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Abstract: In the maintenance engineering of asphalt pavement, it is often encountered that both
the surface and middle layers are damaged and need to be maintained. The cold in-place recycling
technology can be used to simultaneously treat multi-layer diseases and reduce the waste of pavement
materials. The cold in-place recycling mixture is rarely used for high layer of pavement structure in
high-grade highway. In the supporting practical engineering, the emulsified asphalt cold in-place
recycling mixtures were paved as the middle layer of pavement structure by the laying of an overlay.
In order to comprehensively evaluate the material performances, coring samples were drilled after
cold recycling pavement opening to traffic, and different performance tests were carried out based
on the coring samples. The newly paved SMA mixtures were set as the control group. The high
temperature stability of cold recycling mixture was analyzed by dynamic creep test and MMLS3
accelerated loading test. Then, the cracking resistance of cold recycling mixture was studied by
semi-circular bending test. Finally, the effect of curing time on splitting strength of cold recycling
mixture was measured, and the moisture susceptibility was analyzed by dry–wet splitting test and
freeze–thaw splitting test. The test results showed that the high temperature stability of cold recycling
mixture was worse than SMA mixture. For the cold recycling mixture, the deformation value at the
early stage and deformation rate at the stable stage were larger than SMA mixture in the accelerated
loading process, and shear failure at high temperature occurred earlier. The cracking resistance of
cold recycling mixture was worse than SMA mixture because of the aging effect of the old asphalt and
adverse influence of the added cement binder. The effect of curing time on splitting strength of cold
recycling mixture was significant, and two stable periods of early strength were, respectively, reached
after curing 3 days and 7 days. The indexes of moisture susceptibility, including dry–wet splitting
strength ratio and freeze–thaw splitting strength ratio, were obviously lower than that of SMA
mixture, and the test values not up to the standard requirement existed. For the emulsified asphalt
cold in-place recycling mixture, the improvement of material performances should be focused on,
especially the moisture susceptibility. In the research, the emulsified asphalt cold in-place recycling
mixtures were acceptably used as the middle layer of maintenance pavement structure. The reliable
discussions were summarized based on coring samples collected from real-life road sections. The
case can provide guidance and reference for similar engineering applications.

Keywords: road engineering; cold in-place recycling; emulsified asphalt; high temperature stability;
cracking resistance; moisture susceptibility

1. Introduction

Asphalt pavement durability is affected by many factors, including vehicle loading
and climate, during the process of transportation, which makes its pavement performance
decay continuously until it needs to be repaired because of pavement diseases. The
performance of the upper layer or the middle layer of some pavement sections is seriously
attenuated. As a result, a large number of reclaimed asphalt pavement (RAP) materials
will be produced to cause waste because of the use of conventional milling and resurfacing
methods for maintenance, which does not conform to the maintenance concept of green
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and environment-friendly protection. For pavements that need multi-layer maintenance, it
is economical and effective to repair pavement diseases and improve the overall structural
performance by using the cold in-place recycling technology to carry out multi-layer
synchronous recycling and subsequent construction of a new overlay, however, in which the
cold recycling layer is used as the middle layer of the maintenance pavement structure [1,2].
In comparison with the conventional low-layer cold recycling, the high-layer cold recycling
mixture takes more vehicle loading and poses higher requirements for comprehensive
pavement performance of cold recycling mixtures [3,4].

