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Abstract: As the market for electric vehicles and portable electronic devices continues to grow rapidly,
sodium-ion batteries (SIBs) have emerged as energy storage systems to replace lithium-ion batteries
(LIBs). However, sodium-ion is heavier and larger than lithium-ion, resulting in volume expansion
and slower ion transfer. It is necessary to find suitable anode materials with high capacity and
stability. In addition, wearable electronics are starting to be commercialized, requiring a binder-free
electrode used in flexible batteries. In this work, we synthesized nano flake-like VSe2 using organic
precursor and combined it with MWCNT as carbonaceous material. VSe2@MWCNT was mixed
homogenously using sonication and fabricated film electrodes without a binder and substrate via
vacuum filter. The hybrid electrode exhibited high-rate capability and stable cycling performance
with a discharge capacity of 469.1 mAhg−1 after 200 cycles. Furthermore, VSe2@MWCNT exhibited
coulombic efficiency of ~99.7%, indicating good cycle stability. Additionally, VSe2@MWCNT showed
a predominant 85.5% of capacitive contribution at a scan rate of 1 mVs−1 in sodiation/desodiation
process. These results showed that VSe2@MWCNT is a suitable anode material for flexible SIBs.

Keywords: metal chalcogenides; nano-flake; vanadium diselenide; MWCNT; binder free; sodium-
ion batteries

1. Introduction

Sodium-ion batteries (SIBs) are garnering attraction as a next-generation energy stor-
age device to replace lithium-ion batteries (LIBs) thanks to their resource-abundant and
price-effective advantages [1,2]. SIBs have a charging protocol similar to LIBs. Their disad-
vantage is that sodium ions have a larger radius than lithium ions [3,4]. It is necessary to
find an appropriate anode material for SIBs in terms of energy density, specific capacity,
and stability. Among various anode material candidates (carbon, metal oxide, metal sulfide,
organic materials, etc.) [5–8], metal selenides have a high capacity and a lot of active sites.
However, metal selenides have problems due to their low cycle stability and electrical
conductivity [9,10]. These problems are mitigated through compounding with carbona-
ceous materials such as reduced graphene oxide (rGO) and carbon nanotube (CNT) [11–13].
Usually, when preparing an anode electrode using the slurry-casting method, the slurry is
coated on the copper foil using a binder such as a polyvinylidene fluoride (PVDF), polyte-
trafluoroethylene (PTFE), sodium carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA),
or styrene butadiene rubber (SBR). However, since binders are generally electrochemically
inactive and insulating materials, an experimental process using binders may reduce electri-
cal conductivity and cause a side reaction with the electrolyte [14]. Moreover, most binders
are unstable at high temperatures exceeding 200 ◦C and reduce the overall energy density
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of batteries by increasing the weight and volume of electrodes [15–18]. With technological
advances, the demand for flexible and wearable batteries has surged, especially in relation
to binder-free electrodes [19]. In this paper, we made CNTs (carbon nanotubes) composite
binder-free film electrodes to improve conductivity through a vacuum filter. CNTs are
widely investigated in various fields for their chemical stability, electrical conductivity,
and large surface area, and are used as energy storage, electronics, etc. [20,21]. Research
papers on improved characteristics of CNTs have been analyzed as functionalized covalent
or non-covalent [22]. Recently, the covalent functionalized CNTs composite with metal
chalcogenide is starting to be applied in anode for alkali ion batteries. For example, T.
Hou et al. reported ZnS/CNT composite through MWCNT processed acid treatment. The
ZnS/CNT electrodes exhibit long-term cycle stability and a capacity of 333 mAhg−1 at
2 Ag−1 over 4000 cycles for LIBs and 314 mAhg−1 at 5 Ag−1 after 500 cycles for SIBs [23].
However, the disorganized conjugation system of CNT and covalent functionalized CNTs
are not suitable for application for high conductivity [24]. On the contrary, non-covalent (π-
π interaction, Van der Waals force, electrostatic, etc.) functionalized CNTs have delocalized
the π- electron through π-stacking or/and Van der Waals force and have a high level of
electron conductivity [24]. Thus, the binder-free electrode can be made by combining metal
selenides and CNT, which is a carbon material with excellent flexibility and conductivity,
through vacuum filtering. For example, M. Chen et al. fabricated a binder-free anode using
a 2D ultrathin SnO nanoflakes array grown directly on GF/CNTs substrate [25]. Y. Wang
et al. synthesized binder-free WS2/CNT-rGO aerogel hybrid nanoarchitecture electrodes
and showed outstanding electrochemical performance for both LIBs and SIBs [26]. Layered
metal chalcogenides such as MoSe2, WS2, and TiS2 have been applied in energy storage
due to their thick atomic layers and 2D morphology [27–29]. Y. Tang et al. have synthesized
carbon-stabilized interlayer-expanded few-layer MoSe2@C nanosheets and found that they
could exhibit a reversible capability of 421 mAhg−1 at 0.2 Ag−1 [30]. Y. Liu et al. showed
that WS2/NC nanosheets exhibited a reversible specific capacity of 180.1 mAhg−1 at a
current density of 1.0 Ag−1 after 400 cycles [31]. Vanadium diselenide, which has a typical
layered structure metal chalcogenide, has large interlayer spacing (6.11 Å) and has weak
Van der Waals force between the layers. Consequently, vanadium diselenide is expected to
have great potential as an alternative anode material for sodium ion batteries, in addition
to its applications in anodes or cathodes for metal ion batteries [32]. Because of the strong
electron coupling between V4+-V4+ pairs, vanadium diselenide induces metallic properties
and can accommodate sodium ion in vanadium diselenide, which shows changes in the
valence state from V+5 to V+2 [33]. Moreover, vanadium diselenide has a crystal structure
similar to that of graphite. VSe2 shows conversion reactions during charge/discharge
processes [34]. These characteristics facilitate the diffusion of large-sized alkali ions. Theo-
retically, 1 mol of VSe2 can hold 4 mol of sodium ions and electrons, which exhibits a high
theoretical specific capacity [35]. In this study, nano flake-like vanadium selenides (VSe2)
were synthesized by a simple colloidal method and hybridized with multi-walled carbon
nanotubes (MWCNT) to be used as an anode electrode without binder, conductive carbon,
and substrate. VSe2@MWCNT nanohybrids showed high-rate performance and long-cycle
stability with a discharge capacity of 469.1 mAhg−1 at a current density of 0.01 Ag−1 after
200 cycles. Therefore, instead of combined MWCNT, which shows poor cycle stability, this
paper suggests alternative anode materials for flexible SIBs.

