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Abstract: In this review paper, the hot compressive deformation mechanisms and processing maps
of high-entropy alloys (HEAs) with different chemical compositions and crystal structures are ana-
lyzed. The stress exponent (n1) values measured from the series of compression tests for the HEAs
performed at different temperatures and strain rates are distributed between 3 and 35, and they
are most populated between 3 and 7. Power law breakdown (PLB) is found to typically occur at
T/Tm ≤ 0.6 (where T is the testing temperature and Tm is the melting temperature). In AlxCrMnFeCoNi
(x = 0–1) and AlxCrFeCoNi (x = 0–1) HEAs, n1 tends to decrease as the concentration of Al increases,
suggesting that Al acts as a solute atom that exerts a drag force on dislocation slip motion at high
temperatures. The values of activation energy for plastic flow (Qc) for the HEAs are most populated in
the range between 300 and 400 kJ/mol. These values are close to the activation energy of the tracer diffu-
sivity of elements in the HEAs ranging between 240 and 408 kJ/mol. The power dissipation efficiency
(η) of the HEAs is shown to follow a single equation, which is uniquely related to n1. Flow instability for
the HEAs is shown to occur near n1 = 7, implying that the onset of flow instability occurs at the transition
from power law creep to PLB. Processing maps for the HEAs are demonstrated to be represented by

plotting η as a function of the Zener–Hollomon parameter (Z = exp(
Qc

RT
), where R is the gas constant).

Flow stability prevails at Z ≤ 1012 s−1, while flow instability does at Z ≥ 3 × 1014 s−1.

Keywords: high-entropy alloys; hot compression; deformation mechanisms; processing maps

1. Introduction

High-entropy alloys (HEAs) are a new family of solid-solution alloys made of four or
more principal alloying elements alloyed in equiatomic or near-equiatomic concentrations
(with each constituent element having a concentration from 5 to 35 atomic percent (at.%)) [1,2].
The first approach for designing an HEA was to obtain a single-phase solid solution by
maximizing the mixing configurational entropy, but later, new design approaches involving
multiple phases and/or intermetallics were explored [1–3].

Thermomechanical working at high temperatures is necessary not only to form and
shape materials into components but also to produce the desired microstructures and
properties of products [4,5]. For this reason, the high-temperature deformation mecha-
nisms and hot workability of HEAs have been studied [6–100]. Finding the constitutive
equations that mathematically depict the material response to the applied hot deformation
conditions can be useful in predicting the flow stress or strain rates and identifying the
rate-determining deformation mechanisms at different temperatures/strain rates and mi-
crostructural parameters. Characterization of hot workability using a processing map is
important for the optimization of hot working conditions of materials and fabrication of
defect-free components [101]. If a material is processed under unstable flow conditions,
adiabatic shear banding or cracking can occur, and if a material is processed under optimal
conditions, superior microstructure and mechanical properties can be obtained.
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In this work, we have reviewed and analyzed the hot compression data of HEAs
available in the literature to elucidate their deformation mechanisms and optimal hot
working conditions.

2. History and Materials

The first paper reporting the hot compression behavior of HEAs was available in 2011,
and the first studied HEAs were Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 alloys [6],
where the microstructural change during hot compression at temperatures of 1073–1873 K
and at a strain rate of 10−3 s−1 was examined. The papers published in the literature from
2011 to the present can be categorized into three groups (Figure 1a). The first group of pa-
pers reports the hot compressive deformation data of the HEAs in the limited temperature
and strain rate range. The second group of papers reports the hot compression data of
the HEAs in a wide range of temperature and strain rates, but processing maps are not
constructed. The third group of papers reports the hot compression data as well as the pro-
cessing maps of the HEAs. The number of publications increases almost exponentially with
time, indicating that attention to this academic and engineering field has rapidly increased.
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Figure 1. (a) Papers published in the literature from 2011 are categorized into three groups. The first
group of papers includes papers that report hot compressive deformation of the HEAs in the limited
temperature and strain rate range, the second group of papers provides hot compression data of the
HEAs over a wide range of temperature and strain rates, but processing maps are not constructed,
and the third group of papers provides hot compression data (over a wide range of temperature and
strain rates) as well as processing maps of the HEAs. (b) Three material groups of HEA materials
studied for hot compression, which are classified by their chemical compositions. (c) HEA materials
studied for hot compression, which are classified by phases (crystal structures).