Many factors influence the pavement performance of cold recycling mixtures. There-
fore, reasonable design of material composition characteristics, such as raw material,
volume characteristics, and key control parameters, can give full play to the performance
of cold recycling mixtures [5–9]. RAP material is the biggest contributor of cold recycling
mixture as its properties, including field moisture content, asphalt binder condition, con-
tent, source, aggregate gradation, etc., are closely related to the performances the of cold
recycling mixture [10–13]. In the field of soil or recycled demolition wastes stabilization for
subbase and base, asphalt emulsion is widely used, and the adhesive force of the mixture
is enhanced after the demulsification [14,15]. Asphalt emulsion is one of the commonly
used binder materials for cold recycling mixtures. The polymer type, ionic charge, and
demulsification rate of emulsified asphalt all have significant influence on the performance
of cold recycling mixture [16]. Different types of asphalt emulsion have corresponding
applicability, so it is necessary to determine the optimal emulsion type according to the
application scenarios. The cementitious stabilization agent is added into cold recycling mix-
tures for the objective of increasing the bearing strength and the compressive strength [17].
Cement is the most commonly used among all of the cementitious stabilization agents, but
the moderate amount of the agent should be determined based on a proper mix design to
achieve the best in-service performance [18]. The influences of curing conditions on the
consolidation behavior of cold recycling mixtures were analyzed, in the laboratory and
on site, respectively [19,20]. With the idea that the curing temperature has an important
influence on the consolidation behavior of the cold recycling mixture, the measure was
proposed to accelerate its consolidation by heating [21]. The improvement of pavement
performance also stands out as one of the key directions in the research of cold recycling
mixtures. The pavement loading test or triaxial compression test was used to test the
rutting resistance of cold recycling mixtures with different amounts of cementing mate-
rials, leading to the conclusion that the rutting resistance is the best when the amount of
cementing materials ranges between 2% and 2.5% [22,23]. The cold recycling mixtures
used for pavement should also have good durability to avoid pavement diseases that will
shorten the service life of the pavement. The cracking resistance and fatigue resistance
of the asphalt mixture can be effectively characterized by fracture energy and flexibility
index calculated by the semi-circular bending test [24–28]. The indirect tensile fatigue test
was used to study the fatigue resistance of cold recycling mixtures [29]. The moisture
susceptibility of cold recycling mixtures under immersion or freeze–thaw condition is
also very important, which can be improved by optimizing the gradation and adding the
appropriate amount of emulsified asphalt, cement, and fibers [30–34].

The cold in-place recycling mixture is mainly used for low-grade highway surface lay-
ers or high-grade highway base layers, and relevant research has been studied by scholars
at home and abroad. The cold in-place recycling mixture is rarely applied to high-grade
highway high-layer surface layers because of the limitations of the material performances
and construction quality of on site. In addition, the research subjects of relevant studies are
mostly cold recycling mixtures prepared in the laboratory, with few scholars conducting
systematic research on the service performance of cold recycling pavements in service in
practical engineering. The durability is directly affected by the rutting resistance, cracking
resistance, and moisture susceptibility of the cold recycling mixtures in the duration of their
service. In this paper, the application effects of cold recycling mixtures in the middle layer
of pavement structure are comprehensively evaluated. The research subjects consisted
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of two sections of emulsified asphalt cold in-place recycling pavement. By drilling core
samples on the pavement, various pavement performances of the cold recycling mixture
were analyzed through different test methods.

2. Test Design
2.1. Cold in-Place Recycling Maintenance Scheme

Two sections of emulsified asphalt cold in-place recycling pavement were selected
in expressway practical engineering. The construction was completed in July 2019 with
the pavement core drilling conducted in December 2019, followed by related tests. The
maintenance scheme, that milling of 1 cm on the upper layer of the original pavement and
cold recycling of the upper and middle layers synchronously followed by the laying of an
overlay, was designed in the traffic lane, based on which the cold recycling layer was used
as the middle layer of the maintenance pavement structure. For the cold recycling mixture,
besides adding 3.5% of SBR emulsified asphalt (by mass of RAP materials, the same below),
2.0% of cement and 2.79% of water (ensuring the optimum moisture content) were added
into the cold recycling mixture. These additives can improve the workability and enhance
the comprehensive performances of the cold recycling mixture. The emergency lane was
directly paved with an overlay due to its original good performance. The maintenance
schemes are shown in Figure 1. In the figures, SMA stands for stone matrix asphalt, and AC
stands for asphalt concrete. The numbers of 13, 16, 20, and 25 represent nominal maximum
aggregate size of 13.2 mm, 16 mm, 19 mm, and 26.5 mm, commonly used in China.

2.2. Test Methods
2.2.1. High-Temperature Stability Test

(1) Dynamic creep test

A dynamic creep test was conducted based on asphalt mixture performance tester in
accordance with the standard of AASHTO T 378-17 [35]. The test temperature was set at
60 ◦C initially and then adjusted to 55 ◦C due to the rapid destruction of the core samples.
The load was applied at 0.7 MPa, with a half-sine wave as the loading waveform and a
loading cycle of 1 s (consisting of a half-sine pressure load for 0.1 s and an interval for 0.9 s).

