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Abstract: In this work, hierarchically porous SiC ceramics were prepared via the foaming method.
Porous ceramics with tunable, uniform, and bimodal pore structures were successfully fabricated
in a facile way. The formation mechanisms of the 1st and 2nd modal macropores are the H2O2

foaming process and SiC particle overlap, respectively. The effect of pore-foaming agent amount,
foaming temperature, and surfactant was investigated. According to the results, with increasing
H2O2 amount, the porosity, pore size, and interconnectivity of the 1st modal pores increased, whereas
bulk density and strength decreased. The porosity increased while the strength decreased as the
foaming temperature increased. Surfactants increased pore interconnectivity and porosity. When
the foaming temperature was 85 ◦C, and the addition of H2O2 was 5 wt.%, the porosity, bulk
density, flexural strength, and compressive strength were 56.32%, 2.8301 g/cm3, 11.94 MPa, and
24.32 MPa, respectively. Moreover, SiC porous ceramics exhibited excellent corrosion resistance to
acids and alkalis.
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1. Introduction

SiC porous ceramics are a kind of “green functional material”. Due to their high poros-
ity, low bulk density, large specific surface area, good permeability, easy cleaning and re-
generation, high temperature resistance, thermal shock, corrosion, and mass loading [1–5],
SiC porous ceramics have shown promising applications in many fields, such as catalyst
carriers, gas-liquid filtration, thermal insulation, biomaterials, and sensors [6–10].

The primary characteristic of porous ceramics is their porous structure, which has
a significant impact on their applications. In recent years, there has been an increasing
demand for the versatility of porous materials, resulting in the development of multi-
scale and multi-level porous structures. Due to their ability to perform multiple tasks
simultaneously, such materials are widely used in catalytic carriers, high-temperature gas
filtration, supercapacitors, porous burners, etc. [11–14]. Therefore, to achieve versatility,
it has been necessary to develop porous structures with both high porosity and different
pore sizes.

Currently, the fabrication of porous ceramics with hierarchical porous structures typi-
cally requires multiple steps, such as introducing micro/mesostructures into a preformed
macroporous skeleton structure. Accordingly, in addition to the preparation of the macrop-
orous skeleton, several other processes are employed to introduce the hierarchically porous
structure, including the growth of one-dimensional nanostructures [15], coating [16], etch-
ing [17], and the use of preceramic polymers [18], which undoubtedly increase the cost
and complexity of the preparation process. Therefore, it is still highly desirable to develop
porous ceramics with hierarchically porous structures in a simple manner.
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In contrast, conventional methods for fabricating SiC porous ceramics, such as replica [19,20],
sacrificial template method [21,22], and the foaming method [23], are simpler and easier
to perform. Among them, the foaming method, which was invented by Sundermann in
1973 [24], has attracted widespread attention due to its simple and straightforward opera-
tion. The basic principle is that inorganic or organic chemical substances (foaming agents)
are added to the ceramic components to generate volatile gas bubbles by physical, chemical,
and mechanical stirring methods, which are then dried and sintered to produce porous
ceramics. However, it is primarily suitable for preparing porous ceramics with closed
pores. During the foaming process, drainage of the liquid film can lead to foam instability
and aggregation [25], resulting in non-uniform pore size and blank collapse. To solve this
problem, a three-dimensional network gel is formed by introducing organic monomers into
an in-situ polymerization reaction, allowing the ceramic foam slurry to be rapidly cured
into a porous ceramic blank with high strength [26–28]. Han [29] fabricated Si3N4/SiC
porous ceramics by foam-gelcasting with a porosity of 68.54 ± 0.73%. The flexural and
compressive strengths were 5.28 ± 0.17 MPa and 12.86 ± 1.55 MPa, respectively. Wu [30]
prepared porous ceramics with porosity up to 80.1% by the gelcasting method. However,
the porous ceramics fabricated by the foaming method only have monomodal porous
structures, which does not allow for the preparation of hierarchically porous structures. It
is expected that SiC porous ceramics with hierarchically three-dimensional interconnected
open porous structures can be prepared by the foaming method.

In this work, hierarchically porous SiC ceramics with combined structures and func-
tions were prepared by the foaming method. These ceramics have a uniform porous
structure, controllable pore size, low cost, and high strength. The effect of pore-foaming
agent amount, foaming temperature, and SDS was investigated in detail.

