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Abstract: Water-soluble azo derivatives of lignin were synthesized by the azo coupling reaction
using organosolv ethanol lignin and diazonium salts based on sulfanilic acid and p-nitroaniline. The
structure of azo derivatives of lignin were studied by nuclear magnetic resonance, Fourier-transform
infrared spectroscopy, and gel permeation chromatography. It was found that the azobenzene bonds
formed in the azo coupling reaction of macromolecules impart the photosensitive properties to the
synthesized polymers via cis–trans photoisomerization of the diazobenzene group. It was shown
experimentally that the synthesized polymers exhibited good solubility both in the aqueous media in
a wide (2–12) pH range and in DMSO and THF organic solvents, which opens up new prospects for
their application.
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1. Introduction

The continuous striving towards mastering new directions in the pulp and paper
and hydrolysis industries has made biomass the leading raw material for the sustainable
development of quite a few promising areas [1–4]. The lignocellulosic materials, owing to
their high-value characteristics, abundance in nature, renewability, availability, and ease of
production, can contribute to the rapid growth of the transition from fossil to renewable
carbon resources [5,6]. In contrast to conventional fossil feedstocks, which are mostly
hydrocarbons, lignocellulosic biomass is a functionalized biopolymer composed of three
main biopolymers: cellulose, hemicellulose, and lignin.

Lignin is one of the richest multifunctional aromatic biomass resources [7]; it contains
many aliphatic and phenolic OH groups and stilbene and arylenol ether groups offering vast
opportunities for functionalization [8–10]. However, the global pulp and paper industry
and bioethanol processing enterprises process 98% of lignin as low-value fuel or waste [10];
in other words, lignin is not used to its maximum potential.

To expand the use of lignin resources, new methods for modifying lignin and pos-
sible uses of the polymers based on it are being intensively sought. The introduction of
different chemicals into the structure of polymers imparts new physicochemical properties,
which can be controlled by external factors, e.g., light, heat, and pH [11,12]. In particular,
esterification of the phenolic hydroxyl groups of lignin with anhydrides or acid halides of
long-chain aliphatic acids can turn lignin from brittle to elastic [13]. There are quite a few
examples of modifying the lignin properties by the organic synthesis methods [14,15]. A
reaction that is well-known in organic chemistry and has been developed comprehensively
with respect to lignin is the azo coupling reaction.
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Azo polymers containing azochromophores have attracted much attention due to
the unique trans–cis isomerization properties of the azochromophores when exposed to
ultraviolet (UV) or visible light and have broad prospects for molecular electronics such as
optical storage devices and optical switches [11,16,17] and for cosmetology [18].

In addition, there are studies [19] reporting the results of laboratory testing of modified
lignins (azo derivatives of lignin) obtained in the reaction of sulfate lignin with diazonium
salts as inhibitors of undesired thermopolymerization of reactive unsaturated compounds
during processing of pyrocondensates. They exhibit good inhibitory properties similar to
those of the well-known polymerization inhibitor 2,6-ditert-butyl-p-cresol (Ionol). In view
of this, the production and use of various environmentally sensitive lignin-based polymers
are important for biomass utilization.

A promising lignin-containing raw material for investigations is the Siberian fir (Abies
Sibirica Ledeb.) that is widely distributed over the northeastern regions of the European part
of Russia and in Western and Eastern Siberia [20]. For many years, this evergreen coniferous
tree [20] has been used in various fields, in particular, in medicine for the prevention and
treatment of diseases [21].

The aim of this study was to develop the modification methods based on introducing
azobenzene groups into terminal units of lignin from the Abies Sibirica Ledeb. wood, to
investigate the functionalization efficiency by nuclear magnetic resonance (NMR), Fourier-
transform infrared (FTIR) spectroscopy, and gel permeation chromatography (GPC), and to
estimate the photosensitivity of modified lignins in the UV and visible spectral ranges.