The dynamic creep test curve was composed of three phases: migration, stabilization,
and damage. The model formulas for each stage were given in Equations (1)–(3). In
the migration phase, the accumulation of permanent deformation was rapid, but the
accumulation rate decreased slowly. In the stabilization phase, the accumulation rate of
permanent deformation remained generally constant, while the deformation accumulation
was slow. As for the damage phase, the deformation accumulation began to grow fast
with a sharply rising growth rate. The number of repeated load actions for the third phase
was determined as the flow number (FN), representing the inflection point at which the
permanent deformation of the asphalt mixture entered a rapid-developing phase. In this
paper, the FN was adopted as a dynamic creep test indicator for evaluating the ultimate
high-temperature stability of asphalt mixtures.

εp= a× Nb (1)

εp= εps+c× (N − N ps) (2)

εp= εst+d× (e f (N−Nst)−1) (3)

where εp donates the accumulative permanent strain, εps represents the permanent strain
at the beginning of the second phase, εst stands for the permanent strain at the beginning
of the third phase, N means the number of load actions, Nps corresponds to the number of
load actions at the beginning of the second phase. Nst is the number of load actions at the
beginning of the third phase, and the letters a, b, c, d, e, and f are material constants related
to the test conditions.
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(2) MMLS3 accelerated loading test

The accelerated loading test was carried out based on 1/3 model mobile load simulator
(MMLS3). Simulated loading was performed with a maximum load of 2.7 KN, equivalent
to a 0.7 MPa load. The test was conducted at a maximum loading speed of 9 km/h
(7200 times/h) and in a water bath heating environment of 60 ◦C. More details of the
test setup are available in the relevant literature [36]. The rutting depth of the samples
at different numbers of loading was recorded to reflect the high temperature and anti-
deformation of the asphalt mixture. The indicators of the MMLS3 accelerated loading test
included the deformation after 100,000 times of loading (RD10) and the deformation ratio
between 100,000 and 200,000 times of loading (DS20−10), with the former characterizing the
high-temperature stability of the asphalt mixture at the early stage of the loading while the
latter characterizing the long-term high-temperature stability of the asphalt mixture. The
calculation for DS20−10 is shown in Equation (4).

DS20−10 =
RD20−RD10

20− 10
×100 (4)

where DS20−10 is the deformation rate between 100,000 and 200,000 times of loading
(10−3 µm/time), RD10 donates the deformation after 100,000 times of loading (mm), and
RD20 means the deformation after 200,000 times of loading (mm).

2.2.2. Anti-Cracking Performance Test

A semi-circular bending (SCB) test was conducted at the temperature of 15 ◦C and a
loading rate of 50 mm/min in accordance with the standard of AASHTO TP 124-16, with
the typical test loading curve shown in Figure 2 (from TP 124-16, AASHTO Provisional
Standards, published by the American Association of State Highway and Transportation
Officials, Washington, DC, USA, used with permission) [37]. In Figure 2, the letter u1
represents the intersection of the post-peak slope with the displacement-axis. A straight
line is drawn connecting the inflection point and displacement axis with a slope m. The
letter ufinal means displacement at the 0.1 kN cut-off load. The intersection of the arrow
with the displacement-axis stands for the displacement at peak load. The test indicators
consisted of fracture energy and flexibility index (FI). The damage form of the specimen
in the SCB test is similar to the cracking process of asphalt pavement. The SCB test can
be used to predict the crack propagation law of asphalt pavement. The fracture energy
represents energy required to create a unit surface area of a crack. Therefore, the calculated
fracture energy indicates an asphalt mixture’s overall capacity to resist cracking-related
damage. Generally, a mixture with higher fracture energy can resist greater stresses with
higher damage resistance. A greater value of both indicators implied better anti-cracking
performance of the asphalt mixture. Fracture energy Gf reflected the total energy absorbed
from the material from the state of intactness to fracture, which was calculated by the ratio
of the fracture power to the toughness zone area in Equation (5).

G f =
W f

Arealig
(5)

where Gf represents the fracture energy (J/m2). Arealig means the toughness zone area (m2),
which was calculated as shown in Equation (6):

Arealig = (r− a)×t (6)

where the letter r is the radius of the sample (m). The letter a means the crack length (m).
The letter t stands for sample thickness (m).



Materials 2023, 16, 1613 6 of 16Materials 2023, 16, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. Typical test loading curve of SCB test [37]. 