2. Materials and Methods
2.1. Materials

Commercial α-SiC powders (d50 = 0.45 µm, 99% purity) were purchased from Yong-
hao silicon carbide micro powder Co. Ltd., Weifang, China. Acrylamide (AR), N’N’-
methylenebisacrylamide (AR), ammonia solution (25 wt.%), H2O2 (30 wt.%), and sodium
dodecyl sulfate (AR) were purchased from Sinopharm Chemical Reagent Co. Ltd.,
Shanghai, China. Sucrose (CR) was purchased from Sigma-Aldrich (St. Louis, MO, USA) [31].
All chemicals were used as received.

2.2. Preparation of SiC Porous Ceramics

Firstly, the raw materials SiC, acrylamide, N’N’-methylenebisacrylamide, sucrose,
ammonia solution, and deionized water were mixed by ball milling at a mass ratio of
250:12.5:1:25:3.75:72.5 for 4 h. Nylon ball milling jars with grinding media of Al2O3 balls
were used, and the speed was 20 r/min. Then, a certain mass (5 wt.%, 7.5 wt.%, 10 wt.%,
12.5 wt.%, 15 wt.% relative to the mixed SiC slurry) of hydrogen peroxide (H2O2) and
sodium dodecyl sulfate (SDS, surfactant) was added. After mixing uniformly, the mixed
slurry was poured into a mold, foamed, and dried at 75 ◦C, 85 ◦C, and 95 ◦C, respectively.
Finally, SiC porous ceramics were sintered at 2000 ◦C under an Ar atmosphere with a
heating rate of 5 ◦C/min and a holding time of 30 min.

2.3. Properties Testing and Characterization

The morphology and microstructure of SiC porous ceramics were analyzed by scan-
ning electron microscope (SEM) (JEOL JSM-6510A, Tokyo, Japan). The physical phase
analysis was performed by X-ray diffractometer (X’Pert Pro NPP, Panalytical, Almelo, The
Netherlands), with a Cu target (accelerating voltage and current intensity of 45 kV and
40 mA, respectively), and scanning angle (2θ) of 10~90◦ with a scanning step of 0.033◦.
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The bulk density of ceramics was measured using Archimedes’ principle, and water
was used as a liquid medium [32,33]. The bulk density was calculated via the follow-
ing equation:

ρ =
m1

m3 − m2
ρH2O (1)

where m1 is the dry weight of materials (g), m2 is the weight of materials immersed in
water (g), m3 is the weight of materials suspended in water (g), and ρH2O is the density of
water (g/cm3).

The porosity was measured by the mass-volume method. The porous ceramic samples
were fabricated into regular shapes to measure their size and volume. The porosity was
calculated by the following equation:

P =

(
1− m

VρS

)
× 100% (2)

where m is the mass of samples (g), V is the volume of samples (cm3), and ρS is the density
of SiC dense ceramics (g/cm3).

The mechanical properties of materials were measured by the microcomputer-controlled
electronic universal testing machine (CMT5105, New Sansi Enterprise Development Co.,
Shanghai, China) with a loading rate of 1 mm/min. The samples were fabricated in a
rectangular shape with a dimension of 5 mm× 10 mm× 10 mm for the strength test.

The corrosion resistance of SiC porous ceramics was evaluated by measuring the loss
rate of strength and weight after corrosion by acid and alkali solutions. Herein, the polished
samples were put into a corrosive solution with 20 wt.% H2SO4 or 1 wt.% NaOH, heated to
boiling, and held for 1 h. Subsequently, the samples were washed and dried, after which
their residual flexural strength and weight loss were measured.

3. Results and Discussion
3.1. Physical Phase Analysis of SiC Porous Ceramics

XRD physical phase analysis of sintered SiC porous ceramics was performed, and
the results are shown in Figure 1. It can be seen that the primary phase of sintered
porous ceramics was SiC, indicating that the organics in the green body had completely
decomposed after high-temperature sintering.

Materials 2023, 16, x FOR PEER REVIEW 3 of 10 
 

 

Almelo, The Netherlands), with a Cu target (accelerating voltage and current intensity of 

45 kV and 40 mA, respectively), and scanning angle (2θ) of 10~90° with a scanning step of 

0.033°. 