2. Materials and Methods

For the synthesis and physicochemical study of azo derivatives of organosolv lignin,
the samples of ethanol lignin prepared from the Abies Sibirica Ledeb. wood by the original
technique [22] and the samples sulfated with 1,4-dioxane and urea were used [23].

2.1. Fourier-Transform Infrared Spectroscopy

To identify the functional groups contained in the synthesized azo polymers, IR spectra
in the wavelength range of 4000–400 cm−1 were recorded on a Tensor 27 FTIR spectrometer
(Bruker Optik Gmbh, Ettingen, Germany) at the Krasnoyarsk Regional Center for Collective
Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences.
The spectral data were processed using the OPUS software package, version 5.5. The
samples for the FTIR spectroscopy investigations were prepared in the form of tablets in a
potassium bromide matrix. The preparation conditions (time of mixing with potassium
bromide, tableting pressure, and evacuation time) were the same for all the samples. The
substance concentration in the tablets was constant and amounted to 4 mg per 1000 mg
of KBr.

2.2. Nuclear Magnetic Resonance

Two-dimensional (2D) nuclear magnetic resonance (NMR) spectra were recorded on a
Bruker AVANCE III 600 spectrometer (Bruker BioSpin, Rheinstetten, Germany) at working
frequencies of 600 MHz (1H) and 155 MHz (13C) at 25 ◦C using 5 mm ampoules. About
0.08 g of lignin was dissolved in 0.6 mL of deuterated dimethyl sulfoxide and then 2D NMR
spectra were recorded in the heteronuclear single quantum correlation (HSQC) experiments.
The spectral widths in the 1H and 13C measurements were 8000 and 28,000 Hz, respectively.
The number of accumulations was 16 thousand with a delay of 5 s for 1H and 20 thousand
with a delay of 7 s for 13C. The δC 40.1; δH 2.5 solvent signal was used as an internal
standard. The cross-signals of the HSQC spectra were interpreted using the literature data.

2.3. Gel Permeation Chromatography

The average molecular weight Mw, number average molecular weight Mn, and the
polydispersity index (PDI) of the azo lignins were determined by gel permeation chro-
matography (GPC) using an Agilent 1260 Infinity II Multi-Detector GPC/SEC System
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(Agilent Technologies, Santa Clara, CA, USA) with triple detection: refractometer (RI),
viscometer (VS), and light scattering (LS). The separation was performed on two combined
PL Aquagel-OH Mixed-M columns using the mixture 0.2 M NaNO3 + 0.01 M NaHPO4 as
the mobile phase for the aqueous solutions and tetrahydrofuran (THF) as the mobile phase
for the organic solutions. The columns were calibrated using polyethylene glycol (PEG)
and polystyrene (PS) polydisperse standards (Agilent, Santa Clara, CA, USA). The eluent
flow rate was 1 mL/min and the injected sample volume was 100 µL. Before the analysis,
the water-soluble samples were dissolved in water (1.5 mg/mL) and the remaining sam-
ples, due to their insolubility in water, were dissolved in THF (1.5 mg/mL) and filtered
through a 0.45 µm Millipore PTFE membrane filter. The data collection and processing
were performed using the Agilent GPC/SEC MDS software version 2.2.

2.4. Thermal Analysis

The thermogravimetry study was carried out on a NETZSCH TG 209 F1 thermal
analyzer (Netzsch, Selb, Germany) and the data obtained were analyzed. The thermal
decomposition of the samples was analyzed in nitrogen in the temperature range from 25
to 700 ◦C. The protective and blowout gas flow rates were 20 mL/min. The samples were
heated in cylindrical corundum crucibles in the dynamic temperature regime (10 ◦C/min).
The TG 209 F1 analyzer was calibrated according to the instructions and using the reference
manifestations that appear with the device The samples were weighed on an XFR-125E
laboratory balance. The measurement data were processed using the NETZSCH Proteus
Thermal Analysis 4.8.4 software supplied with the instrument.