The HEA materials studied by hot compression can be classified into three groups
(Figure 1b). The first material group is the Cr-Mn-Fe-Co-Ni series HEAs containing Al, Sn,
Zr, Sn, C, and N [9,20,23,27,34,37,38,42,45,60,62–64]; the second material group is the Cr-Fe-
Co-Ni series HEAs containing Zr, Ta, Nb, Mo, Cu, C, and N [13,25,51,53,72,84,92,96,97,100];
and the third material group is the other composition HEAs, including the materials of
TiVNbMoTa, Mn5Co25Fe25Ni25Ti20, MnFeCoNiCu, etc. [8,11,12,22,29,32,33,40,41,47,52,56,
68,71,74,79,91,93,95,99]. Information regarding the chemical compositions of the HEAs,
grain sizes, crystal structure, types of phases, temperature and strain rate ranges for hot
compression tests are provided in Table 1. Most of the HEAs studied for hot compression
are as-cast or heat-treated (homogenized) cast with coarse grain sizes. Among the Cr-Mn-
Fe-Co-Ni series HEAs and Cr-Fe-Co-Ni series HEAs, AlxCoCrFeNi and AlxCoCrFeMnNi
(x = 0–1) HEAs [9,13,23,25,27,34,42,45,51,53,62,63,71,84,92,96,97,100] have been the most
studied, where the addition of Al can facilitate the formation of BCC phase from the FCC
matrix. At low Al levels corresponding to x = 0–0.4 or 0.5, the alloys have a single FCC
phase, but with a further increase in Al content in the range of x = 0.4 or 0.5–0.9, both FCC
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and BCC phases coexist, and at Al addition beyond x = 0.9–0.95, a BCC single phase is
obtained [102,103].

Table 1. Information regarding the chemical compositions of the HEAs, grain sizes, crystal structure,
types of phases, temperature and strain rate ranges for hot compression tests.

Composition
Grain
Size
(µm)

Major
Phase Minor Phase T Range

(K)

.
ε Range

(s−1)
Tm
(K) n1

Qc
(kJ/mol)

Material
Group

CrMnFeCoNi [9] 300 FCC - 873–1373 10−4–10−2 1801 4.9–12.1 352.2 (εSS) 1

CrMnFeCoNi [23] FCC - 1073–1273 10−3–1 1801 5–8.5 350.5 (ε0.9) 1

CrMnFeCoNi [27] 419 FCC - 1023–1323 10−3–10 1801 5.8–22.8 410.9 (ε0.6) 1

CrMnFeCoNi [45] 12.8 FCC - 1023–1423 10−3–10 1801 4.7–11.1 311.9 (ε0.7) 1

Al0.5CrMnFeCoNi [34] 547 FCC BCC 1023–1323 10−3–10 1722 4.2–10.8 343 (ε0.6) 1

Al0.5CrMnFeCoNi [62] 547 FCC BCC 1423&1473 10−3–10 1722 3.6–4.1 570.5 (ε0.6) 1

Al0.7CrMnFeCoNi [63] FCC BCC 1173–1373 10−3–10 1695 3.2–5.3 309.5 (ε0.7) 1

AlCrMnFeCoNi [42] 118 BCC - 1173–1373 10−3–10 1657 3.4–5.3 336.3 (ε0.5) 1

CrMnFeCoNiSn0.5 [64] >100 FCC L21 1023–1248 10−3–10 1683 4.6–9.4 322.2 (ε0.7) 1

CrMnFeCoNiC0.5 [37] 600 FCC - 973–1273 10−3–1 1801 8–26 479 (ε0.6) 1

CrMnFeCoNi-1 at.%C [20] 125 FCC M7C3 973–1273 10−3–1 1801 8.4–33 605.1 (ε0.6) 1

(CrMnFeCoNi)95C5 [38] 50 FCC M23C6 1073&1273 10−3–10−1 1801 6.3–10.5 424.1 (ε0.6) 1

Cr25Mn15Fe10Co35Ni15 [60] 190 FCC - 1123–1273 10−3–10−1 1801 5–6.3 310.4 (ε1.0) 1

CrFeCoNi [96] >100 FCC - 1173–1373 10−3–10−1 1872 5.8–7 390.1 (ε0.8) 2

Al0.3CrFeCoNi [25] >100 FCC - 1023–1223 5 × 10−4–10−1 1806 5.2–9.7 361.4 (ε0.7) 2

Al0.3CrFeCoNi [92] 52 FCC - 1023–1423 10−3–10 1806 4.5–11.1 320.3 (ε0.7) 2

Al0.5CrFeCoNi [13] >100 FCC BCC 1173–1473 10−3–1 1767 4.4–5.8 296.8 (ε0.8) 2

Al0.5CrFeCoNi [13] >100 FCC BCC 1223–1373 10−3–1 1767 4.7–4.8 304 (ε0.8) 2

Al0.5CrFeCoNi [84] >100 FCC BCC 1173–1373 1.3 × 10−3–10−1 1767 4.7–6.3 361.8 (ε0.7) 2

