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Abstract: Charge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degrada-
tion. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer
owing to lower hole conductivity compared to electron conductivity. Herein, CuCo2O4 has a rela-
tively higher hole conductivity than other binary oxides and can induce an improved charge balance.
As the annealing temperature decreases, the valence band maximum (VBM) of CuCo2O4 shifts away
from the Fermi energy level (EF), resulting in an enhanced hole injection through better energy level
alignment with hole transport layer. The maximum luminance and current efficiency of the CuCo2O4

hole injection layer (HIL) of the QLED were measured as 93,607 cd/m2 and 11.14 cd/A, respectively,
resulting in a 656% improvement in luminous performance of QLEDs compared to conventional
metal oxide HIL-based QLEDs. These results demonstrate that the electrical properties of CuCo2O4

can be improved by adjusting the annealing temperature, suggesting that solution-processed spinel
can be applied in various optoelectronic devices.

Keywords: colloidal quantum dot (QD); light-emitting diode (LED); hole injection layer; spinel;
CuCo2O4

1. Introduction

Quantum dots (QDs) have a size-dependent bandgap because of the quantum con-
finement effect; thus, the emission wavelength of QDs can be easily controlled using this
property [1]. Inorganic QDs have narrower electroluminescence (EL) spectra and higher
quantum yield (QY) than conventional organic light-emitting materials [2,3]. In addition,
QDs have the advantage of low-cost mass production of quantum-dot light-emitting diodes
(QLEDs) through solution-based manufacturing technology [4]. Owing to these advantages,
QDs are in the spotlight as light-emitting layers for next-generation displays.

To increase the emission performance of QLED, hole and electron injection/transport
layers are inserted between the electrodes and the QD emitting layer (EML) [5]. Various
studies are being conducted to employ transition metal oxides (TMOs) as the charge
transport layer of QLEDs because TMOs have strong moisture and heat resistance. In
particular, these studies applied p-type TMOs, such as CuO and NiO, as hole injection
layers (HIL) or hole transport layers (HTL) [6–8], and n-type TMOs, such as ZnO and
ZnMgO, as electron transport layers (ETL) [9,10] in optoelectronic devices.
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In n-type TMOs, sufficient majority carrier electrons are generated owing to oxygen
defects, and the conduction band maximum (CBM), which is the electron transport path,
consists of metal s-orbitals [11]. Contrastingly, in p-type TMOs, majority carrier holes are
generated in cation vacancies, which require high formation energy [12]. Moreover, the
valence band maximum (VBM), which is the transport path of holes, mostly comprises a
localized oxygen 2p orbital; thus, the hole conductivity is poorer than that of electrons in
the amorphous structure [13,14]. For this reason, when solution-processed TMOs are
used as a charge transport layer, it causes charge imbalance to decrease the luminous
efficiency of the QLED [15,16]; therefore, studies on TMOs with high hole injection
capability are necessary.

Some studies reported that doping with p-type oxides increases hole injection [7,17,18].
Cao et al. improved the luminance of a QLED by up to 61,060 cd/m2 by doping Cu into a
NiO hole injection layer [7]. However, hole injection through doping is limited because
excessive doping can degrade the hole conductivity of p-type oxides [7,17,18]. Therefore, a
new approach is required to increase the hole conductivity of p-type TMOs, such as ternary
oxides or highly conductive crystal structures, for hole injection.

The spinel structure has the general formula AB2O4, where A is a divalent metal ion
(Cu2+, Ni2+, Zn2+) in the tetrahedral sites and B is a trivalent metal ion (Co3+, Al3+, Fe3+)
in the octahedral sites (Figure S1) [19–21]. Ternary oxides with spinel structures can be
alternatives to many oxides because their optical and electrical properties can be tuned
by changing the combination of the metal ions [22]. Spinel oxides have the relatively
low activation energy for electron transfer between different cations [23,24]. Thus, spinel
oxides such as CuCo2O4 and NiCo2O4 have a conductivity of several tens of S/m, and
these electrical conductivity values of spinel oxides are much higher than that of binary
oxides [25,26]. In the field of photovoltaics, many studies have been conducted using spinel
oxides with superb conductivity as charge transport layers [14,19,27]. However, research
on spinel oxides is relatively unusual in the QLED field; therefore, it is especially notable
that this study improved hole injection using spinel ternary oxides.

