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Abstract: In recent decades, various previous research has established empirical formulae or thermo-
dynamic models for martensite start temperature (Ms) prediction. However, most of this research
has mainly considered the effect of composition and ignored complex microstructural factors, such as
morphology, that significantly affect Ms. The main limitation is that most microstructures cannot be
digitized into numerical data. In order to solve this problem, a convolutional neural network model
that can use both composition information and microstructure images as input was established for
Ms prediction in a medium-Mn steel system in this research. Firstly, the database was established
through experimenting. Then, the model was built and trained with the database. Finally, the
performance of the model was systematically evaluated based on comparison with other, traditional
AI models. It was proven that the new model provided in this research is more rational and accurate
because it considers both composition and microstructural factors. In addition, because of the use of
microstructure images for data augmentation, the deep learning had a low risk of overfitting. When
the deep-learning strategy is used to deal with data that contains both numerical and image data
types, obtaining the value matrix that contains interaction information of both numerical and image
data through data preprocessing is probably a better approach than direct linking of the numerical
data vector to the fully connected layer.

Keywords: martensite start temperature; microstructure; deep learning; data augmentation

1. Introduction

Martensite start temperature (Ms) is a critical phase-transformation parameter for steel.
This parameter could help to guide processing improvements in various advanced steels,
such as third-generation advanced, high-strength steels [1–4]; ultrahigh-strength stainless
steels [5–7]; and cryogenic steels [8–10]. Therefore, many studies in recent decades have
focused on establishing and improving Ms prediction models, including their empirical
formulae, thermodynamic equations, and machine learning strategies.

Linear empirical formulae are the most concise and commonly used methods for
predicting Ms values. Various formulae for different alloy systems have been established,
including the Andrews [11], Mahieu [12], and Trzaska [13] models. It should be noted
that the internal mechanism of martensite transformation is much more complex than a
linear relationship. Therefore, most linear empirical formulae have a relatively narrow
application scope. In addition to the empirical models, thermodynamic models based on
physical, constitutive equations have also been studied for decades [14–17]; for example, the
Stormvinter [15] and Olson–Cohen [16,17] models. In particular, the Olson–Cohen model
simplified the expression of frictional work using a series of semiempirical formulae, which
partly evaded the controversial martensite transformation mechanism. The Olson–Cohen
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model has been successfully used for the design of various TRIP (transformation-induced
plasticity) and high Co-Ni secondary hardening steels [18,19]. At the same time, because of
the limitation of error accumulation in multicomponent alloy systems, most thermodynamic
models can only be used for alloy systems with fewer than 10 elements.

Therefore, with continued development of advanced steels, more powerful methods,
such as machine learning, which can consider high-dimensional factors [20–23], are needed
for generic alloy design. In 2019, Rahaman et al. [23] reported a machine-learning model
for Ms prediction. After feature engineering, 14 composition features were included in
this Ms prediction model, which was much more generic than traditional empirical or
thermodynamic models. After comparison with other models, the accuracy of this machine-
learning model was proven to be better. In addition, to further improve the performance of
machine-learning models, Lu et al. [22] combined thermodynamic knowledge and machine-
learning methods. Thermodynamic features were used as input in multilayer feed-forward
neural networks, and the modified machine learning models could consider 17 element
features with high accuracy. However, all of the aforementioned models only focused on
the effect of composition and ignored other important factors that affect Ms, such as grain
size and austenite morphology [24,25].