Al0.6CrFeCoNi [53] >100 FCC BCC 1173–1473 10−3–1 1749 4.5–6.4 380 (ε0.6) 2

Al0.6CrFeCoNi [97] >100 FCC BCC 1223–1373 10−3–1 1749 3.7–4.5 287.5 (ε0.8) 2

Al0.7CrFeCoNi [72] >100 FCC BCC 1173–1373 10−3–10−1 1732 4.1–5.1 375.5 (ε0.6) 2

Al0.7CrFeCoNi [100] >100 FCC BCC 1073–1373 10−2–10 1732 4.7–6.5 321.3 (ε0.5) 2

AlCrFeCoNi [51] 194 BCC1 BCC2 1073–1373 10−3–1 1684 3.3–4.2 180.6 (ε0.8) 2

(CrFeCoNi)90Zr10 [54] >100 FCC Ni2Zr +
Ni7Zr2

1073–1323 10−3–10 1897 3.9–6.6 327.8 (ε0.6) 2

CrFeCoNiTa0.395 [69] >100 FCC Laves 1073–1373 10−3–1 1999 4.1–6.9 383.5 (ε0.6) 2

CrFeCoNiNb0.25 [89] >100 FCC Laves 1073–1273 10−2–10 1923 5–9.2 431.9 (ε0.8) 2

CrFeCoNiMo0.2 [18] FCC - 973–1373 10−3–1 1921 3.4–20 491.2 (ε0.6) 2

CrFeCoNiCu (as-cast) [90] >100 FCC1 FCC2 1073–1173 10−2–1 1769 3.4–9.7 374.2 (ε0.4) 2

CrFeCoNiCu
(solid-solutionized) [90] >100 FCC1 FCC2 1073–1173 10−2–1 1769 - - 2

CrFeCoNiCu1.2 [66] >100 FCC1 FCC2 973–1123 10−3–1 1753 9.4–25 394.9 (ε0.3) 2

Cr25Fe15Co45Ni15–0.1C [61] >100 FCC - 1123–1273 10−3–10−1 1828 4.8–7.8 479.6 (ε0.5) 2

Cr25Fe15Co45Ni15–0.05N [61] >100 FCC - 1123–1273 10−3–10−1 1828 4.7–6.2 308.5 (ε0.5) 2

Cr10Mn40Fe40Co10–3.3 at.%C
[29] 225 FCC - 1173–1373 10−2–1 1727 5.1–10 466.2 (ε0.6) 3

MnFeCoNiCu [32] >100 FCC - 1123–1323 10−3–10 1637 3.2–12 510.2 (ε0.7) 3

CrMn2FeNi2Cu [95] FCC1 FCC2 873–1273 10−3–10−1 1692 7.2–15.5 363.3 (ε0.7) 3

TiFeCoNiCu [12] >100 FCC1 FCC2 + BCC
+ Ti2(Ni,Co) 1073–1273 10−3–10−1 1721 2.2–4.5 426.4 (ε0.7) 3

AlCrFeCoNi2.1 [22] FCC BCC 1073–1373 10−3–10 1692 3.3–5.2 295.5 (ε0.6) 3
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Table 1. Cont.

Composition
Grain
Size
(µm)

Major
Phase Minor Phase T Range

(K)

.
ε Range

(s−1)
Tm
(K) n1

Qc
(kJ/mol)

Material
Group

AlCrFeCoNi2.1 [47] FCC BCC 1073–1473 10−3–10 1692 3–5.9 332.9 (ε0.6) 3

AlCrFeNiCu [56] >100 FCC BCC 1173–1323 10−3–1 1602 3.3–4.3 154.4 (ε0.6) 3

AlFeCoNiCu [41] >100 FCC BCC 1173–1373 10−1–10 1520 5.6–7.2 328.3 (ε0.5) 3

Al5Ti3Cr15Mn10(FeNi)67 [91] >100 FCC BCC 1053–1373 10−2–10−1 1769 4.1–5.3 375.5 (ε0.6) 3

Mn5Co25Fe25Ni25Ti20 [52] FCC BCC + Ti2Ni
+ Ti2Co 1073–1273 10−3–1 1791 2.8–4 305.2 (ε0.6) 3

TiZrNbMoHf [11] >100 BCC - 1073–1473 10−3–10−1 2444 2.9–6.4 431.4 (ε0.6) 3

TiZrNbMoHf [40] >100 BCC - 1373–1523 10−3–5 × 10−1 2444 3.2–5.1 290.7 (ε0.6) 3

Ti29Zr24Nb23Hf24 [74] 361 BCC - 973–1373 10−3–10 2308 4.1–10 234.6 (ε0.2) 3

TiZrNbHfTa [33] 140 BCC - 1273–1473 10−4–10−2 2523 2.7–3.3 244.4 (ε0.6) 3

AlCrFeNi [93] >100 BCC(A2) BCC(B2) 1073–1373 10−3–1 1663 4.1–8.3 370 (ε0.6) 3

VNbMoTa [68] >100 BCC - 1173–1373 10−3–10−1 2780 14.5–
19.5 454.2 (ε0.5) 3

AlTiVNb2 [79] >100 BCC(B2) - 1273–1473 10−3–10−1 2111 4.1–6.7 391.4 (ε0.6) 3

AlTi3VZr1.5Nb [99] >100 BCC(B2) - 1373–1523 10−3–1 1984 2.9–3 210.6 (ε0.6) 3

AlCrFeCoNiCu [8] >100 BCC FCC 973–1303 10−3–10−1 1630 2.9–4.4 300.7 (ε0.7) 3

TiVNbMoTa [71] 0.58 BCC FCC 1373–1573 5 × 10−4–5 ×
10−1 2612 2.2–3 291.1 (ε0.3) 3

HEAs with a single FCC phase or FCC (major) + BCC (minor) phases [9,13,18,22,23,
25,27,29,32,34,37,41,45,47,52,53,56,60–63,72,84,91,92,96,97,100] have been most extensively
studied for hot compression tests (Figure 1c). HEAs with a single BCC phase or BCC (major)
+ FCC (minor) phases have also been popularly studied [8,11,33,40,42,51,68,71,74,79,93,99].
HEAs with FCC1 and FCC2 or FCC+ intermetallic compound (IMC) precipitates have been
recently studied [12,20,38,54,64,66,70,89,90,95].