G f = 
Wf

Arealig
 (5) 

where Gf represents the fracture energy (J/m2). Arealig means the toughness zone area (m2), 

which was calculated as shown in Equation (6): 

Arealig=(r-a)×t (6) 

where the letter r is the radius of the sample (m). The letter a means the crack length (m). 

The letter t stands for sample thickness (m). 

Wf means the work of fracture (J), which can be calculated using the integral equation 

below. 

Wf=∫Pdu (7) 

where the letter P means the applied load (N). The letter u is the average displacement of 

the load (m). The letter du represents differentiation of the displacement u. 

The flexibility index was calculated as follows: 

FI=
Gf

|𝑚|
×A (8) 

where FI indicates the flexibility index (dimensionless). Gf means the fracture energy 

(J/m2). |m| is the absolute value of the inflection point slope of the load displacement 

curve after the peak (kN/mm). The letter A denotes the unit conversion coefficient, which 

is 0.01. 

2.2.3. Moisture Susceptibility Test 

The moisture susceptibility of emulsified asphalt cold recycling mixtures was evalu-

ated via the wet–dry splitting test and freeze–thaw splitting test. The former adopted the 

wet–dry splitting strength ratio as the evaluation indicator, which is the percentage of the 

splitting strength in water immersion for 24 h to that in normal conditions (Equation (9)). 

The splitting test under normal conditions was carried out based on the T0716 in accord-

ance with Chinese specification of JTG E20-2011 [38]. In the 24 h water immersion splitting 

test, the samples were completely immersed in a constant temperature water bath at 25 

°C for 22 h in advance, after which the splitting strength was tested according to the 

Figure 2. Typical test loading curve of SCB test [37].

Wf means the work of fracture (J), which can be calculated using the integral equation below.

W f =
∫

Pdu (7)

where the letter P means the applied load (N). The letter u is the average displacement of
the load (m). The letter du represents differentiation of the displacement u.

The flexibility index was calculated as follows:

FI =
G f

|m|×A (8)

where FI indicates the flexibility index (dimensionless). Gf means the fracture energy (J/m2).
|m| is the absolute value of the inflection point slope of the load displacement curve after
the peak (kN/mm). The letter A denotes the unit conversion coefficient, which is 0.01.

2.2.3. Moisture Susceptibility Test

The moisture susceptibility of emulsified asphalt cold recycling mixtures was evalu-
ated via the wet–dry splitting test and freeze–thaw splitting test. The former adopted the
wet–dry splitting strength ratio as the evaluation indicator, which is the percentage of the
splitting strength in water immersion for 24 h to that in normal conditions (Equation (9)).
The splitting test under normal conditions was carried out based on the T0716 in accordance
with Chinese specification of JTG E20-2011 [38]. In the 24 h water immersion splitting test,
the samples were completely immersed in a constant temperature water bath at 25 ◦C for
22 h in advance, after which the splitting strength was tested according to the requirements
of the splitting test under normal conditions. The wet–dry splitting strength ratio of emulsi-
fied asphalt cold recycling mixtures should not be less than 80% for heavy-load and above
transportation purposes.

TSR1 =
Rwet

Rdry
× 100 (9)

where TSR1 means the dry–wet splitting strength ratio (%). Rwet represents the average
value of splitting tensile strength of effective samples after immersion curing (MPa). Rdry
denotes the average value of splitting tensile strength of effective samples after normal
curing (MPa).
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As the evaluation indicator for the freeze–thaw splitting test, the freeze–thaw splitting
strength ratio was calculated in Equation (10) and performed based on the T0729. The
freeze–thaw splitting strength ratio of emulsified asphalt cold recycling mixtures should
not be less than 75% for heavy-load and above transportation purposes.

TSR2 =
RT2

RT1
× 100 (10)

where TSR2 is the freeze–thaw splitting strength ratio (%). RT2 indicates the average value
of splitting tensile strength of effective samples after freeze–thaw cycles (MPa). RT1 stands
for the average value of splitting tensile strength of effective samples without freeze–thaw
cycles (MPa).

2.3. Coring Sample Schemes

The coring sample schemes for different tests are shown in Table 1. The core samples
for the SCB test were cut into two semi-circles. The appearance of coring samples is shown
in Figure 3.