To account for the effect of grain size on Ms in modeling, in previous studies, modi-
fications were made to both the empirical formulae and the thermodynamic models. In
2007, Jimenez-Melero et al. [26,27] modified the Andrews model [11] through addition of a
grain-size effect term to the linear equation, and the modified model was successfully used
for Ms prediction in TRIP steels. In 2013, Lee et al. [28] established a more generic linear
empirical formula for TRIP steels; it could account for the effect of grain size on Ms. In Lee’s
model, a natural logarithm term for the grain-size effect was used instead of the index term
used in Jimenez-Melero’s model. In addition, similar to the empirical formulae with only
composition features, these modified linear empirical formulae also had a relatively narrow
application scope. For thermodynamic models, Bohemen and Morsdorf [29] modified
the description of frictional work in the Olson–Cohen model via addition of a Hall–Petch
strengthening term to express the effect of grain size on the Ms. This model can be used
for Ms prediction in a seven-element alloy system (Fe, C, Mn, Si, Cr, Ni, Mo). Although
great efforts have been made towards modification of Ms prediction models, as mentioned
above, most previous studies have focused only on modeling the effects of composition
and grain size. At the same time, experiments have shown that Ms is related to various
microstructural characteristics besides grain size, such as austenite morphology [30,31]
and the surrounding phase of austenite [32,33]. In addition, these microstructural charac-
teristics can only be expressed using image results, such as scanning electron microscopy
images, and it is difficult to convert such images into numerical data that is suitable for
modification of traditional empirical formulae or thermodynamic models. Therefore, the
lack of consideration of the effects of complex microstructural characteristics significantly
limits the accuracy of Ms prediction through modeling. Similar to the problem of Ms
prediction, how to fully consider complex microstructure factors is a common problem in
various prediction issues in the field of materials science; e.g., for prediction of strength
in stainless steels, precipitation information should be considered [34], and for prediction
of mechanical properties in RAFM steels(Reduced Activation Ferritic/Martensitic steels),
phase information should be considered [35]. However, few studies reported methods
for analyzing microstructure images with numerical data in the field of materials science.
Therefore, developing a data-analysis method that can consider both microstructure images
and numerical data is critically important for the development of materials science.

In this study, a deep learning (DL) strategy [36] was used to directly build the quan-
titative relationship between composition and microstructure images and Ms. Using
the automatic image-information-extraction ability of a convolutional neural network
(CNN) [37], complex microstructural characteristics can be directly used as input features
for Ms prediction without the need to artificially convert images to numerical data. This
is a critical improvement of the modeling methods in the field of materials science, as it
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cannot be achieved through traditional physical modeling methods. Therefore, this DL
strategy, which considers the effects of complex microstructural characteristics, can provide
significantly more accurate Ms prediction than can traditional models.

2. Modeling Process
2.1. Dataset Establishment

In this study, a medium-Mn steel data set was established. The compositions of the
samples in the data set are listed in Table 1. An Mn content of 3–6 wt.% was used, and the
contents of the other elements were maintained to be constant. The alloys were then smelted
in a vacuum-induction furnace. The elemental contents were carefully tested using an
infrared carbon–sulfur analyzer, a spectrophotometer, and an inductively coupled plasma
emission spectrometer. Each ingot obtained after smelting was homogenized at 1200 ◦C for
5 h, then forged to a size of 120 mm × 150 mm. After forging, the alloys were subjected
to hot rolling seven times and finally water-quenched to room temperature. Dilatometry
specimens (10 mm × 4 mm × 2 mm) were prepared, and dilatometry experiments were
performed with a DIL805A/D thermal dilatometer (TA Instruments, Hüllhorst, Germany).
The final heat-treatment process is shown in Figure 1a, and the detailed parameters thereof
are listed in Table 2. After normalization at 900 ◦C for 600 s, annealing was performed
at different temperatures (735–790 ◦C) and for different times (0.5–20 min) depending on
composition.

Table 1. Composition of the samples in the data set (wt.%).

Parameter Fe C Mn Si

Steel A Bal. 0.203 2.96 1.61
Steel B Bal. 0.214 3.86 1.64
Steel C Bal. 0.242 4.79 1.65
Steel D Bal. 0.223 5.66 1.64

Table 2. Detailed heat-process parameters at different annealing temperatures (ATs) and annealing
times (Ats).

A B C D

AT/◦C At
/min AT/◦C At

/min AT/◦C At
/min AT/◦C At

/min

Detailed
Parameters

790 0.5 770 0.5 745 0.5 735 0.5
790 2 770 2 745 2 735 2
790 5 770 5 745 5 735 5
790 10 770 10 745 10 735 10
790 15 770 15 745 15 735 15
790 20 770 20 745 20 735 20
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Figure 1. Final heat-treatment process and representative microstructure images of alloys with dif-
ferent compositions: (a) heat-treatment process, (b) Steel A, (c) Steel B, (d) Steel C, and (e) Steel D. 