3. Deformation Mechanisms

The raw data (true stress–true strain curves) in the second and third groups of papers,
where a series of hot compression tests were systematically carried out over wide temper-
ature and strain rate ranges, were digitally extracted from the published papers using a
software. For example, the true stress–true strain curves for Al0.7CrMnFeCoNi HEA [62] at
different temperatures and different strain rates are shown in Figure 2a–d.

The hyperbolic sine Garofalo equation has been widely used to describe the steady-
state relationship between the flow stress, temperature, and strain rate (

.
ε) over a wide range

of temperatures and strain rates where power law creep and power law breakdown (PLB)
govern plastic flow [4,104], which is expressed as:

.
ε = A sin h(α σ)n exp

(
− Qc

RT

)
(1)

where A and α are the experimentally determined material constants, n is the stress ex-
ponent, and Qc is the activation energy for plastic flow. The hyperbolic sine function
is mathematically reduced to the equation describing power law creep at low stresses
(Equation (2)) and to the equation describing power law breakdown (PLB) at high stresses
(Equation (3)):

.
ε = A1 (σ)

n1 exp
(
− Qc

RT

)
(2)

.
ε = A2 exp(β σ) exp

(
− Qc

RT

)
(3)
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where A1, A2, and β are the material constants and n1 is the stress exponent, which is
ideally equal to n, but can be different). The constants α in Equation (1), n1 in Equation (2),
and β in Equation (3) can be related by β = αn1 [4,104].
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Figure 2. True stress–strain curves for Al0.7CrMnFeCoNi HEA at various strain rates at temperatures of
(a) 1173, (b) 1248, (c) 1323, and (d) 1373 K. Reproduced/modified with permission from [62], Elsevier.

Figure 3a,b shows the plots of log
.
ε − log σ and log

.
ε − σ at a given strain of 0.7 for the

Al0.7CrMnFeCoNi HEA, where steady-state (SS) flow is attained at almost all temperatures
and strain rates. The slopes of the regression lines of the log

.
ε − log σ and log

.
ε − σ curves

are used to determine the values of n1 and β at each temperature, respectively. Figure 3c
shows the plot of log

.
ε − log(sinh(α σ)), where α is the average of the α(= β/n1) values

measured at all temperatures. According to Equation (1), the slopes (=
[

∂ log
.
ε

∂ log(sinh(α σ))

]
T
)

of the log
.
ε − log(sinh(α σ)) curves represent the n value at each temperature. Figure 3d

shows the plot of log(sinh(α σ))− 1000
T , of which the slope (=

[
∂ ln(sinh(α σ))

∂( 1000
T )

]
.
ε

) represents

the s value at each strain rate. The Qc value can be calculated by using the average (N)
of the n values measured at different temperatures and the average (S) of the s values
measured at different strain rates as follows:

Qc = RNS (4)

It is well-known that a value of n1 represents a specific deformation mechanism; Haper–
Dorn creep and diffusional creep are associated with n1 = 1 [105–108], grain boundary
sliding is associated with n1 = 2 [109,110], solute drag creep is associated with n1 = 3 [111],
dislocation climb creep is associated with 5–7 [112,113], and power law breakdown occurs
when n1 > 7 [4]. Jeong and Kim [62] analyzed the tensile, compressive, and creep data
of CrMnFeCoNi and Al0.5CrMnFeCoNi HEAs with various grain sizes and proposed
the constitutive equations that can quantitatively predict their flow stresses as a function
of strain rate, temperature, and grain size (Table 2). Figure 4a,b shows the n1 values of
HEAs with different crystal structures as a function of temperature (T) and a homologous
temperature (T/Tm), respectively, where Tm is the melting temperature of the HEAs. As
the Tm values of most of the HEAs are not available in the literature, we calculated the
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Tm values of the HEAs using the relation Tm = ∑n
i=1 ci(Tm)i [114], where ci is the atomic

