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Abstract: Asphalt mixture is a skeleton filling system consisting of aggregate and asphalt binder.
Its performance is directly affected by the internal load transfer mechanism of the skeleton filling
system. It is significant to understand the load transfer mechanisms for asphalt mixture design and
performance evaluation. The objective of this paper is to review the research progress of the asphalt
mixture load transfer mechanism. Firstly, this paper summarizes the test methods used to investigate
the load transfer mechanism of asphalt mixtures. Then, an overview of the characterization of
load transfer mechanism from three aspects was provided. Next, the indicators capturing contact
characteristics, contact force characteristics, and force chain characteristics were compared. Finally,
the load transfer mechanism of asphalt mixtures under different loading conditions was discussed.
Some recommendations and conclusions in terms of load transfer mechanism characterization and
evaluation were given. The related work can provide valuable references for the study of the load
transfer mechanism of asphalt mixtures.
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1. Introduction

Asphalt mixture is a typical composite material comprising aggregates, asphalt binders,
fillers, and voids. The extrinsic uncertainty, irregularity, vagueness, and nonlinearity
of asphalt mixtures’ properties (such as mechanical properties) are the reflection of its
microstructural complexity. The skeleton structure is regarded as the main body to transfer
external loads in asphalt mixture and the aggregate skeleton contributes the most to the
high temperature stability of asphalt mixture. Therefore, the performance of asphalt
mixtures can be evaluated from the load transfer mechanism of the materials. The study
of the load transfer mechanism of the meso-structure of asphalt mixture provides a new
perspective for the study of classical problems, and can also induce new understanding.
In the past decades, a variety of methods have been introduced to study the load transfer
mechanisms, such as the photoelastic experiment method, digital speckle method, digital
image processing (DIP) technology, discrete element method (DEM) simulation, finite
element method (FEM) simulation, and the combination of multiple methods [1–12].

The load transfer mechanism mainly refers to the characteristics of load transfer in
an asphalt mixture under external load [5,13]. Aggregates in contact constitute the skele-
ton of asphalt mixtures and affect load transmission in the mixture, which determines
its deformation resistance [14,15]. Meanwhile, the load transfer characteristics can be
used to predict the load-bearing capacity of the aggregates and asphalt mixtures. Recent
studies of the load transfer mechanism in asphalt mixture focus on three aspects: contact
mechanical behavior, contact force characteristics, and force chain characteristics. The
research on contact mechanical behavior of asphalt mixture is mainly focused on analyz-
ing the aggregate contact, such as aggregate contact zone [16], aggregate contact chain
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structure [2,17–19], and aggregate contact number characteristics [20,21]. For contact force
characteristics, the most common studies are statistical analysis of contact force, including
contact force distribution characteristics [9,22,23] and contact force evolution characteristics
in the compaction process [5,24]. Studies of force chain fall into two categories, force chains
identification criteria, including force chains length [25,26] and force chains number [27,28],
and force chains structural characteristics [6,29]. From the existing studies, it is found that
the contact skeleton structure of asphalt mixture is the load transfer foundation, and the
contact force and force chain characteristics can reflect load transfer mechanism of skeleton
structure of asphalt mixtures. Meanwhile, massive research attention has been given to
develop the evaluation parameters of load transfer mechanisms according to load transfer
characteristics, such as contact number, contact chain structure, load-bearing contributions
(based on average contact force), and force chains morphologies (force chains length, force
chains angle, and force chains number) [5,16,21,28].

There are different load transfer mechanisms of asphalt mixtures under different
test states, from compaction to service to destruction. The common compaction methods
are the Marshall impact compaction (MIC) method [30], rotary compaction experimental
method [31], and field compaction [32,33]. Exploring the load transfer mechanisms in
different compaction processes provides references for evaluating the stability of the load-
bearing structure of asphalt mixtures after compaction. Meanwhile, the load transfer
mechanism of asphalt mixtures under different external load conditions, such as tension–
compression conditions [34], shear conditions [35], and bending conditions [36], is the
mechanical response of asphalt mixture to different field service conditions, which can
provide the mechanical explanation of the macro-scale damage of asphalt mixture from the
meso-scale mechanical mechanism.

The objectives of this review are the following, and the flowchart of this paper is
shown in Figure 1.
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Figure 1. Flowchart of this paper. Note: DEM—Discrete element method; FEM—Finite element
method; DIP—Digital image processing; DSC—Digital speckle correlation; ACD—Aggregate contact
device; MRE—Magnetic Resonance Elastography; Various smartrock—includes Intelligent Aggregate,
Intelligent Attitude Aggregate, and SmartRock.
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(1) Present the comprehensive review of the test methods and techniques for the load
transfer mechanism of asphalt mixtures.

(2) Collect and discuss the characteristic parameters of the load transfer mechanism.
(3) Compare the load transfer mechanism of asphalt mixtures under different load-

ing conditions including compaction degree, different loading frequency, tension–
compression, shear condition, and bending condition.

