

2.2. Artificial Neural Networks–Training Data

The goal of this work is to use artificial intelligence to find the relationship between
the parameters of the component papers together with the geometry of the corrugated
board and resistance to edge crushing of cardboard samples cut at different angles relative
to the CD. For this purpose, traditional feedforward ANNs were used here. The training
data was split into two sets because the length of the training vector is different for 3-ply
and 5-ply cardboards.

Both vectors are shown in Tables 2 and 3. Thus, the training data for the 3-ply
cardboard model is a vector which has 28 elements, i.e., in order, the SCT values measured
in CD, MD and 45 degrees, the TS values measured in CD, MD and 45 degrees, the wave
characteristic (only for corrugated layers) as well as the thickness and grammage of all
papers included in a given board. The last parameter is the angle at which the sample was
rotated in the ECT. The corresponding target of the training pair is a scalar, namely, the
ECT parameter of the sample cut in the corresponding direction. Therefore, the training
pair is a 28-element input vector and a 1-element target value vector.

Table 2. Variable number in the input vector in the ANN model of 3-ply corrugated board.

Layer
SCT Tensile Stiffness Flute

GRM * THK * ANG *

CD MD 45 d CD MD 45 d Width Height TUF *

Liner 1 2 3 4 5 6 - - - 7 8 -
Flute 9 10 11 12 13 14 15 16 17 18 19 -
Liner 20 21 22 23 24 25 - - - 26 27 -

- - - - - - - - - - - - 28

* where: TUF—wave take-up factor; GRM—grammage; THK—thickness; ANG—angle.
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Table 3. Variable number in the input vector in the ANN model of 5-ply corrugated board.

Layer
SCT Tensile Stiffness Flute

GRM * THK * ANG *

CD MD 45 d CD MD 45 d Width Height TUF *

Liner 1 2 3 4 5 6 - - - 7 8 -
Flute 9 10 11 12 13 14 15 16 17 18 19 -
Liner 20 21 22 23 24 25 - - - 26 27 -
Flute 28 29 30 31 32 33 34 35 36 37 38
Liner 39 40 41 42 43 44 - - - 45 46

- - - - - - - - - - - - 47

* where: TUF—wave take-up factor; GRM—grammage; THK—thickness; ANG—angle.

The training data for the ANN model of 5-ply cardboard is a vector consisting of
47 elements, arranged in the same way as in the ANN model of the 3-ply corrugated board
(see Table 3).

All inputs were pre-scaled using a normalization procedure, where each row of
training data has a mean of 0 and a standard deviation of 1. Both neural models have the
same number of neurons in the hidden layer as the number of input neurons, i.e., 28 for the
3-layer cardboard model and 47 for the 5-layer corrugated board model.

The training data was divided into 3 sets: (a) training—80% of the dataset; (b) testing—10%
of the dataset; (c) validating—10% of the dataset. In the process of collecting experimental
data, 20 measurements of all parameters were recorded, but it was not possible to link them
to specific measurements of cardboard edge crushing strength; therefore, training pairs
were selected in a way that ensured a statistical distribution of all obtained parameters.
This means that instead of the mean value of the individual parameter obtained from paper
strength measurement, one specific result was randomly selected and assigned to the input
vector, and the other input parameters were selected in a similar way. The ECT values
were also drawn stochastically as the corresponding element of the training pair. This
approach not only led to an increase in the number of training pairs, but it also meant that
that the variability of paperboard material parameters as well as the measured ECT of the
cardboard were taken into account.

To train both neural networks, a specific variant of the quasi-Newton method was
used, namely, the Levenberg–Marquardt algorithm [73], which was designed to achieve
second-order convergence speeds without the need to compute the Hessian matrix. When
the objective function is in the form of a sum of squares (here, the mean squared normalized
error was used in both model as the performance function), then the Hessian matrix can be
approximated as:

H = JTJ (1)

and the gradient can be computed as

g = JTe (2)

where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix
is usually computed using the standard backpropagation technique [74], which is much
less laborious and time consuming than computing the Hessian matrix.