2.5. Spectrophotometry Analysis

The photosensitivity of the free azo derivatives of lignin was examined on a SPEKOL-
1300 spectrophotometer (Analytik Jena AG, Jena, Germany) in a quartz cuvette with an
optical path length of 1 cm. The samples were dissolved in dimethyl sulfoxide (DMSO).
The volume of the solution with a concentration of 3 · 10−3 M was 200 µL. The degree of
isomerization was monitored by the height of a peak at 190–500 nm. Prior to irradiation,
the solution of the azo derivatives of lignin contained a mixture of the cis and trans isomers
with a predominance of the latter. To convert the compound to the trans-configuration,
the solution was irradiated by a UV lamp light with a wavelength of 470 nm for 1 min. To
obtain the cis-isomer, the exposure at a wavelength of 365 nm lasted for 1 h. After that, the
reverse isomerization at a wavelength of 470 nm for 2 min was performed.

3. Results

The azo derivatives were synthesized in the reaction of lignin with diazonium salts,
which were obtained on the basis of sulfanilic acid and p-nitroaniline. It was shown
that the interaction of lignin with diazo compounds induces the azo coupling reaction.
The azo group becomes ortho to the phenolic hydroxyl. Figure 1 shows a representative
structure of lignin of abies wood functionalized with p-nitroaniline and sulfanilic acid.
Only 0.3–0.4 azo groups are attached to each free phenolic hydroxyl, which is related to
the partial condensation of the ortho position (position 5) and/or partial esterification of
phenolic hydroxyl. As was established previously, the azo group replaces hydrogen in the
benzene ring only in the presence of free phenolic hydroxyl [24].

It is well known that, in the process of combining lignin with diazonium salts at a pH
above 10, the diazo group is deactivated and turns into its inactive form, i.e., diazotate [25].

In addition, the strongly alkaline environment provokes a side arylation reaction,
which adds nitrogen-free diazo radicals to lignin. This causes the release of gaseous nitrogen.
Therefore, the synthesis was carried out in a weakly alkaline (about 8–10) medium.
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3.1. Synthesis of Azo Lignin Using p-Nitroaniline

In the synthesis, 1.125 mL of water, 1.125 mL of concentrated hydrochloric acid, and
0.5 g of p-nitroaniline were put into a 100 mL reaction beaker. The solution was cooled to
0 ◦C in a mixture of ice and salt and a solution of 0.35 g of sodium nitrite in 1 mL of water
(solution
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2). The resulting solution was cooled down in a mixture of ice and salt to 0 ◦C and the
diazonium salt solution was gradually added to it under stirring. The reaction mixture was
left for 0.5 h in an ice bath and then the precipitate was filtered off on a Buchner funnel.
Next, the obtained azo lignin (EL-azo-NO2/SEL-azo-NO2) was dried in air. The process
scheme is shown in Figure 2.
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the alkaline solution. After cooling down the resulting solution to 0–5 ◦C, it was gradually
poured into 10 mL of 2 N hydrochloric acid cooled to 5 ◦C under stirring.

In a separate beaker, 0.9 g of EL/SEL was dissolved upon heating in 5 mL of 2 N
sodium hydroxide solution (solution
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3.2. Synthesis of Azo Lignin with Sulfanilic Acid 
Solution № 1 was prepared from 1 g of sulfanilic acid and 2.5 mL of 2 N sodium 

hydroxide solution. A solution of 0.4 g of sodium nitrite in 5 mL of water was added to 

1 under stirring, which continued for 0.5 h. To remove unreacted
substances, the product was dialyzed in an MF-503-46 MFPI dialysis bag (US) with a pore
size of 3.5 kDa against water for 8–10 h; the water was changed every hour. After dialysis,
the solution was evaporated to dryness under vacuum on a rotary evaporator and the solid
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water-soluble residue was obtained: azo lignin (EL-azo-SO3H/SEL-azo-SO3H). The process
scheme is shown in Figure 3.
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3.3. FTIR Spectroscopy Study of Azo Lignins

When comparing the FTIR spectra of the initial lignin sample with its azo derivatives
(Figure 4), some distinctive changes were found. In particular, the shape of the absorption
band between 3100 and 3600 cm−1 corresponding to the OH group changed, apparently
due to the conversion of phenolic OH groups to aliphatic ones [26].

