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Abstract: Motivated by the fast development of various additive manufacturing technologies, we
consider a mathematical model of re-solidification of multicomponent metal alloys, which takes place
after ultrashort (femtosecond) pulse laser melting of a metal surface. The re-solidification occurs
under highly nonequilibrium conditions when solutes diffusion in the bulk liquid cannot be described
by the classical diffusion equation of parabolic type (Fick law) but is governed by diffusion equation
of hyperbolic type. In addition, the model takes into account diffusive interaction between different
solutes (nonzero off-diagonal terms of the diffusion matrix). Numerical simulations demonstrate
that there are three main re-solidification regimes, namely, purely diffusion-controlled with solute
partition at the interface, partly diffusion-controlled with weak partition, and purely diffusionless
and partitionless. The type of the regime governs the final composition of the re-solidified material,
and, hence, may serve as one of the main tools to design materials with desirable properties. This
implies that the model is expected to be useful in evaluating the most effective re-solidification regime
to guide the optimization of additive manufacturing processing parameters and alloys design.

Keywords: mathematical modeling; metallic alloys; multi-component diffusion; ternary systems;
numerical calculations

1. Introduction

Rapid solidification of multicomponent alloys (three or more components) is pertinent
to many commercial materials and industrial processes such as casting, welding, 3D
printing, and additive manufacturing [1–4]. The additive manufacturing is a new and
advanced technology where the final 3D products are produced by the layer-upon-layer
joining of the material. The high technological potential of the 3D printing and additive
manufacturing has attracted much attention to rapid multicomponent alloy solidification
and raised challenging questions from a fundamental point of view, which have been
discussed by many authors [5–17].

Ludwig [5] has developed a theory for multicomponent solute trapping, which enables
the determination of the n solid concentrations by solving an n-dimensional nonlinear sys-
tem of equations, called first response functions. Hunziker [6] obtained analytical solutions
for the solute diffusion fields during plane front and dendritic growth in multicomponent
alloys, considering the diffusive interaction between the species, and examined the stability
of solid–liquid interfaces. Altieri and Davis [7] studded linear stability analysis of multi-
component alloys using one-sided diffusion and frozen temperature approximations and
demonstrated that the multi-component systems are, in general, less stable than binary
ones. Yu et al. [8] reported experimental results on the composition and crystallography of
oxides formed on NiCrMo alloys during both high-temperature oxidation and aqueous
corrosion experiments. Using a theory for nonequilibrium solute capture that combines
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thermodynamic, kinetic, and density functional theory analyses, the authors [8] demon-
strated that the composition and crystallography are controlled by the rapidly moving
interface. Wang and Liu [9] reviewed the basic philosophy for the phenomenological irre-
versible thermodynamics, the methods to obtain the governing equations for the evolution
of multicomponent solidifying systems and the potential applications to other metallurgical
phenomena. Xiong et al. [10] used a phase–field model with finite interface dissipation
to construct kinetic phase diagrams in the ternary Al-Cu-Li system. Based on the pre-
dicted kinetic phase diagrams, it was found that with the increase in interface velocity
and/or temperature, the gap between the liquidus and solidus gradually reduces, which
illustrates the effect of solute trapping and tendency of diffusionless solidification. To
predict microsegregation in the single-crystal superalloys of laser rapid directional solidi-
fication, Liang et al. [11] developed a microsegregation model for rapid solidification of
multicomponent alloys considering nonequilibrium solute redistribution and dendritic
tip undercooling. Mohan and Phanikumar [12] studied experimentally and theoretically
rapid solidification of undercooled Ni–Fe–Si alloy system. Undercooling experiments were
performed using flux encapsulation along with in situ measurement of recalescence speed
and the highest growth velocity achieved was 30.4 ± 2.2 m/s, whereas phase–field simula-
tions were based on a classical local equilibrium diffusion equation of parabolic type [12].
Dudorov and Roshchin [13] described a crystal growth process from a multicomponent
melt using a new variation approach, which considers the interaction between thermal and
diffusion processes, and constructed a metastable phase diagram. Sobolev et al. [14] sug-
gested and analyzed a steady-state model of rapid solidification of multicomponent alloys
with allowance for the cross-diffusive interaction between different solutes and the local
nonequilibrium diffusion effects in the bulk liquid. In ternary systems the model predicts
two-step transition to diffusionless solidification: from diffusion-controlled solidification of
both solutes at low interface velocity to diffusion-controlled solidification of one solute and
diffusionless solidification of another solute at intermediate interface velocity and to purely
diffusionless solidification at high interface velocity [14]. Microstructures, solid–liquid
interface morphologies and preferential orientations of the Fe-Al-Ta eutectic composites at
different solidification rates were studied by Cui et al. [15]. Wang et al. [16] studied phase
equilibrium of the Co-Ta-Si ternary system, which provided the key experimental data for
the establishment of Co-based superalloys thermodynamic database.