(4) Provide recommendations to select and improve the load transfer characteristics and
evaluation parameters of the load transfer mechanism in asphalt mixtures.

This paper mainly reviews and summarizes the meso-scale load transfer (mainly refer-
ring to contact structure, contact force, and force chain) and related evaluation indicators to
provide a theoretical reference for the investigation of the macro-scale properties of asphalt
mixture at the level of meso-scale mechanical mechanisms.

For this review, the search papers across the three databases, Web of Science (WoS),
Scopus, and China national knowledge infrastructure (CNKI), were used. The keywords
searched mainly include asphalt mixture, meso-scale structure, load transfer, contact,
contact force, force chain, pavement, aggregate blend, DEM, and FEM, etc. Most of the
selected articles in this paper are published as journal articles.

2. Definitions and Test Methods for Load Transfer Mechanism
2.1. Definition

For the load transfer mechanism, the most common studies fall into three categories:
contact [3], contact force [5], and force chain [13]. A schematic diagram is shown in Figure 2.
The corresponding concepts are defined as follows.
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(1) Contact: This reflects the contact information between particles in asphalt mixtures.
The contact skeleton of load transfer is formed between particles. Typically, the total contact
number in asphalt mixtures can be defined by Equation (1) [5].

Cm∼m Cm∼(m+∆s1)
· · · Cm∼M

C(m+∆s1)∼(m+∆s1)
· · · C(m+∆s1)∼M
. . .

...
CM∼M

 = C (1)

where Ci~j represents the contact number between particles of Ai and Aj, m is the smallest
particle size in the aggregate blend, M is the largest particle size in the aggregate blend, and
∆Si is the gap between adjacent sieve sizes; i represents the particle size, i = 1, 2, . . . , M.

(2) Contact force: This represents the force transferred between particles through each
contact point.

(3) Force chain: This presents the path of transferring external loading in asphalt
mixtures and consists of the contact between particles and contact force.
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2.2. Test Methods and Comparative Evaluation

There is no standardized test method to assess the load transfer mechanism of asphalt
mixtures. According to the previous study, the test methods of load transfer mechanism
characterizations can be divided into simulation methods and laboratory test methods. The
basic information regarding the corresponding methods to investigate the load transfer
mechanism is presented in Table 1. The relationship between the various test methods and
the types of load transfer mechanisms is shown in Figure 3.

Table 1. Test methods for characterizing load transfer mechanisms.

No. Method Main Features Obtain Studies

Laboratory test method

1
Charge coupled device

camera (CCD) or Computed
tomography (CT) + DIP
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Table 1. Cont.

No. Method Main Features Obtain Studies

Simulation test method

9 Discrete element method
(DEM)
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For the laboratory test methods, the use of image acquisition and DIP to analyze the
contact characteristics of asphalt mixtures is more accurate [8,17,37], but the test workload
and expenses are large. Furthermore, the load transfer mechanism cannot be well char-
acterized. The photoelastic test can be used to analyze both contact characteristics and
contact forces as well as the force chain [38–41]. However, there are high material property
requirements and cost limitations for the photoelastic particles, and the photoelastic test
limits the study to 2D. The digital speckle correlation test is applicable to the analysis of
strain variation of the specimen cross-section [42,43]. Various smartrocks, including Intelli-
gent Aggregate [44], Intelligent Attitude Aggregate [46], and SmartRock [33,45], are only
applicable to a point in the asphalt mixture, and the test results have limitations due to the
relatively few collected data. The indentation test can be used to characterize the magnitude
and distribution of contact forces on a single contact surface, but it cannot characterize the
load transfer in the whole blend structure. The Aggregate contact device (ACD) equipment
can be used to interpret the relationship between contact structure changes and energy
dissipation during compaction, while it cannot be used to characterize load transfer [48].
For the Magnetic Resonance Elastography (MRE) method, the contact structure of the
mixture under external loading can be imaged using the MRE pulse sequence [49]. The
application of the MRE method requires high technical requirements, and the contact struc-
ture obtained has certain errors because the data processing accuracy cannot be reached.
For the numerical simulation test methods, such as the finite element method [2,3,50,51]
and discrete element method [5,7,28], it is more convenient to analyze the influence of
a single factor and to exclude the cross influence of many factors on the load transfer
mechanisms. It can also reduce time consumption and cost, using the numerical simulation
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test method. The model parameters or material characteristics must be determined, but
this can be challenging. Generally, the model parameters or material properties used in the
aforementioned studies were obtained through reverse modeling rather than directly from
experimental data. From the above analysis, there are some limitations when laboratory test
methods are used to characterize certain load transfer mechanisms. Numerical simulation
tests are more suitable for characterizing the load transfer mechanism of asphalt mixtures.
Furthermore, the combination of DIP and a numerical simulation method, which is the
recommended method to be used in current and future research, can provide a better way
to investigate the load transfer mechanism of an asphalt mixture [52,53]. Based on the meso-
scale structure of asphalt mixture obtained by the DIP method, the asphalt mixture load
transfer characteristics can be studied by a numerical simulation. It should be noted that
for the study of load transfer characteristics, there is no feasible method to obtain the load
transfer (contact structure, contact force, or force chain) in real three-dimensional mixtures.