Materials 2023, 16, x FOR PEER REVIEW 5 of 12 
 

 

the alkaline solution. After cooling down the resulting solution to 0‒5 °C, it was gradual-
ly poured into 10 mL of 2 N hydrochloric acid cooled to 5 °C under stirring. 

In a separate beaker, 0.9 g of EL/SEL was dissolved upon heating in 5 mL of 2 N so-
dium hydroxide solution (solution № 2). The solution was cooled in a bath filled with 
ice. 

After the completion of the reaction, cooled solution № 2 was rapidly added to ob-
tained solution № 1 under stirring, which continued for 0.5 h. To remove unreacted sub-
stances, the product was dialyzed in an MF-503-46 MFPI dialysis bag (US) with a pore 
size of 3.5 kDa against water for 8‒10 h; the water was changed every hour. After dialy-
sis, the solution was evaporated to dryness under vacuum on a rotary evaporator and 
the solid water-soluble residue was obtained: azo lignin (EL-azo-SO3H/SEL-azo-SO3H). 
The process scheme is shown in Figure 3. 

 
Figure 3. Scheme of nitriding lignin with sulfanilic acid. 

3.3. FTIR Spectroscopy Study of Azo Lignins 
When comparing the FTIR spectra of the initial lignin sample with its azo deriva-

tives (Figure 4), some distinctive changes were found. In particular, the shape of the ab-
sorption band between 3100 and 3600 cm‒1 corresponding to the OH group changed, ap-
parently due to the conversion of phenolic OH groups to aliphatic ones [26]. 

 
Figure 4. FTIR spectra of (1) EL, (2) EL-azo-NO2, (3) SEL-azo-NO2, (4) EL-azo-SO3H, (5) SEL-azo-
SO3H. 

The analysis of the FTIR spectra of the EL-azo-NO2 and SEL-azo-NO2 lignins re-
vealed pronounced absorption bands with maxima at ~1500 and ~1345 cm‒1 related to 
the symmetrical and asymmetrical stretching vibrations of the NO2 group associated 
with the aryl radical [27], which indicates the introduction of p-nitroaniline into the lig-
nin system. The absorption bands with medium intensities at 700, 750, and 850 cm‒1 are 
related to the NO2 vibrations as well [28]. 

Figure 4. FTIR spectra of (1) EL, (2) EL-azo-NO2, (3) SEL-azo-NO2, (4) EL-azo-SO3H, (5) SEL-azo-SO3H.

The analysis of the FTIR spectra of the EL-azo-NO2 and SEL-azo-NO2 lignins revealed
pronounced absorption bands with maxima at ~1500 and ~1345 cm−1 related to the sym-
metrical and asymmetrical stretching vibrations of the NO2 group associated with the aryl
radical [27], which indicates the introduction of p-nitroaniline into the lignin system. The
absorption bands with medium intensities at 700, 750, and 850 cm−1 are related to the NO2
vibrations as well [28].

In the EL-azo-SO3H and SEL-azo-SO3H FTIR spectra, the following changes were found:
the appearance of absorption bands with maxima at 850 and 1110 cm−1 corresponding to
the R–SO2–OH and R–SO–OH stretching vibrations, noticeable absorption bands around
1000 cm−1 corresponding to the S=O stretching vibrations, and the absorption band with a
maximum at ~1190 cm−1 characterizing the C=S stretching vibrations.

These pronounced changes illustrate the efficient azo coupling reaction in the lignin samples.

3.4. Nuclear Magnetic Resonance Study of Azo Lignins

The comparison of the signals areas in the EL and EL-azo-NO2 [1H–13C] HSQC spectra
showed that the NMR spectra of these samples were largely identical, but with some
obvious changes (Figures 5a,b and 6a,b).
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Figure 6. Aromatic region of the 2D HSQC NMR spectra for (a) EL and (b) EL-azo-NO2.