2. Materials and Methods
2.1. Synthesis of 1,3-Dimethyl-imidazoline-2-selenone

Synthesis of 1,3-dimethyl-imidazoline-2-selenone was performed with slight modifi-
cation on the previous report [36,37]. Briefly, Iodomethane (CH3I, 2 mL, 16 mmol, 1.3eq.
(to 1-Methylimidazole) JUNSEI, Tokyo, Japan) was added to a 200 mL two-neck Schlenk
flask. After that, 1-Methylimidazole (C4H6N2, 2 mL, 12 mmol, Alfa Aesar, Seoul, Republic
of Korea) was poured with Methanol (MeOH, 30 mL, SAMCHUN, Pyeongtaek, Republic of
Korea) into a Schlenk flask and stirred at 800 rpm at room temperature overnight. The super-



Materials 2023, 16, 1253 3 of 12

natant was removed and we collected a white colored product (1,3-dimethylimidazolium io-
dide, 2.91 g) was collected. Selenium (Se, 3.15 g, 40 mmol (3eq. to 1,3-dimethylimidazolium
iodide), Acros organics, Fairlawn, NJ, USA) was then added, followed by addition of
potassium carbonate anhydrous (K2CO3, 9.36 g, 67 mmol, SAMCHUN, Pyeongtaek,
Republic of Korea). The reaction was stirred over one day at room temperature. Then, the
product was filtrated with Celite and the extra solvent was evaporated. The crude product
was extracted using dichloromethane (DCM, SAMCHUN, Pyeongtaek, Republic of Korea)
and distilled water (DI water).

2.2. Synthesis of Nano Flake-like VSe2 and VSe2@MWCNT

Nano flakes-like VSe2 was synthesized via a wet chemical method with a surfactant
for shape control. A 50 mL two-neck Schlenk flask was poured with oleylamine (OAm,
12 mL, technical grade 70%, Sigma-Aldrich, St. Louis, MO, USA) and dried under vacuum
conditions at 150 ◦C for over one hour. After heating oleylamine, vanadium chloride (VCl3,
0.1 g, Sigma-Aldrich, St. Louis, MO, USA) was added, followed by the addition of 1,3-
dimethyl-imidazoline-2-selenone dissolved in dichloromethane (DCM, 3 mL, SAMCHUM,
Pyeongtaek, Republic of Korea) solution under argon condition. The reaction was heated
to 200 ◦C for 3 h. A black-colored product was cooled at room temperature and washed
with methanol and hexane. The obtained product was then dried in vacuum conditions.