Additive manufacturing of metallic alloys is a rapid solidification process when the solid–
liquid interfaces may move with velocities as large as 1–30 m/s (see, for example [12,18,19],
and references therein), which can be reached during re-solidification after ultrashort pulse
laser melting [20–24]. At such velocities, solute diffusion in the liquid phase occurs under
far from local equilibrium conditions and classical diffusion equation of parabolic type is
not adequate for describing space–time evolution of solute concentrations [14,17–19]. To
consider the deviation from local equilibrium of solute diffusion the liquid phase under
rapid solidification conditions, the local nonequilibrium diffusion model (LNDM) [25–27]
has been introduced by using diffusion equation of hyperbolic type, which is not based
on the local equilibrium assumption. It has been demonstrated that the local nonequi-
librium effects change drastically the diffusion field in the bulk liquid leading to a sharp
transition from diffusion-controlled growth to kinetic-controlled growth with complete
solute trapping [25–27]. The transition occurs when the interface velocity V passes through
the critical point V = VD, where VD is the solute diffusive velocity, i.e., velocity of
propagation of diffusive disturbances. This implies that the transition to diffusionless
and partitionless solidification is a purely diffusive phenomenon—it occurs indepen-
dently of the interface solidification kinetics as soon as the interface velocity V reaches
VD [25–27]. The LNDM has been also used to study various phenomena pertinent to rapid
alloy solidification, for example, nonequilibrium kinetic phase diagrams [10,28], dendrite
solidification [29,30], transient effects [19,31]. Moreover, the LNDM has been used in com-
bination with other approaches such as cellular automata [30], discrete model [32], effective
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mobility approach [33], non-local approach [18,34], phase-field model [35,36], molecular
dynamics, and Monte Carlo simulations [37].

Another important feature of multicomponent alloy solidification is the diffusional
interaction between the species or cross-diffusion effects when diffusion fluxes of each
component depend on the concentration gradient of all the components [14,17,38]. Off-
diagonal diffusion terms of the diffusion matrix are usually neglected for multicomponent
liquids, yet there is little justification, because in some situations the diffusional interaction
between the species in multicomponent alloys plays an important role but the effect of
the off-diagonal diffusion terms on diffusional transformation kinetics in multicomponent
systems is still an open question.

Transient effects play an important role in rapid alloy solidification under ultrashort
laser irradiation because the process occurs on short space and time scales [21,35]. For
example, a transient approach to rapid solidification of SiAs alloy predicts that the interface
temperature increases with decreasing interface velocity in the whole range of experimental
parameters, which corresponds to the experimental results, whereas a steady-state approach
predicts the opposite dependence in the small rage of the interface velocity, where the
transient effects play the most important role (see discussion in [19,31]).

The purpose of this work is to develop a physical and mathematical model of rapid
curing of the surface layer of a multicomponent alloy melted under the influence of
an ultrashort laser impulse. At the same time, the model must take into account diffusion
interactions between particles (non-diagonal diffusion conditions), local nonequilibrium,
and transient effects. The development of such an approach and modeling methods will
provide a valuable basis for studying the fundamental properties of highly nonequilibrium
solidification of multicomponent alloys and will lead to more realistic forecasts of real
processes, which will reduce the need for experimental work aimed at controlling the
quality and properties of the materials of the final product.

2. General Model (N-Component System)

When a pulsed energy source, for example, laser or focused electron beam, irradiates
the surface of a metal, the energy is absorbed, and melting may be induced near the surface.
The melting is followed by the rapid re-solidification. Today, ultrashort energy sources
allow rapid melting of layers as thin as several nanometers with re-solidification occurring
on a time scale of picoseconds [39]. The corresponding solid–liquid interface velocity
during re-solidification may exceed 1 m/s, which significantly suppresses the equilibrium
partitioning of the species [19,25–27,30]. Figure 1 schematically shows the moving interface
during re-solidification of a thin metal layer after ultrashort pulse laser melting.
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Figure 1. Schematic of an advancing solid–liquid interface during re-solidification of a thin metal
layer after ultrashort pulse laser melting. l—is the initial thickness of the melted layer. Liquid phase
(liq) is depicted at x > z(t) and solid phase (sol) is depicted at x < z(t).