The Levenberg–Marquardt algorithm, similar to Newton’s method, only uses an
approximation to the Hessian matrix as follows:

xk+1 = xk −
[
JTJ + νI

]−1
JTe, (3)

where xk+1 and xk are up-to-date and current vectors, respectively, where all the weights
and biases of the ANN model are gathered, ν is the scaling factor and I is the
identity matrix.
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When the scalar ν is zero, the analysis step follows Newton’s method, which uses an
approximate Hessian matrix. As ν increases, the analysis step is performed in the direction
of the steepest gradient descent with a very small step size. As is known, near the minimum
of the error function, Newton’s method is faster and more accurate; hence, the goal is to
switch the algorithm towards Newton’s method as soon as possible. By decreasing ν
after each successful step (when the objective function decreases) and increasing it only
when a given step would increase the objective function, it efficiently switches between
the two directions. In this way, the objective function at each iteration of the algorithm is
always reduced.

The Levenberg–Marquardt algorithm is described in [73], while the application of this
method for training neural networks is described in [74,75]. This algorithm is probably
the fastest method of training medium-sized feedforward neural networks (up to several
hundred weights). Therefore, it is well suited for the type and size of the network used in
this study.

2.3. Gaussian Processes

Gaussian processes can be used as a supervised learning technique for both classifi-
cation and regression tasks. The GP can be also successfully used in topology optimiza-
tion [76], to solve model reduction problems [77] or inverse homogenization design [78].
The main advantage of applying the Gaussian processes to solve the regression problems
is that they provide confidence measures for the predictions made. For example, in the
context of prediction of the ECT value, the Gaussian processes can be used to decide which
regions of the parameter space should be prioritized, based on the uncertainty of the result-
ing predictions. The Gaussian process can be treated as a Gaussian distribution, but not
over variables rather over functions (i.e., over functions treated as infinitely long vectors
containing the value of the function for each argument).

The Gaussian process is fully defined by the mean function µ such that µ(x) is the
mean of f (x) and the covariance/kernel function k such that k

(
xi, xj

)
is the covariance

between the value of the function at xi, f (xi) and the value of the function at xj, f
(

xj
)
.

Without going into details, because there are many textbooks and books on this subject, in
recent scientific papers, one can also find details of their implementation [61,64]; the most
important thing from the point of view of regression accuracy is the proper selection of
kernel functions and proper training of hyperparameters.

The covariance function should have the following properties:

• Be symmetrical. That means that k
(
xi, xj

)
= k

(
xj, xi

)
;

• Be positively defined. That means that the kernel matrix Kxx induced by k for any set
of inputs should be a positive definite matrix.

As a covariance function can be treated as any function that generates a specific
non-negative covariance matrix, the argument for this function is an ordered set of vec-
tors (x1, . . . , xN). For instance, it can be a stationary, non-isotropic squared exponential
covariance function k(x, x′), expressed by the following formula:

k
(

x, x’
)
= ν exp

(
−1

2

M

∑
i

ωi

(
xi − x

′
i

)2
)
+ b , (4)

where ν denotes the vertical scale of the process, while b is a bias that represents the vertical
offset of the Gaussian process. The ωi parameters are related to a different distance measure
in each dimension. The parameter ωi has a little effect on the input if it is small. Therefore,
the i-th input is down-weighted. The hyper-parameters are directly associated with the
model sensitivity in terms of the inputs. Therefore, they are of a great significance and can
provide an individual measure of importance for each input of the model.

It is possible to make predictions of the new input vectors when the covariance
function is already defined. However, it is necessary to determine the hyper-parameters,
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r = [ν, ω1, . . . , ωM, b, β], before the predictions will be possible. It is possible to find
the unknown parameters using any optimization procedure. In the literature, one can
find methods, in which a searching for the most probable set is performed by maxi-
mizing the log likelihood function [61,64] using any gradient-based optimization algo-
rithms, e.g., a first-order batch Levenberg–Marquardt algorithm already presented in the
previous section.