2.3. Material Characterization

Morphologies of the VSe2@MWCNT and MWCNT were examined using a scanning
electron microscope (SEM, JSM-7601F, JEOL, Tokyo, Japan) and a transmission electron
microscope (TEM, FEI RF30ST, Philips, Amsterdam, The Netherlands) equipped with
an energy-dispersive spectrometer (EDS, Ultim Max, Oxford Instruments, Abingdon on
Thames, UK). X-ray diffraction (XRD) were conducted using a D8 Advance A25 (Bruker,
Billerica, MA, USA) at 40 kV and 40 mA to characterize compositions of compounds.
Raman spectra were recorded on Renishaw InVia (Renishaw, Wotton-under-Edge, UK)
with a wavelength of 514.5 nm. X-ray photoelectron spectroscopy (XPS) was carried out
using the Thermo VG scientific Sigma Probe spectrometer (Sigma probe, Thermo VG
scientific, East Grinstead, UK) with a monochromatic photon energy of 1486.6 eV (Al
Kα). The specific surface area was determined from N2 adsorption–desorption isotherms
measured using the BELSORP-mini II (MicrotracBEL, Osaka, Japan).

2.4. Electrochemical Properties Evaluation

VSe2@MWCNT and MWCNT electrodes were made without a binder and substrate.
The VSe2 and MWCNT (VSe2/MWCNT 1:1) were added in N,N-dimethylformamide and
dispersed via sonication. The well-dispersed mixture was filtered through an Anodisc
membrane (47 nm in diameter, 0.2 mm pores, Whatman, Maidstone, UK) and placed
in a convection oven to dry. After that, VSe2@MWCNT film was separated from the
filter and used directly as anode for sodium-ion batteries. Half-coin cells were assembled
in a glove box to prevent sodium metal contamination. Half-cion cell (CR2032) was
prepared using VSe2@MWCNT with the MWCNT electrode as the working electrode,
sodium metal as a counter electrode, and glass fiber separator in 1 M NaPF6 in a diethylene
glycol dimethyl ether (DEGDME) as an electrolyte. Galvanostatic tests with a constant
charge/discharge current were conducted WBCS3000S (Wonatech, Seoul, Republic of
Korea) in a voltage range of 0.01 to 2.7 V versus Na/Na+ at room temperature. Additionally,
Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) measurements were
evaluated on a potentiostat (ZIVE SP1, Wonatech, Seoul, Republic of Korea). CV curves
were recorded in the voltage range (0.01–2.7 V) at various scan rate. EIS were conducted in
the frequency range from 1 MHz to 1 Hz.
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3. Results and Discussion
3.1. Morphology and Composition Analysis

A two-dimensional flake-like VSe2 was synthesized through a wet chemical method with
various conditions controlled (detailed descriptions can be found in Materials and Methods
Sections). Morphologies of VSe2@MWCNT and MWCNT were determined using a scanning
electron microscope (SEM) and a transmission electron microscope (TEM). The VSe2 was
well stacked with 1 µm-sized flake-liked nanomaterials, as shown in Figure 1a,b. The crystal
lattice spacing of 0.26 nm corresponding to (011) planes showed high crystallinity of VSe2
(Figure 1c). The pristine MWCNT in the form of densely distributed nanotubes was entangled
with a diameter of about 20 nm (Figure 1d). VSe2 was homogenously dispersed throughout
the MWCNT. Its shape did not change even after a hybridization process (Figure 1e,f). The
MWCNT, which combined well with VSe2, could improve electrical conductivity and alleviate
volume expansion. The electrode was fabricated without a binder and substrate.
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Figure 1. Morphological characterization of the VSe2, MWCNT, VSe2@MWCNT. (a) Illustration of
flake-like VSe2, (b) SEM image of VSe2, (c) HRTEM of VSe2. (d) TEM image of MWCNT. (e) SEM
image, (f) TEM image of VSe2@MWCNT.