3. Characterization of Load Transfer Mechanism

This section provides a generalized overview of the characterization of contact, contact
force, and force chain. The typical evaluation indicators are also illustrated and compared
as follows.

3.1. Contact Characteristics

Aggregate contact characteristics, including the contact number, contact distance
distribution, contact length distribution, and contact orientation, etc., are descriptions
of the adjacent aggregate particle interaction, which play an important role in the load
transmission in asphalt mixtures. The studies of contact in asphalt mixtures fall into two
categories: (1) parameterization of aggregate contact [20,30,54–57] and (2) contact chain
characterization [58–61]. The parameters such as aggregate contact point, average contact
length, total contact length, and contact orientation can be obtained from a section image
of the asphalt mixture. The contact chain network in an asphalt mixture is a complex
topological structure, which changes with the change of external load action [30,62–65].

Initially, contact points are usually used to describe contact characteristics and evaluate
the meso-structure performance of asphalt mixtures [56]. However, several researchers
found that the contact points cannot fully judge the quality of the mixture structure [20,66].
With the development of computer technology, some other contact indicators are devel-
oped to distinguish the contact structure of different mixtures using an image processing
method. Jiang et al. [21] established a series of contact structure indicators in respect of
contact distance distribution, contact length distribution, and contact orientation by using a
two-dimensional image acquisition and processing program. They found that the optimal
contact distance threshold for contact line analysis is 0.5 mm. The contact length distribu-
tions are varying in different mixtures. Kutay et al. [61] proposed a calculation method for
the aggregate contact point and direction in hot mixture asphalt (HMA) using image pro-
cessing technology based on CT images, and analyzed the change of contact characteristics
with increasing compaction degree. The results show that the number of contact points
increases significantly with the increase of compaction degree. Cai et al. [67,68] character-
ized the contact characteristics of an asphalt mixture under different compaction cycles by
introducing indicators such as coarse aggregate contact point and aggregate inclination
based on digital image processing technology. The results show that when the compaction
force exceeds the limit of the skeleton bearing capacity, the contact point decreases and
the inclination of the aggregate fluctuates. With the increase of compaction repetitions,
the average contact number increases first and then decreases. Xing et al. [69] proposed
a calculation method for aggregate classification and contact performance, discussed the
impact of failure on meso-structure and aggregate contact, and analyzed the relationship
between disruption factor and contact characteristics based on X-CT and digital image pro-
cessing technology. It was found that a higher disruption factor could reduce the number
of aggregate contacts in the main skeleton and increase the number of contacts of broken
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aggregates. Shi et al. [17,19,70,71] characterized the contact chains in asphalt mixture using
DIP. The parameter of modularity according to the spectral clustering method was used
to evaluate the contact chains [72]. The skeleton mechanical behavior can be improved
by obtaining a maximum amount of coarse aggregate in the contact chains. In conclusion,
the indexes such as contact length and aggregate inclination obtained by digital image
technology are able to well describe the contact characteristics. However, image processing
technology can only analyze the acquired images and it is time-consuming and laborious.

DEM is a useful method for examining the meso-mechanical characteristics of granular
materials and is crucial for understanding the meso-structures of asphalt mixtures. The
contact properties of asphalt mixtures based on DEM have been the subject of numerous
studies, including those on the impact of coarse aggregate morphology on the mechanical
properties of the skeleton [34,73–75], contact meso-structure evaluation indices [76], and the
impact of the contact skeleton on impairing the movement of coarse aggregates [77,78]. The
volume indices, rutting resistance, durability, and road performance of asphalt mixtures
are all positively correlated with the meso-scale properties of aggregate contact [79]. The
contacted coarse aggregate is what makes up the contact chains in asphalt mixture, which
together form a complex network that affects the macro-mechanical characteristics of the
asphalt mixture. These contact chains operate as a bridge between the micro- and macro-
scale properties of materials. Qian et al. [30] analyzed the influence of different compaction
methods (Marshall impact compaction and static compaction) on the distribution charac-
teristics of contact number with depth of specimen using DEM simulation test method.
Tan et al. [16] established 3D FEM models based on CT scanning images by incorporating
AC cores into the numerical model and quantified the impact of aggregate contact zone
ratio on the visual properties of matrix phase. It was discovered that although the contact
zone only makes up a minuscule volume proportion of AC, due to its substantially greater
modulus than asphalt matrix, it can significantly raise the modulus of AC within the low-
frequency region. After conducting a number of studies, Jin et al. [2–4,18,80] proposed a
novel method based on graph theory for the prediction and evaluation of mixture stability.
This method characterizes and assesses the initial and evolutionary morphologies of 3D
aggregate contact chains during simulations and offers a significant new direction for the
study of asphalt mixture contact chains.