3. Results

Since the sensitivity of the model to the input data is not known a priori, in the first
step, analyses were performed using all training data. In the next step, a sensitivity analysis
of the pretrained models to the input data was calculated, and an attempt was made to
reduce the input vector by the parameters to which the model was the least sensitive. The
complete input data is presented in Table 4, while the output data is summarized in Table 5.

As already mentioned, in the Section 2.2, two distinct model’s architectures were used
for the ECT estimation of 3-layer cardboard samples and 5-layer cardboard processing. The
models differ only in the number of input elements, i.e., the 3-ply cardboard model has
28 input elements, while the input vector of the 5-ply cardboard model has 47 elements.

Table 4. The input training data for all models. Short-span compression strength as well as tensile
stiffness are presented as mean values supplemented with corresponding standard deviations.

Grade
ID

Paper
ID

Short-Span Compression Strength Tensile Stiffness

CD MD 45 Deg CD MD 45 Deg

(kN/m) (kN/m)

TL3125 2.14 ±0.12 3.97 ±0.05 2.92 ±0.05 373.3 ±2.1 1012.7 ±6.3 572.7 ±10.8
B-410 WS120 2.09 ±0.07 4.09 ±0.15 3.14 ±0.08 365.1 ±8.8 1024.6 ±8.5 516.5 ±9.7

TL3125 2.09 ±0.11 4.05 ±0.11 3.11 ±0.14 381.2 ±11.2 1058.3 ±9.8 595.1 ±10.5

KLB170 3.28 ±0.18 5.96 ±0.23 4.43 ±0.19 527.8 ±9.1 1472.1 ±20.1 929.1 ±20.3
C-590 S.C.175 4.18 ±0.19 7.47 ±0.18 5.84 ±0.07 686.1 ±13.9 1476.1 ±10.9 924.7 ±48.9

KLB170 3.19 ±0.06 5.51 ±0.18 4.65 ±0.13 568.1 ±14.8 1445.1 ±31.7 956.2 ±26.6

TLWC160 2.75 ±0.20 4.20 ±0.15 3.49 ±0.13 412.1 ±6.8 1043.6 ±11.1 635.0 ±11.2
E-480 WS135 2.13 ±0.10 4.25 ±0.15 2.95 ±0.07 365.0 ±9.8 1067.5 ±14.5 533.5 ±8.5

TLW160 2.43 ±0.11 4.09 ±0.13 3.21 ±0.11 443.9 ±1.5 1102.1 ±38.6 667.0 ±5.4

KLB170 3.39 ±0.12 6.14 ±0.19 4.69 ±0.13 618.9 ±17.6 1534.2 ±6.7 990.0 ±17.5
W135 2.19 ±0.09 4.27 ±0.10 3.09 ±0.13 369.1 ±11.2 1113.5 ±9.8 572.4 ±22.6

BC-790 WS80 1.50 ±0.08 2.30 ±0.09 1.91 ±0.04 317.1 ±4.2 699.1 ±3.3 445.0 ±5.8
WS135 2.23 ±0.04 4.37 ±0.15 3.18 ±0.06 385.9 ±12.0 1147.4 ±7.6 623.5 ±8.0
KLB170 3.30 ±0.18 5.98 ±0.32 4.66 ±0.20 592.7 ±8.3 1418.9 ±23.6 838.2 ±12.7

TLW140 2.61 ±0.13 3.92 ±0.09 3.08 ±0.11 506.0 ±7.1 1000.0 ±12.6 622.6 ±11.7
WS95 1.69 ±0.09 2.99 ±0.16 2.26 ±0.09 331.9 ±5.5 872.7 ±6.0 498.6 ±10.3

BE-600 WS80 1.42 ±0.03 2.56 ±0.17 1.88 ±0.08 273.2 ±3.8 812.8 ±12.3 424.8 ±7.2
WS95 1.52 ±0.08 3.16 ±0.13 2.46 ±0.06 290.7 ±6.7 885.5 ±18.9 508.4 ±14.7