Materials 2023, 16, 1622 4 of 11

2.1. Solute Diffusion in the Liquid Phase

Multicomponent diffusion is described by the Fick law for an n-component system,
which in 1D takes the form [6,14,38]

Ji = −
N−1

∑
j=1

Dij
∂Ci
∂x

(1)

where Ji is the flux of the component i, Ci is the concentration of the component i, Dij
are diffusion coefficients, which constitute an (N − 1)× (N − 1) diffusion matrix, and x-
spatial coordinate. In general, the diffusion coefficients are not symmetric

(
Dij 6= Dji

)
. The

diagonal terms Dii are so-called the “main terms” of the diffusion matrix, because they are
commonly larger than the off-diagonal terms Dij and similar in magnitude to the binary
values. The off-diagonal terms are usually ten percent or less of the on-diagonal terms.

Depending on the laser excitation strength, melting occurs roughly on a picosecond
timescale followed by re-solidification with fast moving solid–liquid interface. In such
a case solute diffusion in the bulk liquid occurs under local nonequilibrium diffusion con-
ditions [18,19,25–27,31,32] and the generalization of the classical Fick law with allowance
for the diffusional interaction between different solutes is given by [14,18]

Ji + τi
∂Ji
∂t

= −
N−1

∑
j=1

Dij
∂Ci
∂x

(2)

where t is time and τ is the relaxation time of the diffusion flux of component i.
Combining Equation (2) with the mass conservation law for corresponding solute, we

obtain the local nonequilibrium solute diffusion equations for the multicomponent system
in the form [14,18]

∂Ci
∂t

+ τi
∂2Ci
∂t2 = −

N−1

∑
j=1

Dij
∂Ci
∂x

(3)

When the off-diagonal terms Dij = 0, Equation (3) are of hyperbolic type and describe

the transmission of concentration disturbances with finite velocities VD
i =

√
Dii
τi

, which are
usually called “diffusive velocities” [18,19,25–27,31,32].

2.2. Interface Velocity

In one dimension (1D) solid-liquid interface velocity V during alloy solidification is
given by [38,39]

V(t) =
dz
dt

= V0(T)
[
1− e−

∆G
RT

]
(4)

where z is the coordinate of the interface, T is the interface temperature, ∆G is the difference
between the Gibbs free energy of solid and liquid responsible for interface motion (driving
force for solidification), V0 is the maximal growth velocity when the driving force is infinite
(no backward hopping).

2.3. Gibbs Free Energy

In general, the Gibbs free energy is given by

G = Gre f + Gmix + Gcros + Gneq (5)

where Gre f is the reference (standard) term, Gmix is the mixing term, Gcros is the term due to
interaction between the solutes, and Gneq is the nonequilibrium term due to local nonequilib-
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rium diffusion effects, respectively. The reference term corresponds to a simple mechanical
mixture of the Gibbs energy of the constituent components and is given by [38,39]

Gre f =
N

∑
i=1

CiG0
i (T) (6)

Here Ci is the molar fraction of component i, iG0
i (T) is the standard Gibbs free energy

of component i at the temperature T. The ideal mixing term corresponds to the entropy of
mixing for an ideal solution [38,39]:

Gmix = RT
N

∑
i=1

Ci lnCi (7)

The excess term takes into account the deviations form ideal mixing that are due to
specific interactions between the components [38]:

Gcros =
N−1

∑
i=1

N

∑
j=i+1

CiCjLi:j (8)

Here, Li:j are pairwise interaction parameters that can be temperature dependent [38].
The local nonequilibrium correction to the Gibbs free energy change, which arise

during rapid alloy solidification when the solid-liquid interface moves with velocity of the
order of the diffusive velocity, is given by [31,40]

Gneq =
1
2

RT
N−1

∑
i=1

CS
i
(1− Ki(V))2

Ki(V)

(
V

VD
i

)2

(9)

3. Ternary System
3.1. Equations

We focus on one-dimensional description, which is a reasonable approximation when
the laser spot size is much larger than the depth melted by the irradiation. That is typical
for ultrashort-pulse laser melting experiments. For the ternary system, Equation (3) is
reduced to [14,18]

∂C1

∂t
+ τ1

∂2C1

∂t2 = D1
∂2C1

∂x2 + D12
∂2C2

∂x2 (10)