To sum up, the contact skeleton structure formed by the particles in contact with each
other is the load transfer path. The internal force transfer is the key to reveal the effect of
the contact structure on mechanical properties. Then, it is essential to obtain the internal
contact force response of asphalt mixtures to investigate the load transfer mechanism.

3.2. Contact Force Characteristics

In many studies, the contact force between particles refers to the normal component [5,
7,9,22]. Generally, contact forces are classified as strong and weak, and the strong constitutes
the main load-bearing system in asphalt mixtures. Initially, it is considered that the contact
forces between coarse particles form the strong and the contact forces between fine particles
constitute the weak contact forces [81]. With the development of numerical simulation
techniques, the values of contact forces can be extracted, which promotes the quantitative
studies. It is common to define contact forces greater than the average as strong and those
less than the average as weak [6,22].

Due to the anisotropy of the contact force distribution, there is a certain deficiency
to characterize the contact force distribution by the strong or weak alone. Therefore,
a series of studies are carried out to characterize the contact force distribution, mainly
including two categories: contact force probability distribution [82,83] and contact force
statistical characteristics [23,28,84,85]. Shashidhar and Shenoy [41] studied the contact
force distribution in asphalt mixtures by means of a photoelastic experiment. The results
show that different gradations exhibit different contact force distribution characteristics.
Jiang et al. [83,86] explored the contact force distribution in the tight arrangement of single
size particles by indentation experiments. The contact force of each layer particles is
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detected by the indentation of the impress board. It was found that the contact force
probability distribution is approximately parabolic. Chang et al. [9] studied the contact
force probability distribution characteristics for different grain size compositions using the
indentation test. It was found that the probability of contact force distribution decayed
exponentially for all different two-size compositions. To further explore the contact force
distribution within different asphalt mixtures, Chang et al. [22,23,87] compared the contact
force probability distribution of three type asphalt mixtures using DEM, Stone Matrix
Asphalt (SMA) gradation, dense asphalt concrete (AC) gradation, and open-graded asphalt
friction course (OGFC) gradation with a nominal maximum aggregate size (NMAS) of
13.2 mm. It was found that for the three type asphalt mixtures, the probability distributions
of the normal contact forces show no significant difference. The probability of contact forces
(P(f)) decreases with the increase of fn (the normal contact force to the mean normal contact
force) when fn ≤ 0.75. When 0.75 < fn ≤ 1.65, P(f) is directly proportional to fn, and when
fn > 1.65, P(f) is inversely proportional to fn; P(f) remains essentially unchanged at fn ≥ 4.

Some researchers also used various statistical parameters to characterize the features
of contact forces. Zhu et al. [62] defined the vertical contact unbalanced force, which is
calculated as the sum of the contact force vectors and the gravity of aggregate. It was
found that the larger the particle size, the more the contact number, the greater the contact
unbalance force in the Marshall impaction process. Generally, certain size particles have
different load transfer characteristics in different grain size compositions. Zhang et al. [79]
studied the contribution of each size aggregate to forming a skeleton structure by contact
force analysis. The force occupation contributing to the formation of the aggregate skeleton
is defined as the ratio of the contact force bigger than the total average force in one sieve
size to the contact force larger than the total average force in all sieve sizes. The force
extraction analysis demonstrated that, regardless of the total number of particles in the
various sieve sizes, the bigger size included more contact force in each particle. It was
found that 2.36 mm and 4.75 mm, which together contribute more than 50% of the main
load carrying capacity, are the key sieve sizes in the primary structure. While 0.3 mm to
1.18 mm, which also contributes more than 50%, is a crucial sieve size range for stabilizing
the basic structure. A series of DEM tests were conducted by Miao et al. [7] to examine the
contact force characteristics of various sized particles in aggregate blends. To characterize
the load-bearing contribution of each size particle in aggregate blends, an indicator was
suggested. Wang et al. [5] also used DEM to examine the load-bearing contributions of
various aggregate blends while taking into account the morphology of the aggregates. The
critical load-bearing contribution particle for the SMA16 gradation was discovered to be
2.36 mm, while for the AC25 gradation, it was found to be 4.75 mm.

From the above studies, a lot of research has been carried out on the characterization
of contact force distribution. The contact force distribution can only explain the overall
force state of the asphalt mixture, but it cannot fully reveal how the load is transferred in
the asphalt mixture and whether the load is transferred uniformly. The composition of
asphalt mixtures has an influence on the contact force distribution, and the load-bearing
capacity of each size aggregates also has effects on the load transfer mechanism. Based
on current studies, the contact force characteristics of asphalt mixture need to be further
analyzed.