In this study, we fabricated highly conductive p-type CuCo2O4 via a solution pro-
cess using the spin-coating technique and applied it as a HIL to enhance the charge
balance of QLEDs. Substantial variations in the oxygen defects were observed in the
solution-processed CuCo2O4 thin films depending on the annealing temperature. The
oxygen defect affected the hole concentration; as a result, the VBM of CuCo2O4 shifted
away from EF as the annealing temperature decreased. When CuCo2O4 was annealed at
200 ◦C, the QLED performance was improved, and the hole injection was enhanced through
better energy-level alignment. To investigate the reason for the difference in CuCo2O4
electrical characterization according to the annealing temperature, Hall measurements,
X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS)
measurements were conducted. In addition to confirming the hole-injection ability of
CuCo2O4, a hole-only device (HOD) was manufactured and measured. These results
demonstrate that the electrical properties of CuCo2O4 can be adjusted by modifying the
annealing temperature, suggesting that solution-processed spinel can be applied in various
optoelectronic devices.

2. Experimental Section
2.1. CuCo2O4 Solution Synthesis

First, 0.48 mmol of copper acetate tetrahydrate (Cu(CH3CO2)2·H2O, Sigma Aldrich)
and 0.96 mmol of cobalt acetate tetrahydrate (Co(CH3CO2)2·4H2O, DAE JUNG) were
dissolved in 12 mL ethylene glycol monomethyl ether (DAE JUNG). The solution was then
sonicated for 10 min at room temperature to completely dissolve the copper and cobalt
precursors. Subsequently, 60 µL of ethanolamine (Sigma Aldrich, St. Louis, MI, USA) was
added and stabilized by hydrogen bonding using a stabilizer and stirred for 24 h at room
temperature. After stirring for 24 h, the 0.04 M CuCo2O4 solution changed from blue to
dark gray (or dark navy).
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2.2. Device Fabrication

Patterned indium tin oxide (ITO) glass substrates were cleaned via ultrasonication in
DI water, acetone, and isopropyl alcohol for 15 min in sequence. The cleaned ITO substrates
were treated with ultraviolet-ozone for 20 min to improve the surface hydrophilicity and
increase the ITO work function through carbon contamination removal. The CuCo2O4
HIL solution was spin-coated at 3000 rpm for 60 s. Subsequently, the solvent was dried
on a hot plate at 150 ◦C for 10 min and then annealed for 60 min (200 ◦C/300 ◦C) in an
ambient atmosphere. As shown in Equations (1) and (2), acetate residues are removed in
the pre-annealing and CuCo2O4 is formed through post-annealing.

Cu(CH3CO2)2 + 2Co(CH3CO2)2 + 6H2O → Cu(OH)2 + 2Co(OH)2 + 6 Acetic acid (1)

Cu(OH)2 + 2Co(OH)2 +
1
2

O2 → CuCo2O4 (2)

A poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)]
(TFB) dissolved in p-xylene at 1 wt% was spin-coated at 3000 rpm for 30 s onto the CuCo2O4
HIL, followed by annealing at 180 ◦C for 40 min. Then, CdSe/ZnS Green QDs (UNIAM,
20 mg/mL) dispersed in toluene were spin-coated at 2000 rpm for 30 s and then annealed
at 90 ◦C for 10 min. The optical bandgap and photoluminescence spectra of the green QDs
used to fabricate the QLEDs are shown in Figure S2. ZnO (Avantama, N-10) dispersed
in isopropyl alcohol was spin-coated at 2000 rpm for 60 s and then annealed at 90 ◦C for
10 min. Finally, a 130 nm thick aluminum was deposited by a thermal evaporation at a
deposition rate of 3 Å/s under high vacuum through a shadow mask.