The bulk density of ceramics was measured using Archimedes’ principle, and water 

was used as a liquid medium [32,33]. The bulk density was calculated via the following 

equation: 

2

1

3 2

H O

m

m m
 =

−
 (1) 

where m1 is the dry weight of materials (g), m2 is the weight of materials immersed in 

water (g), m3 is the weight of materials suspended in water (g), and 
2H O .is the density 

of water (g/cm3). 

The porosity was measured by the mass-volume method. The porous ceramic sam-

ples were fabricated into regular shapes to measure their size and volume. The porosity 

was calculated by the following equation: 

1 100%
S

m
P

V

 
= −  
 

 (2) 

where m is the mass of samples (g), V is the volume of samples (cm3), and ρS is the den-

sity of SiC dense ceramics (g/cm3). 

The mechanical properties of materials were measured by the microcomput-

er-controlled electronic universal testing machine (CMT5105, New Sansi Enterprise De-

velopment Co., Shanghai, China) with a loading rate of 1 mm/min. The samples were 

fabricated in a rectangular shape with a dimension of 5 mm × 10 mm × 10 mm for the 

strength test. 

The corrosion resistance of SiC porous ceramics was evaluated by measuring the 

loss rate of strength and weight after corrosion by acid and alkali solutions. Herein, the 

polished samples were put into a corrosive solution with 20 wt.% H2SO4 or 1 wt.% 

NaOH, heated to boiling, and held for 1 h. Subsequently, the samples were washed and 

dried, after which their residual flexural strength and weight loss were measured. 

3. Results and Discussion 

3.1. Physical Phase Analysis of SiC Porous Ceramics 

XRD physical phase analysis of sintered SiC porous ceramics was performed, and 

the results are shown in Figure 1. It can be seen that the primary phase of sintered po-

rous ceramics was SiC, indicating that the organics in the green body had completely 

decomposed after high-temperature sintering. 

  

Figure 1. XRD pattern of SiC porous ceramics. Figure 1. XRD pattern of SiC porous ceramics.

3.2. Effect of H2O2 Addition on the Pore Structure of SiC Porous Ceramics

The microstructures of SiC porous ceramics with different H2O2 additions are shown
in Figure 2. Interestingly, there were two series of macropores discernible in the SiC
ceramics fabricated by the foaming method, forming unique hierarchically macroporous
structures: these are the 1st modal macropores with pore sizes ranging from 0.5 to 3 mm
and the 2nd modal pores with pore size approximately 2 µm. To our knowledge, the
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conventional foaming approach often produces a monomodal porous structure [34,35]. In
contrast, SiC porous ceramics with a hierarchically macroporous structure, as reported here,
were obtained in a facile way.
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Figure 2. SEM images of SiC porous ceramics prepared with different H2O2 additions: (a-1) 1st
pore morphology with 5 wt.% H2O2; (a-2) 2nd pore morphology with 5 wt.% H2O2; (b-1) 1st pore
morphology with 7.5 wt.% H2O2; (b-2) 2nd pore morphology with 7.5 wt.% H2O2; (c-1) 1st pore
morphology with 10 wt.% H2O2; (c-2) 2nd pore morphology with 10 wt.% H2O2; (d-1) 1st pore
morphology with 12.5 wt.% H2O2; (d-2) 2nd pore morphology with 12.5 wt.% H2O2; (e-1) 1st pore
morphology with 15 wt.% H2O2; (e-2) 2nd pore morphology with 15 wt.% H2O2.

The formation mechanism of these hierarchically porous structures was that H2O2
decomposed and formed air bubbles, which were fixed in the body by thermally initiated
gelation of acrylamide, forming 1st modal pore structures. The 2nd modal pore structures
were formed by SiC particles overlapping each other. The porous structure formation
mechanism is schematically shown in Figure 3.
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Figure 3. Schematic illustration of the porous structures formation mechanism.

The 1st modal pore size was associated with H2O2 additions. At low H2O2 content, the
1st modal pores were less uniform and smaller in pore size (Figure 2(a-1)), whereas higher
amounts of H2O2 resulted in porous ceramics with much more uniform porous structures
and larger pore sizes (Figure 2(b-1),(c-1)). With the increase of H2O2 additions, the amount
of gas produced in the foaming process increased, leading to an increase in porosity and
1st pore size, as well as an enhancement of pore connectivity. The uniformity of the porous
structure decreased as the H2O2 content further increased to more than 12.5 wt.%, and the
pore morphology became irregular (Figure 2(d-1)–(e-1)). H2O2 additions had no effect on
the 2nd modal pore size (Figure 2(a-2)–(e-2)).

