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Abstract: A three-terminal synaptic transistor enables more accurate controllability over the conduc-
tance compared with traditional two-terminal synaptic devices for the synaptic devices in hardware-
oriented neuromorphic systems. In this work, we fabricated IGZO-based three-terminal devices
comprising HfAlOx and CeOx layers to demonstrate the synaptic operations. The chemical composi-
tions and thicknesses of the devices were verified by transmission electron microscopy and energy
dispersive spectroscopy in cooperation. The excitatory post-synaptic current (EPSC), paired-pulse
facilitation (PPF), short-term potentiation (STP), and short-term depression (STD) of the synaptic
devices were realized for the short-term memory behaviors. The IGZO-based three-terminal synaptic
transistor could thus be controlled appropriately by the amplitude, width, and interval time of the
pulses for implementing the neuromorphic systems.

Keywords: neuromorphic system; IGZO; three-terminal device; synaptic device; short-term memory

1. Introduction

The capability to store and process data is a crucial feature for handling large quantities
of data without loss in the current era of big data [1]. To fulfill such demands, computing
systems should be equipped with high-performance transistors. The high-performance
transistors are closely related to their scalability and numbers. Assuming that the total
number of transistors that can be integrated within a limited area under Moore’s law doubles
every 18 to 24 months, the present capacity for transistors is tens of millions [2–4]. The
performances and circuit functionalities can be improved by increasing the scalability and
the number of transistors; however, it is difficult to increase them due to the integration limit
and the heat generated during operation [5]. The von Neumann architecture is the most
widely used scheme in computing systems and has an additional process of transmitting
data to the memory after processor operation [6–9]. This could cause bottlenecks in data
transmission [10,11]. Therefore, new architectures are being developed and evaluated in
recent times instead of the serial von Neumann architecture.

Parallel structures of neuromorphic systems are currently emerging to handle large
amount of data effectively [12,13]. These neuromorphic systems mimic the neurons and
synapses which are connected in parallel in the biological neural networks [14]. The
interconnected neurons process large quantities of data more efficiently than transistors
because the neurons operate simultaneously [15,16]. If human information processing
capabilities could be carried out with computing systems, energy could be consumed more
efficiently for data processing [17–20].

The working of the neurons and synapses in a neuromorphic system should be du-
plicated concerning those of biological systems for efficient implementation. The synapses
update the weights by reacting to the signals from other neurons [21]. This behavior has a
large similarity with that of a memory device, but unlike existing memory systems, the results
are not simply classified into “0” or “1” state [22,23]. The hardware shows several states,
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rather than the two on/off states. Next-generation memories such as phase-change memory
(PRAM) [24], ferroelectric random-access memory (FRAM) [25], and resistive-switching
random-access memory (RRAM) can be used in the neuromorphic systems [26,27]. The
PRAM stores data using a material that changes into an amorphous or crystalline state by
temperature. The amorphous condition is a high-resistance state (HRS), whereas the crys-
talline condition is a low-resistance state (LRS), which allows data to be written to and erased
from a device. The HRS and LRS allow capability of realizing multiple states via varying the
operation schemes. The FRAM undergoes state change by the polarization of a ferroelectric
material. The RRAM stores data by the resistive-change switching of an insulator using an
external electric field, where the switching characteristics are determined by the insulator
and electrodes. If a reset voltage is applied, the device is switched to the HRS; conversely, if a
set voltage is applied, the device is moved to the LRS. Energy efficiency for switching and
the compatibility to CMOS integration are, hence, essential for high-density memory and
neuromorphic systems [28–32].

Compared with PRAM and FRAM, the metal–insulator–metal (MIM) structure of the
RRAM enables flexible fabrication and fewer material restrictions [33]. Owing to these
advantages, numerous studies have been reported on RRAMs [34–38]. Depending on
switching layer and electrode materials, the RRAM shows various switching characteristics,
including unipolar [39], bipolar [35], threshold [40], long-term [41], and short-term [38], which
facilitate the construction of more hardware-oriented artificial neural networks (ANNs). The
three-terminal synaptic transistor that is similar to the RRAM structure was developed to
enhance the integration and to allow learning and signal transmission simultaneously for
advanced ANNs [42–45].