A HOD and an electron-only device (EOD) to evaluate the charge injection ability were
produced through spin coating-based solution process identical to the QLED manufacturing
process. First, pre-cleaned glass/ITO substrate were treated with ultraviolet-ozone for
20 min. The CuCo2O4 HIL solution was spin coated at 3000 rpm for 60 s. Subsequently,
pre-annealing is performed on the hot plate at 150 ◦C for 10 min and post-annealing is
performed annealed for 60 min at 200 ◦C (or 300 ◦C) in an ambient atmosphere. Next,
TFB HTL solution was spin-coated at 3000 rpm for 30 s onto the CuCo2O4 HIL, followed
by annealing at 180 ◦C for 40 min. Finally, a 130 nm thick aluminum was deposited by a
thermal evaporation at a deposition rate of 3 Å/s under high vacuum through a shadow
mask. First, pre-cleaned glass/ITO substrate were treated with ultraviolet-ozone for 20 min.
ZnO ETL was spin-coated at 2000 rpm for 60 s and then annealed at 90 ◦C for 10 min. Then,
a 130 nm thick aluminum was deposited by a thermal evaporation at a deposition rate of
3 Å/s under high vacuum through a shadow mask.

2.3. Characterization

The electrical properties such as resistivity, carrier mobility, and carrier concentration
of the oxide thin film were measured using Hall measurements (HL 5500PC). XPS and
UPS spectra were measured using a surface analysis system (Thermo fisher, NEXSA,
Waltham, MA, USA) with an Al Kα (1486.6 eV) source for XPS and a He I (21.22 eV)
source for UPS. The energy references of the XPS and UPS spectra were calibrated with
respect to the EF of clean Au sample. The morphology of the films was characterized
using atomic force microscopy (AFM) (S.I.S-GmbH, Berlin, Germany) in the non-contact
mode. The transmittance of the thin films was measured using a UV-visible spectrometer
(Cary 100, Agilent). The electroluminescence properties of the QLEDs were measured using
an I-V-L system (M-6100, McScience) installed with a source meter (Keithley 2400) and
spectroradiometer (CS-2000, Konica Minolta). QLED cross-section images were obtained
using HR-TEM, and the elemental composition of the cross-sections was analyzed using
energy-dispersive spectroscopy (EDS) data using a field emission electron microscope
(JEM-2100F, JEOL).
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3. Results and Discussion
3.1. Characterization of CuCo2O4 Thin Films

Table 1 shows the dependence of the electrical properties of CuCo2O4 on the anneal-
ing temperature, as measured by Hall measurements using van der Pauw method. The
resistivity, mobility, and hole concentration of CuCo2O4 annealed at 200 ◦C (CuCo2O4-200)
were 2.295 Ω·cm, 0.96 cm2/V·s and 2.834 × 1018 cm−3, respectively. Then, the resistivity,
mobility, and hole concentration of CuCo2O4 annealed at 300 ◦C (CuCo2O4-300) were
0.3917 Ω·cm, 0.72 cm2/V·s, and 2.214 × 1019 cm−3, respectively. The resistance of the
binary oxide CuO was too high, making Hall measurements impossible. It was confirmed
that both CuCo2O4-200 and CuCo2O4-300 films have enough higher conductivities than
binary oxides. The relationship between the resistivity (ρ), conductivity (σ), mobility (µ),
carrier concentration (n), and electrical charge (q) of the carriers in metal oxides is shown in
Equation (3) [28]:

1
ρ
= σ = nqµ (3)

Table 1. Hall measurement results of the CuCo2O4 at different annealing temperature.