Figure 1b–e show representative microstructure images of the alloys with different 
compositions. All images obtained in this study were 1280 × 1280-pixel-value matrices 
with three channels. Each sample was related to one microstructure image, which means 
that the data set contained 24 microstructure images. Subsequently, the various Ms tem-
peratures were obtained from the thermal expansion–temperature curve obtained from 
the dilatometry experiments. Figure 2 shows the effects of the annealing times on the Ms 
values for alloys with different compositions. Finally, a data set that comprised systematic 
compositions, microstructure images, and Ms information was established. Detailed in-
formation on this data set is provided in the Supplementary Materials. 
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both composition and microstructure-image input. The framework used in this study is 
illustrated in Figure 3. In order to reflect the correlation between the composition data and 
the microstructure images, the contents of different main elements, namely C, Mn, and Si, 
were directly multiplied with the pixel value matrices of the related microstructure im-
ages. Then, the value matrices were cut into 224 × 224 submatrices to augment the amount 
of data. In addition, to meet the large data requirement of DL, further data augmentation 
was performed via 180° rotation or mirror transfer of the submatrices. Finally, 20,475 sub-
matrices with integrated composition and microstructure information were obtained for 
the training, testing, and validation of the CNN model. In summary, the input data for the 

Figure 1. Final heat-treatment process and representative microstructure images of alloys with
different compositions: (a) heat-treatment process, (b) Steel A, (c) Steel B, (d) Steel C, and (e) Steel D.

Figure 1b–e show representative microstructure images of the alloys with different
compositions. All images obtained in this study were 1280 × 1280-pixel-value matrices
with three channels. Each sample was related to one microstructure image, which means
that the data set contained 24 microstructure images. Subsequently, the various Ms tem-
peratures were obtained from the thermal expansion–temperature curve obtained from
the dilatometry experiments. Figure 2 shows the effects of the annealing times on the Ms
values for alloys with different compositions. Finally, a data set that comprised system-
atic compositions, microstructure images, and Ms information was established. Detailed
information on this data set is provided in the Supplementary Materials.
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2.2. CNN Model

In this study, a CNN, many of which are widely used for classification and regression
of images in the field of artificial intelligence (AI), was used for Ms prediction based on
both composition and microstructure-image input. The framework used in this study is
illustrated in Figure 3. In order to reflect the correlation between the composition data
and the microstructure images, the contents of different main elements, namely C, Mn,
and Si, were directly multiplied with the pixel value matrices of the related microstructure
images. Then, the value matrices were cut into 224 × 224 submatrices to augment the
amount of data. In addition, to meet the large data requirement of DL, further data
augmentation was performed via 180◦ rotation or mirror transfer of the submatrices.
Finally, 20,475 submatrices with integrated composition and microstructure information
were obtained for the training, testing, and validation of the CNN model. In summary, the
input data for the proposed CNN model is both composition (content of C, Mn, and Si)
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and microstructure images. The physical meaning of the input images is the microstructure
factors, such as size and morphology of austenite, that have effects on the Ms. Figure 4
clearly shows the effect of each chemical composition: C, Mn, and Si. The absolute values
of the Pearson correlations of all three elements were higher than 0.7, which means that
the content of all three of these elements has a significantly high correlation with the Ms
values. This analysis is also consistent with both previous experimental and computational
results [15,23]. Therefore, it is reasonable to use these three elements as part of the main
input in this research. After structure and parameter optimization, five convolutional layers,
with a 3 × 3 convolution kernel, and five pooling layers were used for the CNN model.
The fully connected layer had 512 neurons. Adam was chosen as the optimizer, and the
learning rate was set to 3× 10−4. For all of the aforementioned modeling of the CNN model
and other AI models, data preprocessing and model training were implemented using
Keras (version_2.4.3) and Scikit-learn (version_1.1.1) in Python (version_3.8.8). PyCharm
(version_2021.1.3, generated by JetBrains from the Czechia) was used as the programming
software in this research.
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For the training and testing processes, 20% of the submatrices (4095 samples) in
the data set were randomly selected as the validation set. The remaining submatrices
were randomly divided into two parts 10 times, with 80% (13,104 samples) and 20%
(3276 samples) of the submatrices used as training and testing sets, respectively. Finally, the
predicted Ms output was obtained via passing the data through the convolutional, pooling,
and fully connected layers. After these Ms predictions were obtained, the coefficient of
determination (R2) and mean absolute error (MAE) were used to evaluate the performances
of different models.