∂C2

∂t
+ τ2

∂2C2

∂t2 = D21
∂2C1

∂x2 + D2
∂2C2

∂x2 (11)

A solute partition coefficient with allowance for the local nonequilibrium diffusion
effects are given by (i = 1, 2) [14,18,25–27]

Ki(V) =
Csol

i

Cliq
i

∣∣∣∣∣
x=z

=


KE

i

(
1−
(

V(t)
VD

i

)2
)
+

V(t)
γi(

1−
(

V(t)
VD

i

)2
)
+

V(t)
γi

, V < VD
i ,

1, V > VD
i ,

(12)

where VD
i =

√
Di
τi

is the diffusive velocity in liquid phase, KE
i is the equilibrium partition

coefficient of component i; γi is the kinetic coefficient of component i.

3.2. Initial and Boundary Conditions

Initial and boundary conditions for the ternary system are given by

Csol
i

∣∣∣
t=0

= Cliq
i

∣∣∣
t=0

= C0
i ,i = 1, 2, 3, (13)
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∂Cliq
1

∂t

∣∣∣∣∣
t=0

=
∂Cliq

2
∂t

∣∣∣∣∣
t=0

= 0, (14)

∂Cliq
1

∂x

∣∣∣∣∣
x=l

=
∂Cliq

2
∂x

∣∣∣∣∣
x=l

= 0, (15)

Csol
i

Cliq
i

∣∣∣∣∣
x=z

= Ki(V),i = 1, 2, (16)

z∫
0

Csol
i (x)dx +

l∫
z

Cliq
i (x)dx = C0

i · l,i = 1, 2, (17)

z(t) =
t∫

0

V(t)dt, z(0) = 0. (18)

where x = z(t) is the coordinate of the moving solid–liquid interface (see Figure 1); at
x > z(t)—liquid (liq) phase; at x < z(t)—solid (sol) phase. Equations (13) and (14) are the
initial conditions, which define initial concentrations and their time derivatives in the liquid
phase 0 < x < l. Equation (15) implies that there are no solute fluxes in the environment at
x = l. Equation (16) describes solute redistribution at the moving solid–liquid interface at
x = z(t), where the solute partition coefficients Ki(V) are given by Equation (12). Equation
(17) is nothing else but the mass balance law. Equation (18) defines the position of the
solid–liquid interface moving with velocity V given by Equation (4).

3.3. Calculations

For the numerical solution of Equations (10) and (11), their difference analogues were
used in accordance with the template shown in Figure 2a. The difference scheme is implicit,
which means it is absolutely stable. To find the values of the desired functions on a new time
layer (marked with the index m + 1 in Figure 2a) we obtain a system of linear equations (in
accordance with the indicated three-point pattern). To solve this system, we developed an
economical numerical algorithm based on the generalization of the tridiagonal matrix one.
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Figure 2. (a) difference scheme template, (b) illustration of the interpolation procedure. The red
nodes of the grid are located on a new time layer, the values of the functions in them are to be
determined. Green nodes are on the current or past time layer, the values of the functions in them are
already known.

It should be noted that the computational domain shrinks over time since the task
has a moving interface. Thus, at each time step, the grid points change their position (see
Figure 2b). Therefore, before calculating the values of the desired functions at a new time
layer, it was necessary to estimate the values of the functions on the current and previous
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time layers at new points. The estimation was carried out by interpolation with natural
cubic splines.

4. Results and Discussion

In this section we present results of the numerical simulation of the ternary alloy
re-solidification described by Equations (10)–(18). The calculations were carried out with
following parameters: initial length of the molten layer l = 500 nm, process temperature
T = 1500 K, interface velocity V0 = 3 m/s. For the sake of simplicity, we also assume
that Li:j = 0 in Equation (8). All other parameters needed for numerical calculations are
summarized in Table 1.

Table 1. Parameters used for calculation.