The energy-dispersive spectrometer (EDS) mapping images in Figure 2 show that V
and Se were evenly distributed in VSe2. Figure 2b,c show the distribution of atomic V
and Se and demonstrate the homogeneity of VSe2. The stoichiometric V and Se atomic
percentages were 31.17% and 68.83%, respectively.

3.2. Electrochemical Properties and Sodium-Ion Storage

The crystallinity of VSe2@MWCNT and MWCNT was analyzed using X-ray diffraction
(XRD), Raman spectrum, and X-ray photoelectron spectroscopy (XPS). Diffraction peaks of
VSe2@MWCNT were well matched with a combination of JCPDS No.74–1411 and MWCNT
(Figure 2a) [38–40]. These results showed that they were physically mixed and maintained
their compositions even after a composite process. Surface properties of VSe2@MWCNT
were studied with XPS to confirm binding energy and composition (Figure 3b). Figure 3b
displays the XPS V 2p spectrum of VSe2@MWCNT. Peaks located at 516.7 eV and 523.9 eV
were attributable to V 2p3/2 and V 2p1/2, respectively [41,42]. As shown in Figure 3c, the Se 3d
XPS spectrum exhibited 53.5, 54.3, 55.2 and 55.9 eV (Se 3d5/2 and 3d3/2). Based on a previous
report, trace element Se (0) is highly likely to exist in the final product [43–45]. In the XPS C
1s spectrum, peaks at 284.4, 284.9, 285.9 and 289.4 eV corresponded to C-C, C-OH, C=O and
C=O-OH, respectively (Figure 3d) [46]. The nitrogen adsorption–desorption measurements
were conducted to estimate the surface property of VSe2 and VSe2@MWCNT (Figure S2).
The Brunauer–Emmett–Teller (BET) theory showed a type IV isotherm. VSe2@MWCNT
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exhibited the higher specific surface area of 28.0 m2g−1 compared to VSe2 (16.7 m2g−1), due
to the introduction of MWCNT. The carbon structures of MWCNT and VSe2@MWCNT were
investigated using Raman spectroscopy. Two representative carbon bands, the E2g vibration
mode of graphite layers with sp2 carbon (G band at ~1580 cm−1) and A1g breathing mode
of the sp2 bonded carbon near the basal edge corresponding to the structural defects (D
band at ~1350 cm−1), as well as a 2D band representing the stacked carbon layers, are
observed in both MWCNT and VSe2@MWCNT spectra [47,48]. The parallel average size of
the crystalline sp2 carbon clusters (La) was calculated from the ratio of the integral Raman
intensities of D and G bands. ID/IG used the following Equation (1) [49]:

ID
IG

=
C(λ)

La
(1)

where C (λ) is a constant dependent on the laser wavelength (here, 4.4 for a 514 nm laser).
Interestingly, VSe2@MWCNT revealed narrower and sharper G and D bands with fewer
overlapping disordered carbon peaks at around 1350 and 1580 cm−1 related to residual
sp3 carbons and amorphous sp2 carbons, respectively. This showed a more developed
carbon sp2-hybridized carbon structure compared with that of MWCNT [50]. ID/IG ratio of
MWCNTs and VSe2@MWCNT were estimated as 1.26 and 0.96, corresponding to 3.50 and
4.57 nm of La, respectively.
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(b) XPS V 2p, (c) XPS Se 3d5/2 and 3d3/2 (d) XPS C 1s of the VSe2@MWCNT, (e) Raman spectrum of
the VSe2@MWCNT.

Electrochemical properties of VSe2@MWCNT and MWCNT were evaluated using
cyclic voltammetry (CV) and galvanostatic charge/discharge tests with 1 M NaPF6 solu-
tion with a diethylene glycol dimethyl ether (DEGDME) as an electrolyte. The CV and
charge/discharge curve (CD curve) explained the redox reaction of VSe2@MWCNT in the
potential range of 0.01 to 2.7 V versus Na/Na+ (Figure 4a,b). In the first cycle of CV, a
reduction peak at 2.03 V was observed, which was related to a sodiation process. In the
cathodic sweep process, conversion reaction and formation of solid electrolyte interphase
(SEI) occurred at 1.3 V (with a start at about 1.8 V) and 0.3 V peaks [51]. The anodic peaks
appeared as a broad 2.41 V peak in the first anodic sweep corresponding to desodiation [52].
These redox peaks were well matched with the plateau at the CD curve. The CV curves
changed at each cycle; this was influenced by the formation of SEI layer after the first cycle.
As shown in Figure 4c, Nyquist plots of MWCNT and VSe2@MWCNT consisted of the
depressed semicircle in the high–medium frequency region, as well as the inclined line at
low frequency. The EIS data were analyzed and fitted by the proposed equivalent circuit
diagram (Figure S1a) [53]. The Rsf and Rct each showed the SEI layer impedance and charge
transfer impedance relevant to the interfacial sodium-ion transfer. The W represented the
Warburg impedance related to sodium-ion diffusion at a low frequency. The lower Rct value
of VSe2@MWCNT (137.6 Ω) than MWCNT (379 Ω) indicated that VSe2@MWCNT had out-
standing electrical conductivity. To accurately compare the sodium-ion diffusion kinetics of
VSe2@MWCNT and MWCNT, the sodium diffusion coefficient (DNa) was calculated using
the following Equation (2) [54]:

DNa =
R2T2

2A2n2F4C2σ2 (2)

where R is the gas constant; T is the absolute temperature; A is the surface area of the elec-
trode; F is the Faraday constant; and C is the concentration of sodium-ion in the electrode.
The Warburg factor (σ) is calculated by the slope of the real part resistance and the inverse
square root of the angular speed plot in the low-frequency range (Figure S1b). The DNa
value of VSe2@MWCNT and MWCNT was 6.77 × 10−19 cm2 s−1 and 4.16 × 10−20 cm2 s−1,
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respectively. These results showed that sodium-ion diffusion of VSe2@MWCNT was faster
than MWCNT. Figure 4d shows the rate capability results of VSe2@MWCNT and MWCNT
at different current densities ranging from 0.05 to 2 Ag−1 (Figure 4d). The VSe2@MWCNT
exhibited discharge capacities of 319.6, 274.3, 239.2, 204.6, 186.9, 164.8 and 140.8 mAhg−1 at
0.05, 0.1, 0.2, 0.5, 0.8, 1 and 2 Ag−1, respectively. A discharge capacity of 252.3 mAhg−1 was
recovered when the current density was lowered from 2 Ag−1 to 0.05 Ag−1. The MWCNT
exhibited a discharge capacity of 128.3, 123.5, 119.2, 112.5, 107.6, 104.3 and 94.9 mAhg−1 at
0.05, 0.1, 0.2, 0.5, 0.8, 1 and 2 Ag−1 and recovered the discharge capacity of 127.4 mAhg−1 well
when the current density returned to 0.05 Ag−1. The cycle performance of VSe2@MWCNT
was conducted at a current density of 0.01 Ag−1 (Figure 4e). VSe2@MWCNT delivered a
discharge capacity of 469.1 mAhg−1 after 200 cycles and the Coulombic efficiency reached
99.7%. Coulombic efficiency, that was initially 22.4%, increased to around 99% with cycle
progression. To compare the properties of binder-free electrodes for SIBs, the synthesis
method and electrochemical performance were summarized in Table 1. Among the free-
template metal chalcogenides electrode, VSe2@MWCNT showed good sodium-ions storage
capacity and Coulombic efficiency. These results showed several advantages of our mate-
rials, as follows: (1) MWCNT can enhance intercalation/deintercalation of sodium-ions
and alleviate volume expansion during the charge/discharge processes [55]; (2) VSe2 has
adsorption sites to interact with sodium-ions [32]; (3) non-covalent functionalization of
VSe2@MWWCNT hybrid affects to electrical conductivity [24].

Table 1. Comparison of electrochemical performance of different kinds of binder-free electrode
materials.

Material Year Potential Templates Synthetic Methods Electrochemical Performance Reference

VSe2@MWCNT 2023 0.01–2.7 V Free Vacuum filtrate 469.1 mAg−1 at 10 mAg−1

after 200 cycles
This work

FeS@C 2022 0.5–3.0 V Carbon cloth Hydrothermal method
and carbonization

150 mAhg−1 at 12 C
after 200 cycles

[11]

VSe2/NCNFs 2020 0.01–3.0 V Carbon fibers Electrospinning 420.8 mAhg−1 at 50 mAg−1 [13]

Ultralong Sb2Se3 2016 0.01–3.0 V Free Vacuum filtrate 289 mAhg−1 at 100 mAg−1

after 50 cycles
[56]

MoS2/graphene
composite paper 2014 0.0–2.25 V Free Vacuum filtrate 218 mAhg−1 at 25 mAg−1

after 20 cycles
[57]