3. Results
3.1. Performance Optimization Results of CNN

To achieve the best performance of the CNN model, systematic optimization of the
model structure and parameters is required. Figure 5 shows performance optimization
results. First, the number of convolutional and pooling layers was optimized. As shown in
Figure 5a, when the number of convolutional and pooling layers was only one, the average
loss for both the training and testing set was relatively high because the structure was too
simple to express the complex relationship between the composition/microstructure and
the Ms. The loss in the model gradually decreased with increases in the number of layers.
Finally, when five layers were used, the loss in the model became stable, which means that
five convolutional and pooling layers could be the optimal structure of this model; fewer
layers could reduce performance, and more layers could increase the risk of overfitting.
After determination of the layer structure, three different optimizers were tested: namely,
Adadelta, Nadam, and Adam. Figure 5b shows that Adam had better performance, with a
lower average loss, for both the training and testing set. Therefore, the Adam optimizer was
used in this study. Similarly, the effect of the learning rate was systematically analyzed, and
the results thereof are shown in Figure 5c. The average loss became almost stable when a
learning rate of 3 × 10−4 was used for the training set. In addition, at this learning rate, the
performance of the testing set was the best. Therefore, the learning rate was set to 3 × 10−4

in this study. Finally, the stability and performance of this model were comprehensively
evaluated during the iterative parameter optimization process. As shown in Figure 5d,
the loss for both the training and testing set gradually decreased with an increase in the
number of epochs. When the epoch number exceeded 200, loss stabilized below five, which
confirmed the good convergence and stability of this model.

3.2. Prediction Results

The Ms prediction results from the CNN after parameter optimization are shown in
Figure 6. These results demonstrate the excellent performance of the CNN model. The R2

values for the training, testing, and validation sets were all >0.99, which is much higher
than those of most prediction studies that use AI methods in the field of materials science.
Moreover, the R2 error bar for all of the sets was extremely small, indicating that this CNN
model showed little risk of overfitting. The MAE results showed that the largest mean
MAE for all the sets was only ~2 ◦C, which is lower than those in previous studies that also
used DL strategies combined with complex deep data mining for Ms prediction. The CNN
model developed in this study is much simpler than those of previous studies in terms of
structural optimization and data preprocessing. In addition, the results for the testing and
validation sets were nearly identical, which partly proves the extensibility of this model.
Figure 6b–d show the detailed results of the Ms prediction. It is evident that the optimal
prediction results for the samples in the training, testing, and validation sets fall precisely
on a straight line with a slope of 1, which further confirms the stability and generalizability
of this CNN model.
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4. Discussion
4.1. Comparison with Traditional AI Methods That Only Use Composition Input

To explain the necessity of adding microstructure images as input, different traditional
AI methods, including support vector regression (SVR), XGboost (XGB), random forest
(RF), gradient boosting regression (GBR), and AdaBoost (Adb), were also used to predict
Ms, with only composition and processing parameters as input. For the traditional AI
methods, the data set with 32 samples was divided into training and testing sets at a ratio
of 8:2. Figure 7 shows the results of the traditional AI methods. For all of the traditional AI
methods, without the guidance of microstructure images, the mean MAE of the testing sets
was much higher than that of the training sets, and the error bar of the MAEs for the testing
sets was relatively large (Figure 7a). These results clearly indicate that the traditional AI
methods showed a strong overfitting tendency. A similar conclusion can also be drawn
based on the R2 results. The mean R2 values of the testing sets were lower, with larger
error bars, than those of the training sets for all of the traditional AI methods, as shown
in Figure 7b. Among the traditional AI methods, XGboost showed the lowest overfitting
tendency (lower MAEs for both the training and testing set). The performance of XGboost
regarding the training and testing sets is further shown in Figure 7c,d. Even for XGboost,
which showed the best performance among the traditional AI methods, the mean MAE
(3.02 ◦C) was higher than that of the CNN model built in this study (mean MAE = 2.11 ◦C),
and the mean R2 of XGboost (0.982) was also lower than that of the CNN model (0.993).

Materials 2022, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 7. Comparison with traditional AI methods using only composition input: (a) comparison of 
MAEs, (b) comparison of R2 values, (c) results of the training set for XGboost, and (d) results of the 
testing set for XGboost. 