TL3125 2.13 ±0.09 3.83 ±0.13 2.93 ±0.10 440.6 ±3.4 1082.2 ±13.3 623.3 ±35.4

TL3125 2.26 ±0.13 3.64 ±0.08 3.06 ±0.11 412.9 ±11.6 961.3 ±10.0 587.0 ±3.4
WS95 1.50 ±0.06 2.69 ±0.13 2.01 ±0.09 294.3 ±8.6 756.4 ±13.8 427.4 ±8.8

BE-590 W80 1.47 ±0.08 2.34 ±0.06 1.94 ±0.08 343.5 ±5.8 696.5 ±14.5 459.8 ±5.0
WS95 1.75 ±0.10 2.96 ±0.18 2.15 ±0.06 332.0 ±4.0 854.7 ±4.2 474.4 ±11.0

TL3125 2.32 ±0.07 3.75 ±0.06 2.87 ±0.17 413.8 ±4.7 883.1 ±20.9 588.3 ±14.5

In each of these models, a set of training data (presented in Tables 4 and 5) and three
different methods based on AI were used to estimate the ECT parameter of a corrugated
board sample loaded at different angles. The first method is a classic feedforward neural
network (FF), the second is a deep neural network (DL) and the last method uses the
Gaussian processes (GP). Each of these methods uses 360 sets of training pairs, which
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includes 20 sets of material parameters of various compositions of component papers, three
types of single-walled cardboard, i.e., B-410, C-590 and E-480 (or three types of double-
walled cardboard, i.e., BC-790, BE-600 and BE-590), and six different angles under which
the samples for the ECT were cut out.

Table 5. The output training data for all models. The edge crush strength a corrugated board loaded at
different angles is presented as mean values supplemented with corresponding standard deviations.

Board
ID

Edge Crush Resistance

CD (0 Deg) 15 Deg 30 Deg 45 Deg 60 Deg 75 Deg

(kN/m)

B-410 5.48 ±0.09 5.17 ±0.12 4.40 ±0.03 3.88 ±0.10 3.05 ±0.10 2.29 ±0.13
C-590 9.68 ±0.10 9.07 ±0.14 7.60 ±0.02 6.24 ±0.12 4.83 ±0.10 3.49 ±0.23
E-480 6.37 ±0.17 5.92 ±0.08 5.99 ±0.26 5.47 ±0.27 5.16 ±0.17 4.56 ±0.18

BC-790 10.41 ±0.13 9.56 ±0.37 8.38 ±0.29 6.96 ±0.10 6.00 ±0.17 4.31 ±0.16
BE-600 8.95 ±0.14 8.39 ±0.06 7.76 ±0.14 6.46 ±0.18 5.66 ±0.32 4.30 ±0.35
BE-590 9.68 ±0.10 9.07 ±0.14 7.60 ±0.02 6.24 ±0.12 4.83 ±0.10 3.49 ±0.22

It is worth noting that both models (in three variants each) were trained using a
selected set of 288 training pairs, validated using 36 pairs and tested also using 36 pairs. All
these sets were randomly selected, and the same division was used in each model, and in
each variant of the AI method. The results presented in the figures and tables below have
been prepared only on the test set, i.e., no training or validation data is used to check the
quality of the presented models. All results shown below are summarized separately for
each AI method and separately for the two models.

Figure 5 shows graphs collecting the average absolute estimation error obtained
using the FF, DL and GP methods in the 3-layer cardboard model (Figure 5a) and 5-layer
cardboard model (Figure 5b). In the graph, bottom and top of each box are associated with
the 25th and 75th percentiles of the obtained errors, respectively. The interquartile range
is represented by the area included between the bottom and top of each box. The red line
represents the median of the errors. One can notice the results skewness if the median is
not centered within the box. The lines extending above and below each box are called the
whiskers, and they go from the end of the interquartile range to the furthest observation
within the whisker length (the adjacent value). The observations out the whisker length,
the outliers, are marked with red +.

Figure 5. Estimation error of three different methods: (a) 3-layer corrugated board model; (b) 5-layer
cardboard model.
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Figures 6 and 7 show the linear regression of targets (here the ECT values) relative to
outputs of each model and variant (estimated ECT values) for the testing set only. Figure 6
presents the result obtained from the 3-layer corrugated board model, while Figure 7
presents the results from the 5-layer cardboard model. In both figures, the coefficient of
determination R2 is also shown.