percentage of the ith component and (Tm)i is the melting point of the ith component of the
alloy. The plots in Figure 4a,b show that the hot compression tests for the HEAs have been
conducted in the temperature range between 873 K and 1573 K, corresponding to the T/Tm
range between 0.4 and 0.9. The n1 value is distributed between 3 and 35, and the n1 values
are most populated between 3 and 7. As T and T/Tm decrease, n1 tends to increase, and at
T/Tm ≤ 0.6, the number of the data associated with n1 ≥ 7 sharply increases. In the T/Tm
range between 0.6 and 0.9, the fraction of the data associated with n1 ≥ 7 is 0.17, while
in the T/Tm range between 0.4 and 0.6, the fraction of n1 ≥ 7 is 0.66. This result indicates
that PLB dominates plastic flow below 0.6 T/Tm, while power law creep dominates plastic
flow above 0.6 T/Tm. It should be noted that the HEAs that show the lowest n1 of ~3 are
the AlxCoCrFeNi and AlxCoCrFeMnNi HEAs with BCC or BCC + FCC (minor) phases,
containing an Al element. Figure 4c shows that the n values of the HEAs are slightly smaller
than their n1 values. They mostly range between 2.5 and 5. The n tends to increase as T/Tm
decreases, but it is not as sensitive as n1 to T/Tm variation.
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Figure 3. Plots of (a) log
.
ε − log σ, (b) log

.
ε − σ, (c) log

.
ε − log(sinh(α σ)), and (d) log(sinh(α σ))− 1000

T
for the Al0.7CrMnFeCoNi HEA [62] at a given strain of 0.7. The subscript ‘ss’ in σss represents the steady
state. Reproduced/modified with permission from [62], Elsevier.
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Table 2. The constitutive equations of deformation mechanisms in HEAs.

Creep Process Equation
ki Value

Ruano et al. [113] CrMnFeCoNi [62] Al0.5CrMnFeCoNi [62]

Diffusional creep
Nabarro–Herring [105,106]

.
ε1 = k1

(
DL/d2)(Eb3/kT

)
(σ/E) 14 14 14

Coble [107]
.
ε2 = k2

(
Dgbb/d3)(Eb3/kT

)
(σ/E) 50 50 50

Grain boundary sliding (GBS)
Lattice-diffusion-
controlled [109]

.
ε3 = k3

(
DL/d2)(σ/E)2 6.4 × 109 3.1 × 108 6.7 × 108

Pipe-diffusion-controlled [110] .
ε4 = k4α

(
Dp/d2)(σ/E)4 3.2 × 1011 1.6 × 1010 3.4 × 1010

Grain-boundary-
diffusion-controlled [109]

.
ε5 = k5

(
Dgbb/d3)(σ/E)2 5.6 × 108 1.9 × 107 5.9 × 107

Slip creep
Harper–Dorn [108]

.
ε6 = k6

(
DL/b2)(Eb3/kT

)
(σ/E) 1.7 × 10−11 1.7 × 10−11 1.7 × 10−11

Lattice-diffusion-controlled
dislocation climb creep [112]

.
ε7 = k7

(
DL/b2)(σ/E)5 1 × 1011 2.6 × 109 1.5 × 109

Pipe-diffusion-controlled
dislocation climb creep [112]

.
ε8 = k8

(
Dp/b2)(σ/E)7 5 × 1012 1.1 × 109 3.9 × 109

Solute drag creep [111] .
εCJ =

2γD̃kT
Xs Xae2Eb5 [2(1 + ν)]4

(
1−ν
1+ν

)(
σ
E
)3
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Figure 5a,b shows the log
.
ε − log σ curves for the AlxCrMnFeCoNi

(x = 0–1) [9,27,34,42,63] and AlxCrFeCoNi (x = 0–1) HEAs [13,25,51,53,72,84,92,96] at a
given temperature of 1173 K. The n1 value decreases from 5 to ~3 as x increases. This result
indicates that as the amount of BCC phase (rich with Al) increases, the characteristics of
viscous glide creep associated with n1~3 become more pronounced. Jeong and Kim [42]
analyzed the deformation behavior of the AlCrMnFeCoNi HEA and found that aluminum,
which is largest in size among the constituent elements [42], acts as a solute that causes
solute drag creep and showed that the solute drag creep model proposed by Hong and
Weertman [111] for conventional metals can quantitatively explain the deformation behav-
ior of the AlCrMnFeCoNi HEA with reasonable assumptions on the diffusivity of Al in
the HEA. From the plots in Figure 5a,b, it should also be noted that flow stress tends to
decrease the added amount of Al increases especially at low strain rates, indicating that the
BCC phase deforming under solute drag creep is weaker than the FCC phase deforming
under dislocation climb creep.
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Figure 5. Plots of the log
.
ε − log σ curves for the (a) AlxCrMnFeCoNi (x = 0–1) [9,27,34,42,63] and

(b) AlxCrFeCoNi (x = 0–1) [13,25,51,53,72,84,92,96] HEAs at a given temperature of 1173 K (at a strain of
0.5).