3.3. Force Chain Characteristics

Numerous studies have found that the discontinuous and non-uniform arrangement of
particles forms complex contact networks, which is the load transfer path [64,88]. However,
the force chain is conceptually different from that of the contact network. The force chain
is a selective force transfer path along the contact network, while the contact network is a
geometric structure with granular particles in arrangement. The force chain is extremely
sensitive to the loading method and the geometric characteristics of the system. Even in the
same contact network, a slight change in the external loading can make the force chain very
different. Dantu [89] specified the non-uniformity of force distribution inside the particles
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in the photoelastic experiments. It was found that the force chain has a tree-like structure.
Edwards and Oakeshott [90] found the force chains arching in granular blends in 1989.
Then, Bouchaud and Cates [91] further studied the force chain and explicitly introduced
the concept of force chains.

Initially, laboratory experimental methods were used to study force chain character-
istics in granular materials. He et al. [92] utilized the photoelastic method to study the
load transfer in the asphalt mixture. Wang et al. [93] obtained the evidence of structural
transformation of force chains under shear vibrations using mechanical spectroscopy. San-
fratello et al. [49] used magnetic resonance elastography (MRE) to observe and describe the
three-dimensional force chain in granular materials. Generally, the main drawback of the
experimental method is the inability to detect weak contact forces and the inability to detect
the contact forces inside the blend without interference. Using the DEM, the force chain
can be elaborately characterized. Sun et al. [64] studied the load transfer characteristics of
granular blends under uniaxial compression by means of 2D DEM, proposed the angular
criterion of the force chain, and found that the length of the force chain is distributed by
the power rate. Zhang et al. [94,95] quantified the force chain characteristics during the
high-speed compression of granular blends. It was found that the higher the initial impact
velocity, the more the number of force chains, and the shorter their length. Additionally,
the force chain direction showed anisotropy and formed an irregular distribution.

The mechanical characteristics of granular materials are influenced by force chains,
which are a key component of the granular material mechanics theory [96]. Several studies
furthering skeletal contact force statistical analysis try to assess the force chains in asphalt
mixes. By using DEM, Chen et al. [81] qualitatively investigated the force chains in crumb
rubber asphalt mixtures and categorized them only according to contact force magnitude.
Based on a CT scanning picture, Wang et al. [97] created a 3D FEM model of an asphalt
mixture that showed how internal load transmission develops in asphalt mixes. It was
discovered that the aggregates bear the highest stress and that force chains build practically
along their skeleton. Shi et al. [98] presented aggregate contact point efficacy parameters
and evaluated force chains in SMA13 and AC13 asphalt mixes. These are all qualitative
evaluations, which have limitations in terms of disclosing the properties of force chains.
Chang et al. [23] developed force chain direction angles to evaluate asphalt mixture force
chains morphological characteristics, and discovered asphalt mixture internal loading
transfer law in order to quantitatively assess asphalt mixture force chains. In addition,
Liu et al. [85] constructed asphalt mixed force chains by concurrently taking into account
granular quantity and contact angle. According to the findings, the performance of various
aggregate mixes can be reflected in considerable force chain differences. Liu et al. [82]
evaluated the force chains number of dense-suspended and dense-skeleton asphalt blends
based on the aforementioned force chains identification criteria. Additionally, systematic
analysis of the asphalt mixture force chains identification criteria of Liu et al. [84] revealed
that the suggested threshold values for contact force and angle are the average contact force
and 45◦, respectively. Based on known force chains identification criteria, Liu et al. [13]
looked into the length distribution of force chains. The findings indicate that raising NMAS
can contribute in the formation of force chains in asphalt mixes that are longer in length.

The study of force chains can systematically reflect the load transfer mechanism of
the asphalt mixture, which effectively avoids the limitation of evaluating the overall load-
bearing capacity due to the unilateral analysis of contact or contact force. However, the
evaluation characterization of force chains has not formed a completed system, and the
characterization of force chains is only at the stage of basic statistical analysis.

3.4. Comparison of Different Indicators

According to previous studies, a series of indicators have been proposed to charac-
terize the load transfer mechanisms of asphalt mixtures. The typical indicators for load
transfer quantitative characterization are summarized in Table 2. The indicators of contact
characteristics can better characterize the contact skeleton structure and evaluate the good-
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ness of the contact geometry structure. However, it cannot explain the force state in asphalt
mixtures. The contact force characteristics can be used to characterize the overall force state
of asphalt mixtures, to determine the overall load-bearing structure, and to evaluate the
load-bearing capacity of each aggregate size. However, the contact force characteristics are
only a statistical analysis of the contact forces at all contact points and do not provide an
assessment of the load-bearing capacity of the load transfer structure. For the indicators of
force chain characteristics, they can characterize the load transfer paths in asphalt mixtures
and the force state of the contact structure.

Table 2. Typical indicators characterizing the load transfer mechanism.