Table 1. Coring sample schemes of different tests.

Test Type Core
Sample Size

Section 1 Section 2

Traffic Lane Emergence Lane Traffic Lane Emergence Lane

Dynamic
creep test

Diameter/cm 10 10 10 10
Height/cm 13 13 14 14

Component Overlay + recycling layer Overlay + original upper
layer + original middle layer Overlay + recycling layer Overlay + original upper

layer + original middle layer

MMLS3
loading test

Diameter/cm 15 15 15 15
Height/cm 10 10 10 10

Component Overlay + part of
recycling layer

Overlay + original upper
layer + part of original

middle layer

Overlay + part of
recycling layer

Overlay + original upper
layer + part of original

middle layer

SCB test

Diameter/cm 15 15 15 15
Height/cm 4 5 4 4 4 5 4 4

Component Overlay
Part of

recycling
layer

Overlay Original
upper layer Overlay

Part of
recycling

layer
Overlay Original

upper layer

Splitting test

Diameter/cm 10 10 10 10
Height/cm 4 5 4 4 4 5 4 4

Component Overlay
Part of

recycling
layer

Overlay Original
upper layer Overlay

Part of
recycling

layer
Overlay Original

upper layer
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3. Test Results and Analysis
3.1. Analysis of High-Temperature Stability

(1) Dynamic creep test

Table 2 presents the dynamic creep test results of core samples of different types of
mixtures. In Table 2, for example 1#, the “#” stands for a symbol of specimen number, distin-
guishing that “1” is not a numerical value for test analysis (unless stated, the same below).

Table 2. Dynamic creep test results of different core samples.

Section Type Position Mixture Test
Temperature/◦C

Loading Cycles
(Number) FN (Number)

Section 1
Traffic lane Recycling layer 60 42 8

Emergence lane Overlay of SMA-13 55 601 314

Section 2
Traffic lane Recycling layer -1# 55 57 10
Traffic lane Recycling layer -2# 55 64 11

Emergence lane Overlay of SMA-13 55 900 564

According to Table 2, the FN of overlay of SMA-13 stood at 439 times on average.
Under a test temperature of 60 ◦C, the FN of cold recycling mixtures only reached 8, and
the core samples of mixtures were damaged quickly. The FN increased to only 10~11, even
when the temperature was changed to 55 ◦C. Therefore, the high-temperature stability of
cold recycling mixtures was much lower than that of SMA overlay mixtures.

(2) MMLS3 loading test

Figure 4 provides the MMLS3 accelerated loading test results of core samples of
different types of mixtures, and Figure 5 presents the appearance of the core samples of
cold recycling mixtures after loading. The deformation RD10 (after 100,000 times of loading)
and the deformation rate DS20−10 (between 100,000 times and 200,000 times of loading)
were calculated as shown in Table 3.
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Table 3. Calculation result of RD10, DS20−10.

Evaluation Index

Mixtures of SMA-13 Overlay Cold Recycling
Mixtures

Section 1 Section 2 Section
1

Section
2

1# 2# 3# 4# 5# 6# 7# 8# 9#

RD10 (mm) 1.20 1.35 1.61 1.43 1.12 1.51 2.03 3.70 3.85
DS20−10 /(10−3 µm/cycle) 1.7 2.5 2.6 2.7 2.4 3.4 4.3 3.4 5.3
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In Figure 4, although the deformation of both cold recycling mixtures and SMA-13
overlay mixtures was below 5 mm after 200,000 times of loading, this was not much large.
The cold recycling mixtures started to drop particles under high temperature and hydrody-
namic pressure, though complete loosening did not take place under the restraint of the
mold. When the mold was removed at the end of the test, however, serious loosening oc-
curred in the cold recycling mixtures (Figure 5). In addition, the high-temperature stability
of SMA-13 overlay mixtures was better than that of cold recycling mixtures according to
indicators RD10 and DS20−10, with the RD10 average value (1.5 mm) of SMA-13 overlay
mixtures smaller than that (3.8 mm) of cold recycling mixtures and the DS20−10 average
value (2.8 × 10−3 µm/cycle) of the former also smaller than that (4.4 × 10−3 µm/cycle) of
the latter.