Figure 6. Linear regression of trained 3-ply corrugated model; (a) based on feedforward neural
network; (b) based on deep neural network; (c) based on Gaussian process.

Figure 7. Linear regression of trained 5-ply corrugated model; (a) based on feedforward neural
network; (b) based on deep neural network; (c) based on Gaussian process.

Figure 8 shows the results of the estimation of the ECT parameter using the model of
3- and 5-layer corrugated model based on the Gaussian processes. In this method, the error
bars are also available and are shown in Figure 8.

In the case of the GP algorithm, it is possible to obtain the sensitivity of the model to
the input parameters relatively easily. It can be estimated thanks to the specific structure of
the covariance matrix (see Equation (4)), where the ωi parameter measures the sensitivity.
The higher the value of this hyperparameter (which scales each i-th input parameter inde-
pendently) during training process, the higher the role of this parameter in the algorithm
and, therefore, the higher the sensitivity of the model to this parameter.

It is clearly visible in Figure 9, which presents the normalized sensitivity of the GP
based model to all input parameters, that not all parameters play same important role
in this model. A longer discussion on this observation is presented in the next section;
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therefore, only the parameters that were finally selected for further analysis, as significant,
are listed here.

Figure 8. The ECT estimates using two GP-based models; (a) 3-ply cardboard model; (b) 5-ply
cardboard model; the black dots represent the mean value of the prediction, while the vertical black
lines represent the ±3 standard deviation for each sample. Experimental ECT values are shown as
cyan dots.

Figure 9. Normalized sensitivity of the GP based model (3-ply cardboard) to all 28 input parameters.

In the case of the 3-layer cardboard model, these are: the short-span compression
strength of each paper SCTi

CD for all flat and corrugated layers of corrugated board
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(i.e., i = 1 . . . 3), the width and height of the flute, i.e., H2 and P2, respectively, and the angle
at which the sample is loaded in ECT. In the case of the 5-layer cardboard model, the list of
parameters is slightly longer, which are again: the short-span compression strength of each
paper SCTi

CD for all flat and corrugated layers of corrugated board (i.e., i = 1 . . . 5), the
width and height of both flutes, i.e., H2, P2, H4 and P4, and the angle at which the sample is
loaded in ECT.

Table 6 summarizes the mean absolute estimation error of the ECT parameter using
all the models and methods presented in this paper, including also models trained with
truncated inputs vectors (marked as ‘small’). The table also shows the results obtained from
other models available in the literature. Details on these additional models are presented in
the discussion section. It is worth noting that for the 3-layer cardboard model, the input
vector has been truncated from 28 to 6 parameters, while the 5-layer cardboard model uses
a vector truncated from 47 to only 10 parameters.

Table 6. Mean absolute estimation error of both models based on FF, DL and GP methods trained
with full-length input training vector (full) and truncated input training vector (small).

Method

Model Mean Absolute Error (%)

3-Layer Cardboard 5-Layer Cardboard

FF (full) 3.163 1.575
FF (small) 2.273 1.921
DL (full) 2.985 3.093

DL (small) 3.948 2.916
GP (full) 2.484 1.317

GP (small) 2.260 2.150
Analytical [78] 1.760 2.987

FEM-1 [78] 1.640 2.260
FEM-2 [78] 4.010 4.227

Empirical-1 [78] 3.547 10.60
Empirical-2 [78] 1.997 9.800

4. Discussion

In the previous section, all the results of the laboratory testing campaign were
presented, both for component papers (see Table 4) and selected corrugated board
(see Table 5). In addition, the results of numerical analyses based on machine learn-
ing algorithms for estimating the resistance of corrugated board to edge crushing are also
shown (see Figures 5–8). The results presented in Figure 5 clearly show that estimations,
while using the 3-ply board model based on all three machine learning methods, have
an average absolute prediction error of 2.2–3.9%. On the other hand, the 5-ply cardboard
model learned using all three methods based on AI have an estimation error of 1.3–3.1%.
Machine learning based on the Gaussian processes performed best in both models, while
neural networks, using shallow and deep learning performed, slightly worse.