Sample Resistivity (Ω·cm) Mobility (cm2/V·s) Hole concentration (cm−3)

CuCo2O4-200 2.295 0.96 +2.834 × 1018

CuCo2O4-300 0.3917 0.72 +2.214 × 1019

CuO N/A N/A N/A

The conductivities of CuCo2O4-200 and CuCo2O4-300, calculated using Equation (1),
were 0.4357 S/cm and 2.553 S/cm, respectively. The difference in electrical conductivity
of CuCo2O4-200 and 300 were predominantly caused by the hole concentration because
the difference in mobility between the two thin films is not significant. Hall measurement
results show that both CuCo2O4-200 and CuCo2O4-300 films have relatively enough high
electrical conductivity compared to conventional oxides; therefore, the CuCo2O4 HIL
is expected to greatly contribute to hole injection. However, the hole concentration of
CuCo2O4 thin films vary according to the annealing temperature. Therefore, it is expected
that the QLED performance depends on the annealing temperature of the CuCo2O4 HIL
owing to the difference in energy level alignment of CuCo2O4 HILs.

Figure 1 displays the O 1s, Cu 2p3/2 and Co 2p3/2 core-level XPS spectra of ITO/CuCo2O4
at different annealing temperatures of 200 ◦C and 300 ◦C. The binding energies of the XPS
spectra were calibrated using the C 1s peak of adventitious carbon (284.6 eV as a reference).
The O 1s core level was separated into oxide peaks, oxygen vacancies, surface hydroxyl
oxygen, and carbonyl oxygen. As seen in Figure 1a,b, more oxygen vacancies and hydroxyl
oxygen peaks were observed in the CuCo2O4-200 specimen than in the CuCo2O4-300
specimen, which means that more oxygen defects occurred. The tendency of oxygen
defects in the CuCo2O4 to increase at the lower annealing temperature is similar to reported
solution-processed metal oxides [29,30]. Cu+ ions do not cause satellite peaks because the
3d orbitals are all filled with electrons, whereas Cu2+ ions have [Ar] 3d9 electron structures,
which cause 2p→3d transitions with the result that satellite peaks are observed in XPS
measurement [31–34]. As seen in Figure 1c,d, two satellite peaks were identified at 940 eV
and 943 eV, except for the main peak at 933 eV in the Cu 2p3/2 core level. Therefore, the
Cu 2p3/2 XPS spectra can be separated into Cu+, Cu2+, Cu(OH)2, and two satellite peaks
(Sat1 and Sat2), and the ratio of Cu+ to Cu2+ can be expressed as Equations (4) and (5),
respectively [19,35,36].

Cu+(%) =
Cu+

Cu+ + Cu2+ + Cu(OH)2 + Sat1 + Sat2
∗ 100 (4)
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Cu2+(%) =
Cu2+ + Cu(OH)2 + Sat1 + Sat2

Cu+ + Cu2+ + Cu(OH)2 + Sat1 + Sat2
∗ 100 (5)
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In the case of CuCo2O4-200 and CuCo2O4-300, the Cu2+ ion ratios were 81.3% and
81.4%, respectively. Co3+ and Co2+ ions also generated satellite peaks owing to the 2p→3d
transition. Therefore, the Co 2p3/2 XPS spectra in Figure 1e,f can be separated into Co3+,
Co2+ and two satellite peaks (Sat 1, Sat 2); the ratio for each ion can be expressed by
Equations (6) and (7), respectively [37].

Co3+(%) =
Co3+ + Sat1

Co2+ + Co3+ + Sat1 + Sat2
∗ 100 (6)

Co2+(%) =
Co2+ + Sat2

Co2+ + Co3+ + Sat1 + Sat2
∗ 100 (7)

In the case of the CuCo2O4-200 and CuCo2O4-300, the Co3+ ion ratios were 70.9% and
72.3%, respectively. In p-type metal oxides, oxygen vacancies reduce the number of hole
carriers, which has a significant influence on the electrical properties of the oxides [12,38].
The XPS measurement indicates that the solution-processed CuCo2O4 has no significant
change in Cu and Co metal ion composition according to the annealing temperature change;
nevertheless, there is a significant change in the oxygen defect. The O 1s peak measurements
show that more oxygen defect sites were generated by low-temperature annealing in
CuCo2O4-200. Therefore, we can expect that the hole concentration in CuCo2O4-200 is less
than that in CuCo2O4-300. These results show the same tendency as the Hall measurement
results, in which CuCo2O4-200 exhibited a lower hole concentration.