The three-terminal synaptic transistor is derived from the MOSFET structure. The
interface charge traps in the channel layer are controlled by the gate voltage to achieve
multistate operation capability. The two-terminal device does not learn simultaneously
while receiving signals. As a limitation of the terminal, there is no distinction between
the presynapse and postsynapse [46]; hence, at least three terminals (gate: presynapse,
drain: postsynapse, and source: ground) are required for separating the terminals. When a
signal affects the channel by the gate (presynapse), the channel conductance is altered; this
activates the device to update and read data by a drain (postsynapse), which imitates the
biological system. It is, therefore, possible to perform an inference operation in a learning
operation concurrently so that there is less loss than in a two-terminal device [47,48].

An electrical synaptic device conducts similarly to a synapse in the biological neural
network. The biological synaptic weight is the conductance from the perspective of the
synaptic device. The stimulus (signal) transmitted from the presynapse (top electrode) is
accumulated over time, and the increased conductance (fired weight) indicates the excitatory
postsynaptic current (EPSC) that performs another signal transmission [49]. The EPSC is
further triggered as an applied electrical stimulus to the gate. In another case, paired-pulse
facilitation (PPF) is generated with different interval times between two pulses [50]. This
means that the conductance increases by repeated pulses before recovering to the initial
state, such as the process that a spike is observed before a neuron fires and returns to the
steady state. Further, if the conductance is enhanced continuously by multiple pulses, it
is considered as potentiation, and the opposite as depression [51]. Through the process of
conductance modulation, the device realizes learning and memory operations similar to the
flexible interconnects in the neural network.

In the present work, a three-terminal device was fabricated with the W gate/drain/source,
HfAlOx and CeOx layers as gate oxides, and the IGZO channel. These materials are not only
compatible with CMOS circuits but are also widely used in RRAMs. CeO2 is a naturally
synthesized material with a single Ce4+ ion and two O2− ions, but cerium oxide deposited
by sputtering has an amorphous formation [52]. The sputtering deposited CeO2−x has
numerous oxygen vacancies (Vo) within the material layer. Many Vo are moved by the
electrical force to switch the state of the channel [53–55]. However, an excess of vacancies can
eventually cause a leakage current from the gate to the source. This is not appropriate for
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neuromorphic systems requiring low power consumption. Therefore, a high-κ material is
introduced to prevent unnecessary energy consumption [56]. The notable high-κ materials
include HfO2 (gate dielectric) and Al2O3 (blocking oxide dielectric) [57]. HfO2 has a very
high dielectric constant but weak endurance against switching. Al2O3 tends to have high
endurance despite a relatively low permittivity. HfAlOx formation, in which HfO2 and Al2O3
are stacked alternately to utilize their respective advantages, shows high endurance and
permittivity [58,59]. Accordingly, the movements of many Vo are suppressed by the HfAlOx
layer to enable a low-power three-terminal synaptic transistor. IGZO is widely used in the
thin-film transistors (TFT) as a channel material with a very low off-current that is also related
to the leakage current [60–62]. Therefore, a three-terminal device was attempted in this study
as a low-power neuromorphic device by adopting IGZO as the channel layer.