Classification Schematic Diagram Indicators References

Contact
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Contact number
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Table 2. Cont.

Classification Schematic Diagram Indicators References

Force chain

Force chain number

–

RMFC = SMFC
SFC
× 100% 12

[13,28]

Force chain length l = ∑
N1
i=1 l1i+∑

N3
i=1 l3i

N1+N3
13

Force chain
alignment coefficient δi = 1− ∑M

p=1 αp

90◦×M
14

Force chain direction
angle – θ = arccos

(
xB−xA√

(xB−xA)
2+(yB−yA)

2

)
15

1 Where ns is the contact number; g represents the total particle numbers of As; ns, I is the contact number of
the ith particle of As. 2,3 Where θ is the average angle of inclination; ∆ is the vector magnitude; θk is the angle
between the horizontal axis and the major axis of an individual particle or the orientation of an individual contact
line in one section; N is the total number of aggregates or contact lines in one section. 4 Where θc is the contact
angle; <Z> represents the properties of materials, such as elastic modulus, Poisson’s ratio, and gradation et al.
5,6 Where Echaini is the morphology of the contact chain; hj is the height of the bounding box of pathj; Eskeleton is
the morphology of the contact skeleton; υagg_chaink

is the volume sum of aggregates involved in chaink; Vspecimen

is the volume of the specimen; cV is the coefficient. 7 Where Lc is the average contact length; lij is the length of
the contact chain between coarse aggregates i and j; Nc is the quantity of coarse aggregates in the contact chain.
8,9 Where Fs is the average contact force of size s particles; fk is the contact force at contact point k; Cs is the total
contact number of size s particles; l is the size l particles; Ps is the load-bearing contributions of size s particles.
10 Where Ftavg is the total average force; Fij is the contact force; fti>tavg is the proportion of contact force larger than
the total average force in one sieve size to the contact force larger than the total average force in whole sieve sizes;
fti≤tavg is the proportion of contact force smaller than the total average force in one sieve size to the contact force
smaller than the total average force in whole sieve sizes. 11 Where P(f ) is the probability distribution of force
chains; f is the ratio of the normal or shear contact force to the mean normal contact force; a, b, c, and d are the
fitted parameters. 12 Where SMFC the asphalt mixture total number; SFC is the total number of force chains; SMFC
is the total number of main force chains. 13 Where l is the average length of main force chain; l1i represents the
length of ith I type force chains; l3i represents the length of ith III type force chains; N1 and N3 are the I and III type
of force chain number, respectively. 14 Where δi is the main force chains alignment coefficient; αp represents the pth
angle between adjacent normal directions of the ith MFC; M is the total number of adjacent contacts. 15 Where θ is
the force chain direction angle; (xA, yA) and (xB, yB) are location coordinates of aggregates A and B, respectively.

Based on the review reported above, the existing parameters are insufficient for
investigating the characteristics of the load transfer mechanism of each particle size. The
contact structure is a complex topological structure where contact forces are transferred
at various nodes to form force chains. Through the above research summary, no definite
quantitative index is given to clearly define the load transfer characteristics. Meanwhile,
it does not reveal the essential issues of grade design, material selection, and service
performance quality of asphalt mixtures from the level of load transfer mechanism. Further
studies are still needed to be carried out to combine the contact, contact force, and force
chains, and thus, to reveal the relevant mechanical mechanisms in depth.

4. Load Transfer Mechanism of Asphalt Mixture under Different Loading Conditions

There are different load transfer mechanisms in asphalt mixtures from compaction
to service to destruction. Many researchers have conducted studies to analyze the load
transfer mechanism of asphalt mixtures under different test states. Firstly, the load transfer
mechanisms of asphalt mixture during the compaction process are summarized. Then,
the internal load transfer mechanism of asphalt mixture under different test conditions is
introduced. A comparative analysis of the load transfer mechanism under different test
conditions is also carried out.

4.1. Load Transfer Mechanism in the Compaction Process

In the process of asphalt mixture compaction, with the application of external load and
different load frequency, the spatial position of aggregate changes [78], then the load transfer
characteristics in the contact structure, are changed. Exploring the changes of external load
transfer characteristics in different compaction processes provides an important reference
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basis for evaluating the goodness of the load-bearing structure of an asphalt mixture after
compaction.