To study sodium-ion storage and quantitative kinetics of VSe2@MWCNT, CV tests
were conducted at various scan rates at 0.2 to 2 mVs−1 (Figure 5a). With an increasing scan
rate, the value of peak current increased proportionally, whereas the shape of the CV did
not change. The peak current (mA) and scan rate (mVs−1) had a correlation, as shown in
Equations (3) and (4). In Equation (4), the value of b (0.5 < b < 1) could be calculated based
on the slope of the log (peak current)-log (scan rate) plot [58].

i (V) = aνb (3)

log i (V) = b log ν + log a (4)

The value of b close to 0.5 was a diffusion-controlled reaction (Faradaic process). A
value close to 1 indicated a capacitive-controlled reaction (non-Faradaic process) [59]. The b
value was 0.61 at an oxidation peak of 2.4 V and 0.63 at a reduction peak of 1.3 V (Figure 5b).
Electrochemical kinetics at a fixed scan rate could be explained by Equations (5) and (6).
The ratio of the capacitive-controlled reaction was given with the value of k1ν, while the
diffusion-controlled reaction was given with k2ν1/2 [60].

i (V) = k1ν + k2ν1/2 (5)

i (V)

ν1/2 = k1ν1/2 + k2 (6)
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Figure 4. Electrochemical properties over a voltage window between 0.01 to 2.7 V versus Na/Na+ (a)
Cyclic voltammetry at a scan rate of 1 mVs−1 of VSe2@MWCNT and (b) charge/discharge curve at a
current density of 0.05 Ag−1 of VSe2@MWCNT. (c) electrochemical impedance spectroscopy diagram
and (d) rate capabilities at different current densities of MWCNT and VSe2@MWCNT. (e) cycling
performance and coulombic efficiency of VSe2@MWCNT at a current density of 0.01 Ag−1.

The obtained proportion of capacitive contribution (brown region) was 85.5% at a scan
rate of 1 mVs−1 for VSe2@MWCNT (Figure 5c). Figure 5d shows the trend of capacitive
behavior when the scan rate was increased (proportions of 42.3, 68.9, 85.5 and 98.1% at a
scan rate of 0.2, 0.5, 1 and 2 mVs−1, respectively). These results indicate that a capacitive
behavior-controlled process is better than a diffusion-controlled process. As previously
reported, high capacitive contribution enables better cycle performance and plays a pivotal
role in good stability and a long lifespan [61–63]. Therefore, the two-dimensional flake-like
VSe2 and the high electrical conductivity of MWCNT can improve the diffusion kinetics of
sodium ions.
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Figure 5. Quantitative capacitive analysis of VSe2@MWCNT: (a) CV curves at various scan rates from
0.2 to 2 mVs−1, (b) the relationship between scan rate and peak current, (c) the capacity contribution
in CV curve at 1 mVs−1, (d) the proportion of capacitive contributions at various scan rates.

4. Conclusions

In summary, a flake-like VSe2 was synthesized with a colloidal method. It was hy-
bridized with MWCNT through vacuum filtration. Such flake-like nanomaterials increased
the surface area and made it easier to encounter electrolytes, thus facilitating sodium-ions
kinetics. By using MWCNT with excellent flexibility and electrical conductivity, VSe2
problems could be solved. Electrodes were prepared without a binder and substrate by
hybridization of MWCNT with VSe2. Therefore, using Raman spectroscopy, non-covalent
functionalized CNT and VSe2 composite showed increased sp2 carbon structure crys-
tallinity. The hybrid anode exhibited a high level of coulombic efficiency of 99.7 % and a
discharge capacity of 469.1 mAhg−1, even after 200 cycles. The VSe2@MWCNT electrode
measured various current densities and showed specific capacities of 319.6, 274.3, 239.2,
204.6, 186.9, 164.8 and 140.8 mAhg−1 at 0.05, 0.1 0.2, 0.5, 0.8, 1.0 and 2.0 Ag−1. We believe
that such binder-free VSe2@MWCNT composite films can be easily prepared through the
strategy described in this work and be successfully applied as new anode materials in SIBs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16031253/s1, Figure S1: (a) equivalent circuit diagram and (b) relationship
of imaginary resistance (Z’) and inverse square root of angular speed (ω−0.5); Figure S2: N2 adsorption-
desorption isotherms of VSe2 and VSe2@MWCNT.
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