The differences between various learning methods are particularly visible in Figure 5,
where graphs are presented in the form of whisker plots, in which outliers are marked with
red “+” symbols. However, in the 3-layer cardboard model, in all three learning methods,
the maximum error reached about 9–10 percent; in the case of the 5-layer corrugated board
model, the maximum error for shallow neural networks reached over 15%, and in the case
of deep neural networks, it reached slightly over 20%. This does not mean, however, that
the models are not optimistic; on the contrary, obtaining such good results with such a
small training sample is very promising.

Figure 9 shows the normalized sensitivity of the 3-ply cardboard model to all 28 input
parameters. Sensitivity is obtained for free during machine learning using GP, as described
in the previous section. It is evident that not all of these parameters are equally important
for the correct estimation of the ECT values. It is clear that the sensitivity of the model to
the parameters, TSi

MD, for each component paper (i.e., i = 1 . . . 3), the wavelength of the
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corrugated layer (P2) and the direction of the load (angle) are preferred by the GP learning
algorithm in this case.

It is also known that the compressive and tensile strength and stiffness of the paper
are closely correlated. This means that as the SCTMD parameter, which is the compressive
strength in the MD, increases the SCTCD, and, e.g., TS45 parameters will also increase.
Since the SCTCD parameter is the easiest and most frequently tested in the paperboard
laboratories, it was decided to use this parameter instead of TS_MD for each component
paper. In addition, the height of the corrugated layer was added to the set of learning
parameters, although the model does not show high sensitivity to this model. A similar set
of parameters was selected for the 5-ply cardboard model. The results presented in Table 6
clearly show that the decrease in accuracy of models trained with the truncated vectors by
all three machine learning procedures is very small. The average estimation error for the
3-ply board model ranges from 2.3 to 3.9% and for the 5-ply board model from 1.9 to 2.9%.

The results obtained in this work are compared with the results available in the
literature, and they are also shown in Table 6. In the last paper, Garbowski et al. [72]
proposed a simplified analytical and empirical model. This paper also presents the results
of the ECT estimation using a numerical model based on the finite element method as
well as the results obtained while applying an empirical model. It can be seen that the
accuracy of all models presented in this paper is close to the accuracy of the analytical–
empirical model and numerical models presented in article [72]. It is worth noting that in
the work [72], the authors did not analyze cases of loading the sample in the ECT at other
angles, i.e., 15–75 degrees; only standard test in the CD was analyzed there. Therefore,
the models and learning methods presented here, albeit with similar estimation precision,
seem to be more universal than the analytical model, which must be extended to take
into account different sample load angles in the ECT. The models proposed here do not
require complicated numerical modeling (as presented, e.g., in [45]) and require only a few
parameters, i.e., the basic material parameters of the component papers and the geometry
of the corrugated layers are sufficient for their correct definition.

5. Conclusions

This paper presents the use of three different methods based on AI to solve regres-
sion problems of two different models of corrugated board: single-wall and double-wall.
Although the methods are different, they are characterized by similar effectiveness and
accuracy in estimating the load capacity in ECT based solely on the parameters of the
board components, the geometry of the corrugated layers and loading angle. The accuracy
measured on the test set only, i.e., on the set never used in the learning process in any of
the models using three AI-based methods, was not lower than 96%. Similar accuracy was
obtained on data truncated to just a few key parameters. This means that the presented
here methods can effectively compete with advanced analytical models or with demanding
numerical models and can be successfully used for ECT estimation. In order to correctly
determine the edge crush resistance of corrugated board, only the compressive strength of
the component papers, the geometry of the corrugated layer and the angle (if the loading
direction is different than 0 degrees, i.e., CD) are necessary.

Most paperboard and cardboard laboratories have a huge database of both paper
and board, and not all of them have properly working ECT virtual models. Therefore,
the approach based on AI presented in this paper may be perfectly applicable in such a
situation. With a large amount of training data available, these algorithms can be even
more reliable, accurate and versatile.
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