The load transfer characteristics in compaction are usually investigated by simulating
laboratory experiments. The Marshall impact compaction (MIC) method is most commonly
used for fabricating asphalt mixture specimens. However, it was found that the load transfer
characteristics inside the specimen under double-sided Marshall impact compaction and
single-sided Marshall impact compaction are different [30]. The middle part has a large
number of contacts, and the two sides have a small number of contacts. The contact number
during double-sided compaction is more uniform than it is under single-sided compaction.
In order to assess the variance in load transfer during the Marshall impact compaction
process of asphalt mixes, Zhu et al. [62] employed the vertical contact unbalanced force.
Using DEM modeling, it was possible to measure the vertical contact imbalanced force
and the contact number for compaction numbers of 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, 70, 80, 90, and 100 [62]. It was discovered that when the number of strikes
increased, the imbalanced force of each particle size progressively reduced. With each
increase in strikes, the force of the contact imbalance decreased. The contact imbalance
force in the MIC process increases with aggregate particle size, coordinate number, and
contact unbalance. As the NMAS of the aggregate is larger, the poorer the Marshall
compaction effect. In order to make the compaction process closer to the roller compaction
in field, more attention is paid to fabricate the specimen using the rotary compaction
method. Gong et al. [74,78] took both gyration angle and rotation action into account
and investigated the displacement variation of aggregates in the compaction process.
Miao et al. [7] investigated the contact force distribution and transfer characteristics of
asphalt mixtures in rotary compaction using DEM. Different gradation asphalt mixtures
have different contact force distribution characteristics, under the same external load,
different size aggregates have different average contact force. The contact force evolution
of different asphalt mixtures during compaction is also different [5]. Liu et al. [31] studied
the mechanisms of aggregate movement and contact force changes within asphalt mixtures
during a simulated compaction test. The results showed that the contact forces are mainly
generated between aggregates.

The load transfer in the compaction process of laboratory specimen cannot completely
reflect that of actual pavement in the field. Therefore, it is necessary to establish the
relationship between field compaction and laboratory compaction for understanding the
load transfer mechanism of asphalt mixtures. Dan et al. [32,33] designed a field test program
and used SmartRocks to measure the load transfer response during vibrating compaction.
Meanwhile, the load transfer of asphalt mixture during different gyratory compaction
degree was also analyzed. It was found that the gyratory compaction degree and the peak
acceleration of the vibration drum exhibit a strong linear correlation. By controlling the
gyratory compaction degree of asphalt mixtures, the load transfer mechanism in the actual
pavement compaction process can be better simulated.

4.2. Load Transfer Mechanism under Different Loading Conditions

According to previous studies, there are different test conditions for the study of
the load transfer mechanism of asphalt mixtures. Under different external loads and
dynamic loading frequencies, the load transfer response in the asphalt mixture is different.
Furthermore, the contact forces in the top part of the sample are always higher than those in
the lower part [99]. Chang et al. [23] investigated the contact force probability distribution
of asphalt mixtures under haversine loading. It was found that the probability distributions
of smaller contact forces are greater than that of larger contact forces, and the probability
distribution of larger contact forces is the largest when the ratio of contact force to mean
contact force is 1.75. Considering the actual vehicle loads, some researchers have studied
the load transfer mechanism of asphalt mixtures under uniaxial loading and biaxial loading.
Liu et al. [28,82] investigated the load transfer characteristics of AC, SMA, and OGFC under
the single-wheel pressure surface load. There are different load transfer characteristics
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of different gradations of asphalt mixtures. The external loads were mainly transferred
along the vertical direction, although a small amount of loads tended to extend horizontally.
Meanwhile, the load transfer characteristics between the different structural layers of the
pavement have an important influence on the whole structure’s load-bearing capacity. The
contact force distribution in high-modulus asphalt concrete (HMAC) pavement structure
after double circular static loading was studied [100]. It was found that the application of
HMAC decreased the vertical force in all structural layers except the upper surface layer,
and the HMAC decreased the horizontal force in the subbase layer.

The tension–compression conditions, shear conditions, and bending conditions are the
typical loading conditions of asphalt pavement [101]. Ma et al. [34] constructed a virtual
tracking test model for asphalt mixtures and analyzed the micro-mechanical response of
load transfer in the asphalt mixture under compression conditions. The results showed
that contact forces primarily exist underneath the loading pressure area. Under the virtual
wheel tracking test, Xue et al. [102] investigated the load transfer characteristics for different
gradations of asphalt mixtures, including AC13 and SMA13. The average contact force
increases continuously during the loading time from 5 min to 60 min. It was also found
that the average contact force between coarse aggregates was the largest, followed by the
average contact force between aggregate–mastic and the average contact force between
mastics. Peng and Sun [103] used image analysis and DEM to simulate the indirect tensile
(IDT) test of asphalt mixtures under tension–compression conditions (shown in Figure 4).
The contact force distribution at microcracks was analyzed. Under the vertical loads, the
contact forces exhibit compression and tension along the vertical and horizontal directions,
respectively.
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Figure 4. The indirect tensile (IDT) test of asphalt mixtures [52]: the green balls represent aggregates;
the blue balls represent mastic; the white balls represent air voids; the black line represents the
force chain.