In summary, compared with the traditional AI methods, the CNN model trained 
with microstructure images showed advantages in terms of both prediction accuracy and 
stability. With our understanding of materials science taken into account, it is reasonable 
that the CNN model had better performance because it contained more critical factors 
related to microstructure. In addition, in the field of AI, the better performance of the CNN 
model in this study could also be explained as follows: In this study, the data set contained 
only 24 samples with different compositions or processing details; therefore, the data set 
belonged to the class of extremely small-sample problems. Therefore, it is understandable 
that even SVR or XGboost, which are typically good at handling small-sample problems, 
could not completely solve the problem of overfitting in this study. However, with the 
addition of microstructure subimages, the 24 samples were augmented to 20,475 samples 
with more information. Therefore, this data augmentation greatly relieved overfitting and 
helped fully utilize the performance advantages of the DL. It should also be noted that the 
performance of SVR or XGboost can be improved through addition of more samples into 
the database. However, more samples mean more fabrication and sample preparation. 
Usually, traditional AI methods, such as SVR or XGboost, need at least hundreds of sam-
ples. This will lead to extremely high time and funding costs. Therefore, instead of addi-
tion of samples to the database, the CNN model, which only needs 24 samples, can be 
used as a more efficient way. In addition, compared with other traditional models, the 
main advantages of this CNN model are the efficiency of not only the small sample re-
quirement but also the way that it can easily add complex microstructure factors into the 
model. 

4.2. Comparison with Traditional CNN Model without Composition Input 

Figure 7. Comparison with traditional AI methods using only composition input: (a) comparison of
MAEs, (b) comparison of R2 values, (c) results of the training set for XGboost, and (d) results of the
testing set for XGboost.

In summary, compared with the traditional AI methods, the CNN model trained
with microstructure images showed advantages in terms of both prediction accuracy and
stability. With our understanding of materials science taken into account, it is reasonable
that the CNN model had better performance because it contained more critical factors
related to microstructure. In addition, in the field of AI, the better performance of the CNN
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model in this study could also be explained as follows: In this study, the data set contained
only 24 samples with different compositions or processing details; therefore, the data set
belonged to the class of extremely small-sample problems. Therefore, it is understandable
that even SVR or XGboost, which are typically good at handling small-sample problems,
could not completely solve the problem of overfitting in this study. However, with the
addition of microstructure subimages, the 24 samples were augmented to 20,475 samples
with more information. Therefore, this data augmentation greatly relieved overfitting and
helped fully utilize the performance advantages of the DL. It should also be noted that
the performance of SVR or XGboost can be improved through addition of more samples
into the database. However, more samples mean more fabrication and sample preparation.
Usually, traditional AI methods, such as SVR or XGboost, need at least hundreds of samples.
This will lead to extremely high time and funding costs. Therefore, instead of addition
of samples to the database, the CNN model, which only needs 24 samples, can be used
as a more efficient way. In addition, compared with other traditional models, the main
advantages of this CNN model are the efficiency of not only the small sample requirement
but also the way that it can easily add complex microstructure factors into the model.

4.2. Comparison with Traditional CNN Model without Composition Input

As mentioned in Section 2, the content values of the different main elements (C, Mn,
and Si) were directly multiplied with the pixel value matrices of the related microstructure
images before being used as input in the CNN models. This differs from traditional CNN
models, which directly use images as input. Therefore, to prove the necessity of using the
data preprocessing step, a traditional CNN model with only microstructure subimages
as input was also built for Ms prediction. The results for the traditional CNN models
are shown in Figure 8. Although the mean R2 values of the testing and validation sets
were slightly lower than that of the training set, both the gap and the error bars were
small (Figure 8a). This indicates that with sufficient microstructure subimage data, the
traditional CNN models could also overcome the problem of overfitting. Figure 8b–d show
the prediction results of the traditional CNN models for the training, testing, and validation
sets, respectively. It is clear that without use of composition information as input, the
prediction accuracy of the CNN model was significantly degraded. For both the testing
and validation set, many prediction results deviated significantly from a straight line with
a slope of 1. It is widely accepted that Ms is determined through both composition and
microstructural factors. Therefore, it is reasonable that consideration of only microstructural
factors is not sufficient for accurate Ms prediction. In other words, the use of a data
preprocessing step to combine both composition and microstructure information as input
in the CNN model is necessary for Ms prediction.