Deformation mechanism maps represent the dominant deformation mechanism for
a given metallic material under different conditions. Figure 6a,b shows the deformation
mechanism maps as a function of strain rate (10−5 to 10 s−1) and temperature (873 and
1573 K) at a given (coarse) grain size of 100 µm for CoCrFeMnNi and Al0.5CoCrFeMnNi.
On the maps, the data of the CoCrFeMnNi and Al0.5CoCrFeMnNi HEAs are loaded. For
the CoCrFeMnNi HEA, at high temperatures, dislocation climb creep controlled by lattice
diffusivity (DL) governs plastic flow, but when the temperature is low, the rate-controlling
mechanism changes to dislocation climb creep controlled by Dp (or PLB). As the strain
rate increases, the region associated with Dp-controlled dislocation climb creep (or PLB)
expands to a higher temperature. For the Al0.5CoCrFeMnNi, solute drag creep appears in
the bottom right corner of the map. Jeong and Kim [62] showed that when the grain size is
sufficiently small, grain boundary sliding mechanism can play a more important role than
solute drag creep in the Al0.5CoCrFeMnNi HEA.

Figure 7a shows the Qc values of HEAs calculated using Equation (4). The Qc value
is in the range between 150 and 600 kJ/mol, and the data distribution is most populated
in the range between 300 and 400 kJ/mol. The activation energy of the tracer diffusivity
of elements in the HEAs ranges between 240 and 408 kJ/mol [115,116], implying that the
activation energy of plastic flow for the HEA is related to the atomic diffusivity of elements
constituting the HEAs. Figure 7b shows the relation between n1 and Qc for the HEAs. A
smaller Qc is obtained at smaller n1, and this is more apparent near n1~3, where solute
drag creep governs the deformation mechanism. It is worthwhile to note that the activation
energy for the solute diffusion (Qsolute) of magnesium in aluminum (136 kJ mol−1) is lower
than the activation energy for self-diffusion in pure aluminum (142 kJ/mol) [117].
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Figure 7. (a) Qc values of HEAs calculated using Equation (4) and (b) the relation between
n1 and Qc for the HEAs. The activation energy (Q∗

L) of tracer diffusivity of elements in the
AlxCoCrFeMnNi and AlxCoCrFeNi HEAs ranges between 240 and 408 kJ/mol (shaded area by
blue color): Q∗

L = 323 ± 5 kJ/mol for Cr, Q∗
L = 303 ± 3 kJ/mol for Fe, Q∗

L = 240 ± 20 kJ/mol for Co,
Q∗

L = 253 ± 8 kJ/mol for Ni in CrFeCoNi, Q∗
L = 313 ± 13 kJ/mol for Cr, Q∗

L = 272 ± 13 kJ/mol
for Mn, Q∗

L = 309 ± 11 kJ/mol for Fe, Q∗
L = 270 ± 22 kJ/mol for Co, and Q∗

L = 304 ± 9 kJ/mol
for Ni in CrMnFeCoNi [115]. Q∗

L = 263 kJ/mol for Al, Q∗
L = 288 kJ/mol for Cr, Q∗

L = 315 kJ/mol
for Fe, Q∗

L = 258 kJ/mol for Co, Q∗
L = 260 kJ/mol for Ni in Al4.88Co29.53Cr18.58Fe19.62Ni27.39 [117],

Q∗
L = 258 kJ/mol for Al, Q∗

L = 288 kJ/mol for Cr, Q∗
L = 408 kJ/mol for Fe, Q∗

L = 260 kJ/mol for Co,
and Q∗

L = 261 kJ/mol for Ni Al6.64Co23.82Cr23.66Fe23.01Ni22.87 [116].

4. Processing Maps

A processing map, which is useful in finding the optimal condition for hot forging or
extrusion, is composed of a power dissipation map and a flow instability map. According
to Prasad et al. [101], the total power, P, absorbed in a material is divided into the power
dissipation content (G), which represents the power dissipated by plastic deformation
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giving rise to a temperature increase in the workpiece and the power dissipation co-content
(J), which represents the power dissipated by a change in its microstructure, such as
dynamic recovery and dynamic recrystallization [101].

P = σ
.
ε = G + J =

∫ .
ε

0
σd

.
ε +

∫ σ

0

.
εdσ (5)

The efficiency of power dissipation, η, which represents the power dissipation effi-
ciency due to a change in microstructure during plastic flow, is defined as [101]:

η =
J

Jmax
= 2

(
1 − 1

σ
.
ε

∫ .
ε

0
σd

.
ε

)
(6)

where Jmax is the maximum J value (=P/2).
The strain rate sensitivity, m, which is equal to 1/n1, can be calculated by:

m =
1
n1

=

[
∂lnσ

∂ln
.
ε

]
(7)

When m is assumed to be constant over the investigated strain rate range (as assumed
by Prasad et al. [101]), η = 2m

m+1 , but when m is not constant (as considered by Murty

et al. [118]), η can be directly determined from Equation (6) by calculating
∫ .

ε
0 σd

.
ε through

the numerical integration procedure, using Equation (8):

∫ .
ε

0
σd

.
ε =

∫ .
εmin

0
σd

.
ε +

∫ .
ε

.
εmin

σd
.
ε =

(
σ

.
ε

m + 1

)
.
εmin

+
∫ .