Chen et al. [35] utilized the DEM numerical simulation penetration test to explore the
contact force characteristics of aggregate particles under shear conditions. It was found that
under the same penetration depth, the average contact force of the larger size aggregates is
greater than that of the smaller size aggregates, and the contact force proportion taken by
different aggregates depends on aggregate sizes. The larger the aggregate size, the more
proportion of the contact force. Peng and Sun [104] simulated the uniaxial penetration
test of asphalt mixtures using DEM. Ding et al. [75] analyzed the load transfer response of
AC13 and SMA13 asphalt mixtures in virtual penetration tests. It is known that the contact
forces of AC13 and SMA13 were mainly distributed in 0–5 N, accounting for 75–85%. The
bigger the contact force, the smaller the corresponding probability distribution proportion.

A random heterogeneous DEM model was employed by Xue et al. [36] to simulate
the semi-circular bending (SCB) test of asphalt mixes. It showed that, prior to cracking,
tension contact forces were primarily focused in the notch tip and compression contact
forces were primarily concentrated in the specimen’s top and bottom. After the specimen
cracked, the tension contact force concentration zone traveled from the fracture tip to the
top of the specimen over time, but it was always there. It was believed that the primary
cause behind crack propagation was the tension force.

From above review, the researchers have studied the load transfer characteristics of
asphalt mixtures under different test conditions from various loading aspects. It is indicated
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that the load transfer mechanism of asphalt mixtures under different test conditions are
not the same. Although the analysis of the load transfer mechanism was carried out in
the mentioned studies, only a preliminary statistical analysis of contact force distribution
characteristics under the corresponding test conditions were carried out. There is no rele-
vant evaluation system of the load transfer mechanism under different loading conditions
established. The meso-scale load transfer mechanism under different loading conditions
is the mechanical response of the macro-scale properties of the asphalt mixtures. It is
necessary to carry out further relevant studies to investigate load transfer mechanisms of
asphalt mixtures and establish the corresponding evaluation system of the load transfer
mechanism, which will provide a theoretical basis for explaining the macro-mechanical
properties from the meso-scale mechanical mechanism.

5. Conclusions

Quantitatively capturing the relationship between the load transfer mechanism and
the mechanical response of asphalt mixtures can provide a meso-mechanical basis for
optimizing asphalt mixture design to improve the performance of asphalt pavement. This
paper reviews the research progress of the load transfer mechanism of asphalt mixtures.
Some conclusions are drawn as follows.

(1) The study of the load transfer mechanism consists of three main aspects: contact
characteristics, contact force characteristics, and force chain characteristics. Various techni-
cal methods for studying the load transfer mechanism are summarized and comparatively
analyzed. With the comprehensive analysis of different methods used in characterizing
the load transfer mechanism, the X-ray CT and DIP and numerical simulation is highly
recommended to be used for investigating the load transfer mechanism of asphalt mixtures.

(2) A systematic summary analysis of load transfer mechanism evaluation indexes
revealed that the application of several evaluation indicators in combination could be better
for characterizing load transfer mechanisms, and the statistical methods can obtain better
typical quantitative indicators.

(3) The meso-scale load transfer mechanism under different loading conditions is
the mechanical response of the macro-scale properties of the asphalt mixtures. So, it is
important to carry out further relevant studies to investigate load transfer mechanisms of
asphalt mixtures and establish the corresponding evaluation system of the load transfer
mechanism, which can provide a theoretical basis for explaining the macro-mechanical
properties from the meso-scale mechanical mechanism.

(4) To date, systematic evaluation methods on the load transfer mechanism of asphalt
mixtures are not well developed. These should be considered to efficiently obtain how the
load transfer mechanism functions during the actual service of asphalt mixture through
the analysis algorithm. Further, a reasonable evaluation system of the load transfer mecha-
nism should be established in order to realize the effective evaluation of the actual road
structure’s load-bearing capacity.

6. Recommendations

Extensive research has been carried out in the past to study the load transfer mechanisms
of asphalt mixtures. The following points enlist the recommendations for future studies.

(1) The X-ray CT and DIP and numerical simulation is highly recommended to be
used for investigating load transfer mechanism of asphalt mixtures.

(2) The contact structure is a complex topological structure where contact forces are
transferred at various nodes to form force chains. The load transfer (contact, contact force,
and force chain) mathematical model can be established according to the statistics method
and graph method. Meanwhile, the optimal load-bearing structure of asphalt mixture can
be quantified and analyzed by using the topology theory. It can provide the theoretical
guidance for the mixture design.
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(3) It is strongly recommended that several evaluation indicators (corresponding to
contact, contact force, and force chain) are used in combination to characterize load transfer
mechanisms.

(4) Based on the quantitative definition of the load transfer structure and characteristics,
a series of studies should be conducted to explore the mechanism of the relationship
between load transfer characteristics and performance. Numerical simulation experiments
are carried out to explore the load transfer mechanism, and corresponding laboratory
experiments are carried out to explore the macro-scale performance, so as to establish the
mathematical model between the load transfer mechanism characterization indicator and
macro-scale performance.
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