Figure 2 shows an AFM topography image of the CuCo2O4 thin films with different
annealing temperatures measured in the non-contact mode. As shown in Figure 2a, the
CuCo2O4-200 thin film has low crystallinity, whereas the CuCo2O4-300 thin film in Figure 2b
shows that both the size and number of particles increased. Root mean square (RMS) value
of CuCo2O4-200 and -300 thin films were measured to be 0.17 nm and 0.46 nm, respectively.
The uniformity of the film formation seems to be the reason why the CuCo2O4-200 thin
film had a higher hole mobility than CuCo2O4-300 (Table 1). As the CuCo2O4 annealing
temperature decreased, crystallinity also decreased. Therefore, the low crystallinity of
CuCo2O4-200 is a major factor in increasing the number of oxygen defect sites.
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The optical characteristics of the CuCo2O4-200 and -300 films were measured by
UV-visible spectroscopy. As shown in Figure 3a, the transmittance (%) of the CuCo2O4
films decreased as the annealing temperature was increased. Especially, the transmittance
of CuCo2O4-200 and -300 samples was measured to be 91.1% and 88.4% respectively, in the
530 nm region, which is the QLED emission wavelength. The Tauc plots for the CuCo2O4
thin films annealed at different temperatures are shown in Figure 3b. The spinel oxides
include divalent metal ions (M2+) and trivalent metal ions (M3+), and, thus, conduction
bands formed by the 3d orbitals of M2+ and 3d orbitals of M3+ exist, respectively. Because
both O 2p→M2+ 3d and O 2p→M3+ 3d transitions are generated, spinel oxides have two
bandgap energies [39–42]. Eg1 and Eg2 in Figure 3b are the optical bandgaps generated
by the O 2p→M2+ 3d and O 2p→M3+ transitions, respectively. The optical bandgap of
CuCo2O4-200 with spinel structure was measured at 1.36 eV and 2.15 eV, and the bandgap
of CuCo2O4-300 was measured at 1.32 eV and 2.13 eV. According to prior studies on spinel
cobalt oxide, the crystallinity increases as the annealing temperature increases, whereas
the bandgap and transmittance will decrease. The optical characterization of the CuCo2O4
covered in this study showed the same tendency as previous studies on spinel oxides [43].
Through UV-visible spectroscopy measurement results, owing to the low crystallinity of
CuCo2O4-200, it was confirmed that the CuCo2O4-200 transmittance was higher than that
of CuCo2O4-300 and, consequently, more suitable for QLED.
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3.2. Hole Injection Ability of CuCo2O4 HIL

To identify the hole injection mechanism of QLEDs through the electronic struc-
ture analysis of the CuCo2O4 HIL, UPS measurements of ITO, ITO/CuCo2O4-200,
ITO/CuCo2O4-300, ITO/CuCo2O4-200/TFB, and ITO/CuCo2O4-300/TFB samples were
performed. In Figure 4a, the graph on the left shows the work function measurement
based on the kinetic energy of electrons in the secondary-electron cutoff region. In
Figure 4a, the graph on the right shows the energy difference between the Fermi en-
ergy level (EF) and the VBM or highest occupied molecular orbital (HOMO) through
the binding energy of electrons. The work functions of samples ITO/CuCo2O4-200,
ITO/CuCo2O4-300, ITO/CuCo2O4-200/TFB and ITO/CuCo2O4-300/TFB were mea-
sured to be 4.87 eV, 4.94 eV, 4.68 eV, and 4.69 eV, respectively, then the VBM (or HOMO)
were measured to be 0.30 eV, 0.11 eV, 0.79 eV, and 0.81 eV, respectively. The optical band
gap of TFB was estimated using the Tauc plot (Figure S3). The work function difference
and HOMO level difference between the TFB thin film formed on CuCo2O4-200 and
formed on CuCo2O4-300 were 0.01 eV and 0.02 eV, respectively, and these were not
significant. However, in the CuCo2O4 HILs, an energy level difference appeared when
the annealing temperature changed, and the VBM in particular changed significantly.
The CuCo2O4-300 HIL has few oxygen defect sites owing to its high crystallinity, which
increases the hole concentration and correspondingly reduces the gap between the VBM
and EF levels. Contrastingly, the CuCo2O4-200 HIL has many oxygen defect sites, which
decreases the hole concentration and correspondingly increases the gap between the
VBM and EF levels. As shown in Figure 4b, the difference between the CuCo2O4-300
VBM and TFB HOMO levels was 0.7 eV, whereas the difference between CuCo2O4-200
and TFB HOMO levels was 0.49 eV, which is relatively small. The UPS measurement
results suggested that the CuCo2O4-200/TFB structure was more suitable for the device
in terms of hole injection.