In summary, emulsified asphalt cold recycling mixtures were inferior to SMA-13
overlay mixtures in terms of high-temperature stability, which was attributed to the use of
styrene-butadiene-styrene (SBS) modified asphalt and skeleton-dense gradation of the latter.
Emulsified asphalt cold recycling mixtures were regenerated with the original upper layer
(modified asphalt) and the middle layer (ordinary asphalt) and mixed with some modified
emulsified asphalt and cement. Regardless of their asphalt performance or gradation
composition, they were worse than the newly paved SMA mixtures. Furthermore, due to
the slow moisture evaporation and cement hydration of emulsified asphalt, the strength of
cold recycling mixtures formed in a longer time. Therefore, the poor strength was also a
cause for their worse high-temperature performance compared to the SMA mixtures.

3.2. Analysis of Anti-Cracking Performance

Figure 6 illustrates the SCB test results of core samples of different types of mixtures.
As shown in Figure 6, the best anti-cracking performance of the newly paved SMA

mixtures was achieved with an average fracture energy of 2849 J/m2 and an average FI
of 19.9. In contrast, the average fracture energy and FI of the cold recycling mixtures were
1696 J/m2 and 8.3, respectively, markedly lower than the newly paved SMA mixtures in
fracture energy. Moreover, the average fracture energy and FI of the original AC layer
mixtures was 1754 J/m2 and 5.6, respectively, while those of original SMA layer mixtures
reached 1388 J/m2 and 5.0, respectively. Therefore, cold recycling mixtures were similar to
original layer mixtures in anti-cracking performance.

As for the newly paved SMA mixtures, new SBS modified asphalt was adopted as the
cementing material, featuring a high asphalt content and large filler-asphalt ratio, both of
which can improve the anti-cracking performance. The serious aging condition of asphalt
in emulsified asphalt cold recycling mixtures, together with the added cement, led to the
decline in their anti-cracking performance.

3.3. Analysis of Moisture Susceptibility
3.3.1. Effects of Curing Duration on Splitting Strength

Firstly, a set of core samples was drilled and taken every two days within eight days
after the cold recycling layer of emulsified asphalt was formed, followed by the test of
splitting strength, to analyze the effects of curing duration on the splitting strength of
cold recycling mixtures. The splitting strength test results of the core samples of the cold
recycling layer at 15 ◦C after different curing durations are given in Figure 7.

According to Figure 7, the splitting strength of cold recycling mixtures grew gradually
as the duration of curing prolonged, suggesting that a proper curing duration was necessary
for ensuring sufficient mechanical strength of cold recycling mixtures. The splitting strength
development of cold recycling mixtures exhibited two phases depending on the formation
law of splitting strength. The cold recycling mixtures welcomed the first stabilization phase
on 3 d and the second one on 7 d of curing. A benchmark was set with the splitting strength
of 0.60 MPa on 7 d of curing, thus the splitting strength on 1 d was 0.21 MPa, only 35%
of the benchmark. The splitting strength stood at 0.39 MPa on 3 d, reaching 65% of the
benchmark and achieving the early-stage strength to some degree.
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Figure 6. Semi-circular bending test results. (a) Fracture energy and FI of Section 1; (b) fracture
energy and flexibility index of Section 2.

3.3.2. Moisture Susceptibility of Core Samples

Figures 8 and 9 show the dry–wet splitting strength ratio and the freeze–thaw splitting
strength of different types of mixture of core samples.

As shown in Figure 8, the dry–wet splitting strength ratios of core samples of different
types of mixtures varied greatly. In Pavement Section 1, the dry–wet splitting strength ratio
was 74.1% for the cold recycling layer, 115% for the SMA overlay on average, and 88.7% for
the original AC layer. In Pavement Section 2, the dry–wet splitting strength ratio was 80.1%
for the cold recycling layer, 98.3% for the SMA overlay on average, and 75% for the original
SMA layer. Therefore, the dry–wet splitting strength ratio of the emulsified asphalt cold
recycling layer was significantly smaller than that of the SMA overlay but was close to that
of the original pavement.
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Figure 8. Dry–wet splitting test results. (a) Dry–wet splitting strength ratio of Section 1; (b) dry–wet
splitting strength ratio of Section 2.
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Figure 9. Freeze–thaw splitting test results. (a) Freeze–thaw splitting strength ratio of Section 1;
(b) freeze–thaw splitting strength ratio of Section 2.