The most intense signals in the aromatic region of the HSQC spectra (δ13C/δ1H 107-
123/7.3-6.4) correspond to aromatic guaiacyl (G) structural units. The peaks assigned to the
CH groups at positions 2, 5, and 6 of the guaiacyl ring in the initial and azo ethanol lignin
are almost identical, which confirms the absence of nitriding over phenolic hydroxyls.

The signals of pinoresinol (D) fragments were identified in the spectra of both ethanol
lignin and its azo derivative, except for Dγ. The correlation signals of the pinoresinol
fragments of abies ethanol lignin and azo ethanol lignin were similar.

Abies ethanol lignin and azo ethanol lignin contain phenylcoumarane fragments
(the δ13C/δ1H ratios are 88.6/5.45 and 86.9/5.50, 52.8/3.61 and 53.0/3.59, 63.5/3.65 and
62.3/3.71, respectively), the peaks of which were identified in the HSQC spectra in the α, β,
and γ positions. The pronounced signals at δ13C/δ1H = 56.1/3.76 and 56.1/3.73 for ethanol
lignin and azo ethanol lignin, respectively, are indicative of a great number of methoxyl
groups (OMe), which are important structural units of all lignins [28].

The comparison of the correlation signals from atoms in the α, β, and γ positions of
the β-aryl ether (β-O-4) in ethanol lignin and azo lignin structures showed a difference
between the signals of the corresponding atoms in the HSQC spectra in all the indicated
positions of these structures.
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Concerning the pinoresinol signals, the HSQC spectra showed that the azo derivative
of lignin lacks pinoresinol (β–β′) fragments in all the positions (α, β, and γ).

These indicators point out a clear change in the initial lignin structure caused by the
introduction of azo groups.

3.5. Gel Permeation Chromatography Study of Azo Lignins

One of the most important characteristics of the chemical processing of polymers
containing azo derivatives of ethanol lignin is their molecular weight.

According to the data listed in Table 1, a trend towards an increase in the molecular
weights (Mw) of the azo derivatives can be expected, except for the SEL-azo-NO2 sample,
in which the lignin structure is apparently partially destructed after introducing sulfo and
azo groups into the system with the formation of a larger fraction of low-molecular-weight
components, which affect also the molecular weight distribution profile (MWD) (Figure 7).

Table 1. Molecular weight characteristics of lignin and its derivatives.

Sample Mn (g/mol) Mw (g/mol) PDI

EL 887 1854 2.09
EL-azo-NO2 1160 3445 2.97

EL-azo-SO3H 2843 4938 1.73
SEL-azo-SO3H 1262 2382 1.89
SEL-azo-NO2 807 1617 2.01
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The comparison of the MWD profiles of the EL and EL-azo-NO2 samples analyzed in
the THF medium revealed a shift of the curve to the higher molecular weight region as a
result of modification of the initial lignin sample. As for the water-soluble azo derivatives of
lignin, their modification with sulfanilic acid resulted in the formation of the EL-azo-SO3H
product with a predominant content of macromolecular compounds.

The analysis of the azo and sulfo derivatives of lignin (SEL-azo-SO3H/SEL-azo-NO2)
yielded a bimodal MWD with a pronounced peak around ~2000 g/mol, which corresponds
to the nitriding products.
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3.6. Thermal Analysis

The thermogravimetry (TG) and differential thermogravimetry (DTG) study was
carried out on a synchronous thermal analyzer. The results obtained are presented in
Figure 8.
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Figure 8. (a,c) TG and (b,d) DTG data.