Figure 4 shows the effect of H2O2 additions on porosity and bulk density. It can be
seen that, with the increase of H2O2 additions from 5 wt.% to 12.5 wt.%, the foaming
process became more intense, and the volume of gas produced increased, which led
to a decrease in bulk density and an increase in porosity in the SiC porous ceramics.
However, when more than 12.5 wt.% H2O2 was added, the number and volume of bubbles
increased dramatically due to the excessive gas generated, which led to the phenomenon
of gas overflow and bubble merging, resulting in a non-obvious increase in porosity. The
maximum porosity of 84.1% was obtained when H2O2 was added at 15%, where the bulk
density was 1.3068 g/cm3.
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Figure 4. Effects of H2O2 additions on porosity and bulk density of SiC porous ceramics.

Figure 5 shows the effect of H2O2 additions on the mechanical properties of SiC porous
ceramics. It was demonstrated that, with increasing H2O2 content, due to its increased
porosity, the internal structure gradually loosened and the relative density decreased,
leading to a decrease in the flexural and compressive strength of SiC porous ceramics.
According to Ryskewitsch’s empirical formula [36] and Breny and Green’s research [37],
strength is determined by porosity, with high porosity resulting in low strength. When
5 wt.% H2O2 was added, the mechanical properties of the obtained SiC porous ceramics
were optimal, where the porosity, bulk density, flexural strength, and compressive strength
were 56.32%, 2.8301 g/cm3, 11.94 MPa, and 24.32 MPa, respectively.
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Table 1 shows the relationship between H2O2 amounts and strength loss rate after
acid/alkali corrosion. It can be seen that the SiC porous ceramics exhibited excellent resis-
tance to acid and alkali corrosion with a strength loss rate of only 0.83–3.85%. Moreover, as
the amount of foaming agent increased, the flexural strength loss rate of SiC porous ceram-
ics after acid and alkali corrosion gradually increased. This was due to their porosity being
proportional to the H2O2 amount, and the high porosity increased the contact area between
acid and alkali corrosive agents and SiC porous ceramics, thereby increasing corrosion.

Table 1. Strength loss rate of SiC porous ceramics after acid/alkali corrosion.

Amount of H2O2
(wt.%)

Strength Loss Rate of SiC
Porous Ceramics after Acid

Corrosion (%)

Strength Loss Rate of SiC
Porous Ceramics after Alkali

Corrosion (%)

5 0.83± 0.15 1.25± 0.14
10 0.91± 0.23 1.36± 0.38
15 1.88± 0.35 2.50± 0.27
20 2.00± 0.42 2.67± 0.34
25 3.08± 0.29 3.85± 0.26

Furthermore, the strength loss rate of the SiC porous ceramics after alkali corrosion
was higher than that after acid corrosion, indicating that their resistance to acid corrosion
was better than that to alkali corrosion. SiC has difficulty reacting with acids and alkalis,
but it finds it extremely easy to react with oxygen to form SiO2; therefore, its surface usually
has a protective film of SiO2. The presence of a SiO2 protective film prevents O2 from
further reaction with internal SiC. Only when this SiO2 film is destroyed will the internal
SiC continue to be oxidized. In general, sintered samples contain very small amounts of
SiO2, so they react easily with alkaline substances. In alkaline conditions, SiO2 reacts with
NaOH as follows:

SiO2 + NaOH→NaSiO3 + H2O (3)

The SiO2 film is destroyed, allowing the oxidation of SiC to proceed further, while the
resulting SiO2 will continue to interact with alkali, and this process will continue in a cyclic
manner, resulting in a decrease in the strength of the samples. In contrast, SiO2 is an acidic
substance that is relatively stable in an acidic environment. Therefore, SiC porous ceramics
exhibit different strengths and weight loss rates after acid and alkali corrosion.