According to Figure 9, there was a wide difference among the freeze–thaw splitting
strength ratios of the core samples of different types of mixtures as well. In Pavement
Section 1, the freeze–thaw splitting strength ratio was 83.2% for the cold recycling layer,
92.2% for the SMA pavement layer on average, and 82% for the original AC layer. In
Pavement Section 2, the freeze–thaw splitting strength ratio was 83.9% for the cold recycling
layer, 92.4% for the SMA pavement layer on average, and 72.2% for the original SMA layer.
As a result, the freeze–thaw splitting strength ratio of the emulsified asphalt cold recycling
layer was also dramatically smaller than that of the SMA overlay and merely similar to that
of the original pavement.

Based on the above analysis, the emulsified asphalt cold recycling mixture was much
inferior to the newly paved SMA overlay but close to the original pavement in terms
of moisture susceptibility, indicating that the cold in-place recycling technology cannot
improve the moisture susceptibility of the original pavement. This was mainly attributed
to the serious aging condition of the original asphalt in the cold recycling mixture, poor gra-
dation and significant variability of the mixture, and unfavorable factors such as difficulties
in the control of construction quality for large thickness recycling of the original pavement.
Such adverse factors would lead to limited or failed effects of cold recycling technology on
the moisture susceptibility of the original pavement. In the newly paved SMA overlay, the
fresh SBS modified asphalt was used as the cementing material. In addition, the traits of a
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high asphalt content, a high filler–asphalt ratio, and the added fibers were all beneficial to
the enhancement of moisture susceptibility.

According to the Specification of JTG/T 5521-2019 in China, in case of the use of emul-
sified asphalt cold recycling mixtures for heavy-load and above transportation purposes,
the dry–wet splitting strength ratio shall be greater than 80% and the freeze–thaw splitting
strength ratio shall exceed 75%. As shown by the test results of core samples drilled on site
from the emulsified asphalt cold recycling pavement, the dry–wet splitting strength ratio
of Pavement Section 1 did not meet the requirements, while that of Pavement Section 2
was merely qualified. However, the freeze–thaw splitting strength ratio of both sections
satisfied the requirements. The wet–dry splitting strength ratio and the freeze–thaw split-
ting strength ratio, both of which are key control indicators for the quality of cold recycling
mixtures, significantly affect the moisture susceptibility and anti-loosening performance
of cold recycling pavements after they are put into service. The road project had been put
into service for 6 months when the cores were taken, so the strength of the cold recycling
mixtures had been further improved compared with the time when the pavement initially
came into use. Nevertheless, the samples still failed the standards, indicating that the
improvement of moisture susceptibility is a key issue for the use of cold recycling mixtures
in high-layer recycling of asphalt pavement.

4. Conclusions

Two sections of emulsified asphalt cold in-place recycling pavement were selected
in expressway practical engineering. By drilling core samples on the pavement, various
pavement performances of the cold recycling mixture were analyzed through different test
methods. The conclusions drawn are summarized as follows.

(1) The cold recycling layer was used as the middle layer of the maintenance pavement
structure in high grade highway. Regardless of rutting resistance, cracking resistance, or
moisture susceptibility, the comprehensive performances of cold recycling mixture were
inferior to the newly paved SMA mixture.

(2) After opening to traffic 5 months, the cold recycling mixture of core samples
loosened during the process of loading test, and the dry–wet splitting strength ratio failed
the standards. The slow strength formation resulted in insufficient durability of the cold
recycling mixture under high temperature and water immersion.

(3) The cement was used as a stabilizer in the cold recycling mixture. Adding a proper
amount of stabilizer can improve the comprehensive performances of the cold recycling
mixture. However, due to the performance attenuation and gradation deterioration of RAP
materials, it is difficult for existing stabilizers to improve the performances to the level of
fresh mixture. New types of stabilizers need to be developed to produce high performance
cold recycling mixtures. Moreover, strength formation has a significant effect on the
comprehensive performances of the cold recycling mixture. In the research, slow-setting
emulsified asphalt and ordinary Portland cement were used. The effect of rapid-setting
emulsified asphalt on the performances of cold recycling mixtures should be focused on,
along with the early-strength type of cement. The size and voids of coring samples have
significant influence on the test results. The volume parameters of coring samples should
be considered to ensure more reliable test results.
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