ε

.
εmin

σd
.
ε (8)

In drawing the flow instability map, Ziegler’s plastic flow theory is used, and accord-
ing to Murty et al. [119] (when m is not a constant),

ξ = 2m − η < 0 (9)

When ξ is negative, deformation in the material is predicted to be unstable, such that
localized flow, adiabatic shear banding, or cracking can take place.

Kim and Jeong [120] suggested an empirical equation for η by analyzing the behavior
of η values of many metals calculated by following the numerical method proposed by
Murty (Equation (8)) as a function of n1:

η =

[
104

(n1 − 1)2

](
2

n1 + 1

)
+

[
tanh(n1 − 5) + 1

2
· (n1 − 1)1.5

(n1 − 1)1.5 + 102

](
2
n1

· e
n1 − 1
en1

)
(10)

By using this equation, the η value can be easily obtained once n1 is known without
numerically solving Equation (8). Kim and Jeong [121] also presented a simple form of the
flow instability criterion based on the observation that unstable flow occurs in many metals
when n1 is larger than 7 (i.e. when PLB governs plastic flow):

ξ = 7 − n1 < 0 or η < 0.285 (11)

Unlike in the procedure for determining n1 for calculating Qc (Figure 3a), where a
linear fitting is applied to the data in the plot of log

.
ε − log σ, the n1 value as a function

of strain rate, temperature, and strain, which is necessary for constructing processing
maps, has often been determined using a third- or fourth-order polynomial fitting to the
data in the plot of log

.
ε − log σ. This polynomial fitting curve, however, sometimes has

difficulty describing the power law creep. This example is shown in Figure 8. Thus, Kim
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and Jeong [121] proposed the exponential fitting method for the determination of the m
from the plot of log

.
ε − log σ. According to the method,

log
.
ε = a + c × exp

(
log σ − b

d

)
+ f × exp

(
log σ − b

g

)
(12)
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When Equation (12) is used, m can be calculated by Equation (13):

m =

[
c
d
× exp

(
log σ − b

d

)
+

f
g
× exp

(
log σ − b

g

)]−1
(13)

As observed in Figure 8, the exponential fitting, where m tends to decrease gradually
with increasing strain rate, provides a better fit to the series of data compared with the
polynomial fitting, which sometimes creates uncertain fluctuation between the data points.

Figure 9a–c shows the η values of the HEAs calculated by Murty’s method
(Equations (6) and (8)) as a function of n1 for the three material groups of HEAs. It is
obvious that the η values of all the three material groups of HEAs follow Equation (10) well
in the entire range of n1, regardless of the differences in composition and crystal structure.
Furthermore, it is observed that the flow instability condition determined by Equation (9)
occurs at n1≈7, supporting that the onset of flow instability occurs at the transition from
power law creep to PLB (Equation (11)).

Figure 10a–d shows the processing maps for Al0.5CrMnFeCoNi and Al0.3CrFeCoNi
HEAs constructed based on Murty’s approach and Kim and Jeong’s approach. A good
match is observed between the two methods in power dissipation maps as well as flow
instability maps. However, some mismatch is observed for the Al0.3CrFeCoNi HEA in the
flow instability at low strain rates and at low temperatures. This occurs because in Murty’s
method, the material is assumed to follow the power law creep at low strain rates below
.
εmin (Equation (8)), but this assumption can be wrong at low temperatures if PLB governs
plastic flow below

.
εmin.
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based on Murty’s approach and Kim and Jeong’s approach using the raw data from [62] (for
Al0.5CrMnFeCoNi) and [92] (for Al0.3CrFeCoNi).

Figure 11a,b shows the plots of n1 as a function of the Zener–Hollomon parameter

(Z = exp(
Qc

RT
)) for Al0.5CrMnFeCoNi and Al0.3CrFeCoNi. There is a good correlation

between n1 and Z, indicating that as strain rate increases and temperature decreases
(i.e., as Z increases), n1 tends to increase. This occurs because according to the deformation
mechanism maps (Figure 6a,b), as strain rate increases and temperature decreases, the
deformation mechanism changes from solute drag creep (associated with n1 = 3) to disloca-
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tion climb creep (associated with n1 = 5) and then power law breakdown (associated with
n1 > 3). η is a function of n1 according to Equation (10). Hence, η can also be expressed as a
function of Z. Figure 11c,d shows the plot of η as a function of Z for Al0.5CrMnFeCoNi and
Al0.3CrFeCoNi, where a good correlation between η and Z is observed. η tends to decrease
as Z increases. In addition, most of the data belonging to the flow instability condition
(determined by Murty’s approach using Equation (9)) are positioned below η = 0.285,
supporting the validity of Equation (11). Some mismatches are observed between Equation
(9) and Equation (10) and this can be attributed to the aforementioned assumption of power
law creep below

.
εmin in Murty’s method.
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The plots in Figure 11c,d represent the “processing maps expressed as a function of Z”
because if one knows the temperature and strain rate, the Z value can be calculated, and
then the power dissipation efficiency and flow (in)stability can be readily determined from
the plot.