To confirm the degree of hole injection in actual devices according to the CuCo2O4
HILs annealing temperature, the J-V characteristics were measured by manufacturing
an HOD of the ITO/CuCo2O4/TFB/Al structure, as displayed in Figure 5a. An EOD
with an ITO/ZnO/Al structure was also fabricated to compare the injection and transport
properties of the electrons and hole carriers. Figure 5b shows that more current flows in
the EOD than in the HOD, which can be expected based on the characteristics of holes
and electrons. Remarkably, the current density of the HODs using the ternary metal oxide
CuCo2O4 HIL was nearly 100 times higher than that of the binary metal oxide CuO. In
addition, as expected from the UPS measurement results, it can be confirmed that hole
injection increases in the CuCo2O4-200 HOD, which exhibits suitable energy alignment
with the TFB. Therefore, we expect that the CuCo2O4 HIL can improve the performance of
QLEDs owing to its high hole injection ability, and in particular, that CuCo2O4-200 HIL
QLEDs will have the highest performance.

3.3. CuCo2O4 HIL-Based QLED Structure and Performance

Figure 6a shows the structure of the QLED that was fabricated using the solution
process. First, the CuCo2O4, TFB, QDs, and ZnO layers were prepared by spin-coating
on a patterned glass/ITO substrate. Then, the 130 nm Al cathode was thermally evap-
orated using a metal shadow mask. Figure 6b shows a cross-sectional HR-TEM image
of the QLED fabricated using the solution process. The HR-TEM image shows that
CuCo2O4/TFB/QDs/ZnO thin films were formed with uniform thickness. The thick-
nesses of the CuCo2O4-200, TFB, QD, and ZnO layers in the TEM images were 8, 13, 40,
and 35 nm, respectively. EDS line scanning (Figure 6c) displayed the overall elemental
distribution, confirming that each solution-processed thin film was well separated. The
EDS mapping images of C, O, S, In, Co, Cu, and Zn are shown in Figure S4. In the
EDS data, copper (Cu) and cobalt (Co) peaks are co-located, indicating that Cu and Co
do not separate and form a monolayer. In particular, the atomic ratio of the CuCo2O4
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layer analyzed by EDS was Cu:Co:O = 0.9:2:4.1 (Figure S5). This atomic ratio provides
evidence of the formation of a stable spinel (AB2O4) structure.
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Figure 5. (a) Schematic structure of HOD with a CuCo2O4 HIL and (b) current density-voltage (J-V)
characteristics of HODs and the EOD.