It can be seen that the investigated lignins decomposed in a wide temperature range
and this process finished mainly by 700 ◦C. The comparison of the thermolysis of the sam-
ples revealed different weight losses of the investigated lignins at the same temperatures.
The native ethanol lignin sample exhibited the maximum weight loss up to the completion
of pyrolysis. In the thermograms shown in Figure 8, the DTG curve of the initial lignin
sample showed a broad peak typical of lignins with a shoulder between 200 and ~330 ◦C.
In the temperature range of 230–260 ◦C, the lignin propanoic side chains degrade with the
formation of methyl, ethyl, and vinyl derivatives of guaiacol. In addition, at temperatures
of ≤310 ◦C, the ester bonds with the low chemical stability break [23]. The similar degrada-
tion processes occurred in the lignin samples modified with nitraniline. However, the main
weight loss peak for modified ethanol lignin at 350 ◦C became noticeably lower, indicating
the formation of thermostable condensed structures.

The thermograms of the EL-azo-SO3H and SEL-azo-SO3H samples also point out their
elevated stability. After the first weight loss peak in the range of up to 100 ◦C, the samples
lose their weight at a slower rate: the three minor peaks at 300, 360, and 450–500 ◦C are
apparently related to the removal of sulfo groups [23].
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3.7. Photochemical Study of Azo Lignins

The cis–trans photoisomerization reaction is a change in the configuration of a molecule
during the transition from the initial stable ground state to the highly active excited state
after absorption of UV light of a certain wavelength by the molecule. The molecule is
transformed from a light-resistant to light-stable form. Such properties are typical, in
particular, for a number of organic molecules containing this kind of isomers, including
alkenes, alkynes, azo compounds, and aromatic compounds [29].

Since the obtained azo lignins contain a conjugated N=N double bond, they exhibit
the photoisomerization phenomenon illustrated in Figure 9.
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Figure 9. UV absorption spectra for (a) EL-azo-SO3H, (b) SEL-azo-SO3H, (c) EL-azo-NO2, (d) SEL-azo-NO2.

It can be seen that the photosensitive properties of the N=N chromophore group are
determined by the reversible trans→ cis→ trans photoisomerization cycle. Importantly, the
trans–cis isomerization occurs over a much longer time (1 h) than the cis–trans isomerization
(1–2 min).

It addition, we would like to emphasize that the sulfated derivatives demonstrated a
weaker photoisomerization effect. Obviously, this is due to the fact that the sulfate groups
introduced originally in the lignin structure can replace hydrogen in aliphatic or aromatic
OH group, thereby making steric obstacles for further attachment of the N=N group. Since
sulfate groups can already occupy several positions in the aromatic ring and spatially
prevent the addition of the N=N group, the subsequent insertion of diazo compounds can
be sterically hindered, which affects directly the cis–trans isomerism results.
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4. Conclusions

The modification methods based on the introduction of azobenzene groups into
terminal units of Abies Sibirica Ledeb. lignin via the azo coupling reaction in the presence of
p-nitroaniline and sulfanilic acid were proposed.

The functionalization efficiency was investigated by nuclear magnetic resonance and
FTIR spectroscopy. It was found that the aromatic region of the HSQC spectra of azo
ethanol lignin contains peaks indicative of the attachment of new functional groups to the γ

position of the β-aryl ether and phenylcoumaran (δ13C/δ1H 123–126/8.0–8.4). It was found
that, when analyzing the FTIR spectra, it is necessary to isolate the absorption bands with
maxima at ~1500 and ~1345 cm−1 related to the symmetrical and asymmetrical stretching
vibrations of the NO2 group, i.e., p-nitroaniline, as well as the absorption bands with
maxima at 850 and 1110 cm−1 corresponding to the R–SO2–OH and R–SO–OH stretching
vibrations occurring upon modification with sulfanilic acid.

It was established that lignin and its derivatives obtained in this study have different
molecular weight distributions and weight average molecular weights (1617–4938 g/mol).
The SEL-azo derivatives have lower molecular weights than azo lignins from the initial
product due to the partial degradation and formation of low-molecular-weight sulfa-
tion products.

The examination of the photosensitive properties showed that the most pronounced
cis–trans spatial changes occurred in the azo lignin samples obtained from initial ethanol
lignin, which is preferred for future use.
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