3.3. Effect of Foaming Temperature on SiC Porous Ceramics

The microstructures of SiC porous ceramics with different foaming temperatures are
shown in Figure 6. As can be seen, both pore uniformity and pore size were affected by the
foaming temperature. When foaming at a lower temperature of 75 ◦C, the gas generation
speed was low due to the slow decomposition of H2O2. Meanwhile, the gelation time
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was extended, making the bubbles prone to merging and non-uniformity. As the foaming
temperature increased to 85 ◦C, the speed of gas generation and gelation was fast, which
allowed a large number of bubbles to be generated and quickly fixed in the blanks before
they merged, resulting in the porous structures with uniform and high porosity. When the
foaming temperature was further increased to 95 ◦C, due to the high temperature making
H2O2 violently decompose, a large amount of gas was generated in a short time, resulting
in the merging of bubbles and the collapse of blanks, which finally causes non-uniform
porous structures.
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Figure 6. SEM images of SiC porous ceramics prepared at different foaming temperatures with
7.5 wt.% H2O2 addition: (a) 75 ◦C; (b) 85 ◦C; (c) 95 ◦C.

The properties of the SiC porous ceramics are shown in Table 2. With the increase
in foaming temperature, the porosity increased, and the bulk density, flexural strength,
and compressive strength decreased. This was due to the higher foaming temperature;
the faster foaming agent decomposed in the slurry, resulting in increased porosity and
decreased strength.

Table 2. Effects of foaming temperature on the properties of SiC porous ceramics with 7.5 wt.%
H2O2 addition.

Foaming
Temperature

(◦C)

Bulk Density
(g/cm3)

Porosity
(%)

Flexural
Strength

(MPa)

Compressive
Strength

(MPa)

75 2.71± 0.09 45.85± 2.69 11.39± 1.85 25.37± 2.41
85 2.62± 0.08 60.22± 3.98 9.03± 1.42 21.76± 1.94
95 2.02± 0.05 64.24± 2.01 7.01± 1.33 20.43± 2.12

3.4. Effect of Surfactant on SiC Porous Ceramics

SEM images of the SiC porous ceramics with different amounts of surfactant (SDS) are
shown in Figure 7. As can be seen, the addition of SDS increased the three-dimensional
interconnectivity of the 1st macropores, while the pore size decreased. Foam is a thermo-
dynamically unstable system. In liquids, gas can typically be dispersed into fine bubbles.
However, due to their high surface energy and low density, the gases will rise and es-
cape from the liquid surface. The surfactants reduced the gas-liquid interfacial tension
and formed a double layer of adsorption on the liquid film of the bubbles, inhibiting the
thinning and rupture of the bubbles and reducing the escape of the bubbles. Through
the mutual attraction between the surfactant and lipophilic groups, the strength of the
double-layer adsorption film and the viscosity of the liquid in the liquid film increased,
increasing the stability of the foam system [38,39].
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Figure 7. SEM images of SiC porous ceramics with different amounts of SDS: (a) 0 and (b) 0.1 wt.%.

Table 3 shows the properties of the SiC porous ceramics with different amounts of SDS.
It can be seen that the addition of SDS increases the porosity and decreases the flexural and
compressive strength of SiC porous ceramics.

Table 3. The properties of SiC porous ceramics with different amounts of SDS.

SDS Amounts (%) Porosity (%) Flexural Strength
(MPa)

Compressive
Strength

(MPa)

0 43.51± 2.45 11.28± 2.07 26.75± 3.47
0.1 60.22± 3.98 9.03± 1.42 21.76± 1.94

4. Conclusions

(1) In this work, SiC porous ceramics with homogeneous and tunable pore structures
were fabricated by the foaming method. Interestingly, there were two series of macropores
in the obtained porous ceramics, namely, large pore structures with pore sizes between
0.5 and 3 mm and small pore structures with pore sizes of about 2 µm. The primary phase
of SiC porous ceramics was SiC.

(2) With the increase of H2O2 additions, the porosity, 1st mode pore size, and pore
structure connectivity increased, while the bulk density and mechanical strength decreased.
The optimal mechanical properties of the SiC porous ceramics were obtained by adding
5 wt.% H2O2, and the resultant porosity, bulk density, flexural strength, and compressive
strength were 56.32%, 2.8301 g/cm3, 11.94 MPa, and 24.32 MPa, respectively. SiC porous
ceramics showed excellent resistance to acid/alkali corrosion, with only 0.83–3.85% loss of
strength after acid/alkali corrosion.

(3) As the foaming temperature increased, the porosity increased, and the mechanical
strength decreased. When the foaming temperature was 85 ◦C, a homogeneous pore struc-
ture was obtained. Surfactants were beneficial for improving pore connectivity and porosity.
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