Component 1 Component 2 Component 3

Component title Al V Ti

Mol. weight [g/mol] 27 51 48

C0 [mass. %] 6 4 90

G0
i,liq [kJ/mol] 223.3 210.6 218.8

G0
i,sol [kJ/mol] 200 200 200

Di, [10−9 m2/s] 100 5

τ, [ns] 1 1

KE
i , [-] 0.1 0.1

γi, [m/s] 3 1

In Figure 3 we show solute concentration profiles in the liquid and solid phases as
functions of the coordinate x at V < VD

i without cross diffusion effects. As expected, in such
a case solidification occurred in the diffusion-controlled regime with solute partitioning
at the interface, which was manifested by the two moving concentration spikes at the
interface [14]. As the solid–liquid interface reached the end of the liquid phase (x = l in
Figure 1), the boundary effects began to play an important role and the solute concentrations
in the solid phase significantly increased near the boundary (see Figure 3c).
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Figure 3. Solute concentrations in the liquid and solid phases as functions of the coordinate x at
V < VD

i without cross diffusion effects (D12 = D21 = 0) at different time moments: (a) t = 55 ns,
(b) t = 163 ns, (c) t = 217 ns (complete re-solidification).

Solute concentration profiles in the liquid and solid phases are shown in Figure 4 as
functions of the coordinate x at V < VD

1 and V > VD
2 without cross diffusion effects. In this

case, during the re-solidification we observed the concentration spike of solute 1, whereas
the concentration of the solute 2 did not change at the interface (see Figure 4a,b). This
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implies that, at the interface, solidification occurred in the diffusion-controlled regime with
partitioning regarding solute 1, while solute 2 solidified in the diffusionless and partitionless
regime. After complete re-solidification, the concentration of solute 1 significantly increased
near the boundary, whereas the concentration of solute 2 did not change (see Figure 4c).
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Figure 4. Solute concentrations in the liquid and solid phases as functions of the coordinate x at
V < VD

1 and V > VD
2 without cross diffusion effects (D12 = D21 = 0) at different time moments:

(a) t = 54 ns; (b) t = 163 ns; (c) t = 217 ns (complete re-solidification).

The influence of the strong positive cross diffusion effect on solute concentration
profiles in the liquid and solid phases is shown in Figure 5 at V < VD

1 and V > VD
2 . In

this case, the cross diffusion significantly affected the solute concentration profiles not
only at the final stage when complete re-solidification occurred (see Figure 5c), but also far
from the boundaries (Figure 5a,b). In spite of the fact that the effective diffusion coefficient
of the solute 2 was zero because the solidification occurred at V > VD

2 [14,18,25–27], the
concentration gradient of solute 1 led to the non-zero diffusion flux of solute 2 due to the
cross diffusion effects (see Equations (1) and (2)). That resulted in non-zero concentration
gradient of solute 2 and, consequently, a corresponding spike in the concentration of solute
2 at the interface (see Figure 5a,b). After complete re-solidification (see Figure 5c), the solute
concentrations increased near the surface of the alloy.
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Figure 6 shows solute concentration profiles in the liquid and solid phases as functions
of the coordinate x at V < VD

1 and V > VD
2 with strong negative cross diffusion effect.

As in the previous case, the effective diffusion coefficient of the solute 2 was zero, but
strong cross diffusion effect led to the non-zero diffusion flux and concentration gradient of
solute 2, which resulted in the negative concentration spike of solute 2 at the interface (see
Figure 6a,b). Note that, after complete re-solidification, the concentration of solute 2 in the
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solid phase decreased in the vicinity of the metal surface in comparison with its bulk value
(see Figure 6c).
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Figure 6. Solute concentrations in the liquid and solid phases as functions of the coordinate x at
V < VD

1 and V > VD
2 with strong negative cross diffusion effects (D12 = 0, D21 = −1.5 · 10−8 m2/s)

at different time moments: (a) t = 54 ns; (b) t = 163 ns; (c) t = 217 ns (complete re-solidification).

Calculations demonstrate that, except for the initial and final transient, the interface
velocity V slightly depended on time.

5. Conclusions

In this paper we consider a model of rapid multicomponent alloy solidification with
allowance for the local nonequilibrium and cross-diffusion effects in the liquid phase, which
arise on the ultrashort space and time scale. The model successfully describes not only
steady-state, but also initial and final transient stages, thus providing a further basis for
the understanding of the multi-component alloy solidification. Numerical simulations
demonstrate that, depending on the local nonequilibrium and cross-diffusion effects, the
re-solidification may occur in three main regimes, namely, purely diffusion-controlled with
solute partition at the interface, partly diffusion-controlled with weak partition, and purely
diffusionless and partitionless. The type of the regime governs the final composition and,
hence, physical properties of the re-solidified material, which may serve as one of the
main tools to design materials with desirable properties. This implies that the model is
expected to be useful in evaluating the most effective re-solidification regime to guide
the optimization of additive manufacturing processing parameters and multi-component
alloys design.
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