4.3. Optimization of the CNN Framework for Addition of Composition Information

As mentioned above, both composition and microstructure information should be
used as input to make accurate Ms predictions. However, instead of the data preprocess-
ing step used in this study, composition information could also be added from the fully
connected layer of the CNN model. Therefore, to build the optimal CNN framework for
addition of the composition information, a CNN model in which composition information
was added from the fully connected layer was also built for comparison. For this model,
only the framework of the fully connected layer was changed, as shown in Figure 9. The
composition vector was directly linked to the fully connected layer. Therefore, the composi-
tion layer could only affect the training of the parameters between the fully connected layer
and the final output. The parameters in the convolutional and pooling layers, which deter-
mine feature extraction of images, were not affected by the composition in this framework.
Figure 10a shows the optimal results from 10 random partitions of the data set. These results
show that direct addition of composition information into the fully connected layer im-
proved the performance of this CNN model (best MAE = 2.28 ◦C) over that of a traditional
CNN model that did not consider the composition effect (best MAE = 3.48 ◦C). However,
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this performance improvement was less than that of the CNN model that used the data
preprocessing step to add composition information (best MAE = 1.77 ◦C). The mean MAE
and R2 values for all of the modeling methods are summarized in Figure 10b, which clearly
shows the comprehensive advantages of the modeling strategy used in this study. This
comparison’s results clearly show that the CNN model established in this research achieved
a better performance because of the reasonable data preprocessing step and the reasonable
architecture of the network for feature extraction. The data preprocessing step can help
to fully reflect the interaction between composition (numerical data) and microstructure
information (image data). Then, the CNN strategy could enable automatic extraction of the
key features from the value matrix with both composition and microstructure information,
leading to obtaining of accurate predictions of the Ms.
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As mentioned in the introduction, various previous research has already established
models that can clearly reflect the effect of composition on Ms. Therefore, the main ad-
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vantage of this proposed CNN model is that it can easily add both composition and
microstructure factors into the model, and it is a meaningful method with good devel-
opment potential. However, as a newly proposed model, the expandability of this CNN
model should be further evaluated in other issues with different databases. In addition, it
should be mentioned that, similarly to most deep-learning models that use images as input,
brightness, contrast, and signal-to-noise ratio will also probably affect the performance of
this model. Therefore, in this research, the image database was carefully built with exactly
the same SEM equipment, with constant testing parameters, to control this effect to an
acceptable level. In order to further improve the robustness of this model, more modifica-
tions probably should be made. For instance, the contrast and brightness of the training
images could be randomly adjusted in the acceptable range to enhance the robustness of
the image quality [38–41]. In addition, EBSD(Electron Backscatter Diffraction) analysis
could be employed to construct the high-quality data set in order to improve the accuracy
of the feature extraction of the trained DL model for low-quality images with noise [42].
In addition, it was mentioned that the framework used in this research is available for
small-sample databases (only 24 SEM images are needed). Therefore, it is reasonable to
infer that this method can be transferred to other databases that need joint analysis of image
and numerical data. Although further verification still should be made to clearly prove the
extensibility of this model, it brings us a way worth trying for solving various small-sample
problems in the field of materials science. In addition, in this special system of medium-Mn
steels, with the combination of microstructure images and composition as input, this model
can obtain better accuracy because it can consider the effect of morphology from images.
Finally, it should be further clarified that, as an AI method, the CNN model established
in this research is also a ‘black box’ strategy. This means that the advantage of strong
data-analysis capability is at the expense of the physical meaning of the model. Therefore,
all of the results shown in this research are meant to prove that this model can be used
as a good Ms predictor but cannot be used to deepen the physical meaning of martensite
transformation. This is also a common problem for nearly all of the AI models and needs
to be solved in future work.
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5. Conclusions

In order to fully consider the effect of microstructure on Ms, a CNN model with a spe-
cific data preprocessing approach was established for Ms prediction, and both composition
and microstructure image information were used as input. The main conclusions thereof
are as follows:

(1) This CNN model made accurate predictions of the Ms values for medium-Mn steels.
The MAE and R2 values of the validation sets were <2 ◦C and >0.99, respectively. This
overcame the limitation that microstructures could not be digitized into numerical
data or considered as factors in most previous models.
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(2) This CNN model offers significantly better prediction accuracy and stability than
do traditional AI methods, especially decreasing the risk of overfitting, because the
data preprocessing step used in this study enables data augmentation through use of
microstructure images.

(3) When a DL strategy is used to deal with small-sample problems for different data
types, such as Ms prediction, using data preprocessing to obtain the value matrix that
contains the interaction information of both numerical and image data is probably a
better approach than directly linking the numerical data vector to the fully connected
layer.

(4) Although this CNN model is a powerful method for adding complex microstructure
factors, its expandability should be further evaluated in other issues with different
databases.
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