Figure 12a–c shows the plots of processing maps for the three material groups of
HEAs expressed as a function of Z using each Qc value of the HEAs (Table 1), and
Figure 12d shows the plot where all the data in Figure 12a–c overlap. The η values of each
material are well correlated as a function of Z, and the data for each group converge to a
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common curve. Also, it is observed that all the data of the three groups converge to a sin-
gle common curve. According to the plot in Figure 12d, flow stability is nearly guaranteed at
Z ≤ 1012 s−1, while flow instability is nearly inevitable at Z ≥ 2 × 1015 s−1. At
1012 s−1 ≤ Z ≤ 2 × 1015 s−1, flow stability and instability conditions coexist, and flow
instability becomes more dominant as Z increases.

Materials 2023, 16, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 12. Plots of processing maps for (a) AlxCrMnFeCoNi (x = 0–1) [9,23,34,42,45,63], (b) 
AlxCrFeCoNi (x = 0–1) [13,25,51,53,72,84,92,96,97,100], and (c) CrMnFeCoNiSn0.5, etc. 
[22,47,54,60,61,64], expressed as a function of Z using each Qc value of the HEAs (Table 1) 
and (d) the plot where all the data in (a–c) overlap. Open and solid symbols represent the 
flow stability and instability conditions (determined by Equation (9)), respectively. A red hor-
izontal line represents 𝜂 = 0.285 (Equation (11)). 

 

Figure 13a–c shows the plots of processing maps for the three material groups of 
HEAs constructed as a function of Z using the average Qc value of all the HEAs (317.2 
kJ/mol), and Figure 12d shows the plot where all the data in Figure 13a–c overlap. Note 
that all the data lie close to a common curve. According to the plot in Figure 12d, flow 
stability prevails at Z ≤ 1012 s−1, while flow instability prevails at Z ≥ 3 × 1014 s−1. By plotting 
in this fashion, one can easily compare the η values of the different HEAs at a given tem-
perature and strain rate as well as predict the optimum hot working conditions of the 
HEAs with unknown Qc values.  

Figure 12. Plots of processing maps for (a) AlxCrMnFeCoNi (x = 0–1) [9,23,34,42,45,63], (b) AlxCrFeCoNi
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as a function of Z using each Qc value of the HEAs (Table 1) and (d) the plot where all the data in
(a–c) overlap. Open and solid symbols represent the flow stability and instability conditions (determined
by Equation (9)), respectively. A red horizontal line represents η = 0.285 (Equation (11)).

Figure 13a–c shows the plots of processing maps for the three material groups of HEAs
constructed as a function of Z using the average Qc value of all the HEAs (317.2 kJ/mol),
and Figure 12d shows the plot where all the data in Figure 13a–c overlap. Note that all the
data lie close to a common curve. According to the plot in Figure 12d, flow stability prevails
at Z ≤ 1012 s−1, while flow instability prevails at Z ≥ 3 × 1014 s−1. By plotting in this
fashion, one can easily compare the η values of the different HEAs at a given temperature
and strain rate as well as predict the optimum hot working conditions of the HEAs with
unknown Qc values.
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Figure 13. Plots of processing maps for (a) AlxCrMnFeCoNi (x = 0–1) [9,23,34,42,45,63], (b) AlxCr-
FeCoNi (x = 0–1) [13,25,51,53,72,84,92,96,97,100], and (c) CrMnFeCoNiSn0.5, etc. [22,47,54,60,61,64],
expressed as a function of Z using the average Qc value of all the HEAs (317.2 kJ/mol) and (d) the
plot where all the data in (a–c) overlap. Open and solid symbols represent the flow stability and
instability conditions (determined by Equation (9)), respectively. A red horizontal line represents
η = 0.285 (Equation (11)).

5. Conclusions

The hot compressive behaviors of the HEA materials with different chemical com-
positions and crystal structures and processing maps were analyzed, and the following
observations were made.

1. Hot compression tests on many HEAs have been conducted in the temperature range
between 873 K and 1573 K, corresponding to the T/Tm range between 0.4 and 0.9. The
n1 values are most populated between 3 and 7.

2. As T/Tm decreases, n1 tends to increase, and power law breakdown typically occurs
at T/Tm ≤ 0.6.

3. In AlxCrMnFeCoNi (x = 0–1) and AlxCrFeCoNi (x = 0–1) HEAs, n1 tends to increase
as the concentration of Al increases, implying that Al acts as a solute atom that exerts
a drag force on dislocation slip motion.

4. The activation energy for plastic flow (Qc) in the HEAs is calculated to be in the
range between 150 and 600 kJ/mol, and the data distribution is populated in the Qc
value range between 300 and 400 kJ/mol. The average Qc value for all the HEAs is
317 kJ/mol.

5. The η value of the HEAs can be expressed as a function of n1 only. Flow instability is
shown to occur near n1 = 7, implying that the onset of flow instability occurs at the
transition from power law creep to PLB.

6. Processing maps for all the HEAs are demonstrated to be constructed using the Zener–

Hollomon parameter (Z = exp
(

Qc
RT

)
). According to the analysis result, flow stability

prevails at Z ≤ 1012 s−1 in all HEAs.
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