Figure 7 shows the light-emitting performance of the CuCo2O4 and CuO-HIL-based
QLEDs. Figure 7a shows the current density-voltage-luminance (J-V-L) characteristics
of QLEDs, and all CuCo2O4 HIL-based QLEDs show a higher luminance than the
CuO HIL-based QLED. The performance improvement of the QLEDs is owing to the
excellent hole injection characteristics of CuCo2O4 and shows the same tendency as the
J-V characteristics of the HOD in Figure 5b. Furthermore, as expected, the energy barrier
between CuCo2O4-200 VBM and TFB HOMO was smaller than that of CuCo2O4-300,
which was advantageous in terms of hole injection, and the CuCo2O4-200 HIL QLED
had the highest performance. The device with the CuCo2O4-200 HIL showed the highest
luminance of 93,607 cd/m2. The current efficiency of the QLEDs with CuCo2O4-200 HIL
was measured as 11.11 cd/A, which was considerably enhanced compared to that of the
device with CuO HIL. In addition, for the CuCo2O4 HIL QLED, the full width at half
maximum (FWHM) of the emission wavelength at the maximum luminance was also
reduced to 24 nm (Figure S6). Additionally, the Commission internationale de l’eclairage
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1931 (CIE 1931) (x, y) coordinates of the CuCo2O4-200 HIL QLED were measured as
(0.214, 0.751), this shows that the CuCo2O4-200 HIL QLED emits more monochromatic
green light than the CuCo2O4-300 and CuO HIL QLEDs. The measured performance
data of the devices are summarized in Table 2. As shown in Figure 7, the current density
at low voltage of the CuCo2O4 HIL QLEDs was higher than that of the CuO HIL QLED.
However, the current density of the CuO HIL QLED rapidly increased after turning
on the device, whereas the CuCo2O4-based device showed a gradual increase rate of
the current density due to a decrease in the leakage current of the device. Therefore,
the current efficiency was higher for QLEDs with CuCo2O4 HIL than CuO HIL and a
narrow FWHM could be realized, allowing higher color purity of the device. This is
due to the enhanced charge balance of the device with better hole injection. This study
demonstrates that efficient hole injection can be achieved using a solution-processed
spinel CuCo2O4 HIL in QLEDs.
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Figure 7. Performance of the QLEDs with CuCo2O4 HILs. (a) Current density-voltage-luminance
(J-V-L) curves. (b) Current efficiency-current density-external quantum efficiency (CE-J-EQE) curves.

Table 2. Summarized device performances of QLEDs at different CuCo2O4 annealing temperature.

Sample Lmax (cd/m2) CEmax (cd/A) EQEmax (%) FWHM (nm) CIE 1931 (x, y)

CuCo2O4-200 93,607 11.14 2.62 24 (0.214, 0.751)
CuCo2O4-300 47,935 8.42 2.00 24 (0.219, 0.747)
CuO 14,268 1.42 0.34 26 (0.249, 0.725)
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4. Conclusions

In this study, we fabricated CuCo2O4 HIL-based QLEDs to increase hole injection
and improve luminous efficiency. The electrical properties of CuCo2O4 comprising Cu2+

and Co3+ cations were measured using Hall measurements, and it was confirmed that
they have higher conductivity than common p-type binary oxides. In particular, the
difference in the hole injection ability of CuCo2O4 according to the annealing temperature
was identified using XPS, UPS, and the fabricated HOD. It was confirmed that the VBM
of CuCo2O4 shifted away from the Fermi energy level (EF) as the annealing temperature
decreased, resulting in enhanced hole injection through better energy-level alignment.
The CuCo2O4 HODs had a significantly higher current density than the CuO HOD,
and in particular, the hole injection ability of the CuCo2O4-200 HOD was superior to
that of the CuCo2O4-300 HOD, as expected from the perspective of energy alignment.
Maximum luminance and maximum current efficiency of the CuCo2O4-200 HIL QLED
were 93,607 cd/m2 and 11.14 cd/A, respectively, resulting in a 656% improvement in
luminous performance of QLEDs compared to the CuO HIL QLED owing to increased
hole injection. This study demonstrates that efficient hole injection can be achieved using
a solution-processed spinel CuCo2O4 HIL in QLEDs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16030972/s1, Figure S1. Crystallographic structure of AB2O4
spinel. Figure S2. (a) The optical band gap of CdSe/ZnS green QDs. (b) The Photoluminescence
spectra of CdSe/ZnS green QDs. Figure S3. The optical band gap of TFB was estimated using the
Tauc plot. Figure S4. EDS mapping image of various elements (C, O, S, In, Co, Cu, Zn and Se) in the
CuCo2O4 HIL based-QLED. Figure S5. EDS line scan data of atomic percent. Figure S6. Normalized
EL spectra of QLED at the maximum luminance.
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