2. Materials and Methods

Figure 1a shows all the devices fabricated on SiO2/Si substrates. An approximately
100 nm tungsten layer was deposited as a bottom gate electrode from a commercial organization
(GMEK, Anyang, Republic of Korea). A tungsten target was direct-current (DC) sputtered with
Ar (20 sccm) at 3 mTorr working pressure and room temperature (RT). Then, ~30 and ~70-nm
CeOx layers with many oxygen vacancies were prepared on the W gate by a radio frequency
(RF) magnetron sputtering system. RF sputtering is a suitable method for the reaction of
the cerium target with oxygen plasma at RT. At this time, the chamber was filled with Ar
(20 sccm) and O2 (6 sccm) while maintaining a working pressure of 5 mTorr. The CeOx layers
with different thicknesses only have different deposition times. Next, an ~7-nm HfAlOx was
grown as a current-suppressing layer on CeOx/W using an atomic-layer deposition (ALD)
system. The nano-laminated HfAlOx layer, where Hf and Al are in the ratio of 1:1, was formed
by cycling HfO2 and Al2O3. The precursor of HfO2 was tetrakis (dimethylamino) hafnium
(TDMAHf), and the precursor of Al2O3 was trimethylaluminum (TMA). The depositions of
HfO2 and Al2O3 were performed at the same temperature of 355 ◦C, with O3 as the oxidant.
To operate the device as a three-terminal synaptic device, an IGZO target (In:Ga:Zn = 1:1:1)
was sputtered on HfAlOx/CeOx/W. The Ar had a flow rate of 10 sccm, the working pressure
was 3 mTorr, and the RF power was 100 W during the sputtering. In addition, a lift-off process
was used to separate the cells. The amorphous IGZO film was patterned on the device, and
the IGZO channel length and width were split into 100, 200, and 400 µm. Finally, a ~100-nm
layer of tungsten was formed as both the source and drain electrodes to apply electrical signals
to the active IGZO layer. The W also was patterned by a lift-off process using the sputtering
system. The W target was sputtered at Ar (20 sccm) and RT with 3 mTorr.

The W/IGZO/HfAlOx/CeOx/W sample vertically milled with a focused ion beam
(FIB) from the source to the bottom gate was analyzed by high-resolution transmission elec-
tron microscopy (HRTEM, KANC, Suwon, Republic of Korea). In addition to acquisition of
the cross-sectional image, elemental mapping and line scan were conducted simultaneously
with an energy dispersive spectrometer (EDS) which is an in-situ element detector installed
in the transmission electron microscopy (TEM).

To assess the synaptic properties of the device, the I−V and pulse mode were measured
using a Keithley 4200 SCS semiconductor parameter analyzer (Tektronix Inc., Beaverton, OR,
USA) and a 4225-PMU ultrafast current voltage pulse module, respectively. All electrical
results were obtained by applying a voltage bias to the drain and bottom gate, while the
source was grounded. In the I−V curves, the incremental voltage step was +0.05 V, but in the
pulse mode, a dramatic increase was observed from 0 V without a step.
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Figure 1. (a) The schematic showing 3-terminal synaptic device structure and the brief fabrication
process; (b) HR-TEM image; (c) a line scanning of the atomic ratio of each element; and (d) an EDS
mapping image. Each element exhibits colors in (c) and (d) in match; for example, the W in (c) and
(d) is sky blue.

3. Results and Discussion

The image of each layer of the nanodevice, from the source to the bottom electrodes, is
shown in Figure 1b. The TEM image tends to have a higher/lower contrast as the element
becomes heavier/lighter [63]. The W layer, source, and bottom gate exhibit high contrasts
because it is the heaviest element among the components (W, Ce, Hf, Al, O, In, Zn, Ga) of
the device. The order of element weights is listed as follows: W, Hf, Ce, In, Ga, Zn, Al, and
O. It is confirmed from the image that the contrast differs depending on the atomic number.
Line scan (Figure 1c) and elemental mapping (Figure 1d) were performed by an EDS and
TEM. The elements are represented by the same colors in both figures. The line scan shows
the normalized atomic percent. The IGZO, which is the channel material, has about a 1:1:1
ratio of In, Ga, and Zn, considering the ratio of the sputtering target (In:Ga:Zn = 1:1:1). In
the case of HfAlOx, a similar atomic ratio is observed as the proportion of Hf and Al in
the ALD system. A non-stoichiometric state CeOx (1.3 < x < 2) film was deposited by a
sputtering system.

The initial state of the device has a very high resistance, which prevents rapid current
flow. Hence, the device must be subjected to a soft breakdown by adjusting the compliance
current as a forming process [64]. Similarly, the three-terminal synaptic transistor also has
many defects including interface traps in the CeOx/HfAlOx/IGZO layer. These defects
need to be induced that the electrons are trapped to control the conductance of the IGZO
channel. The negative gate voltage releases electrons from the IGZO-HfAlOx interface,
whereas the positive gate voltage attracts electrons from the IGZO channel. In other
words, the negative (positive) bias makes the channel more n-type (p-type) and increases
(decreases) the barrier height between the source/drain and IGZO channel.
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Figure 2 shows the I-V curves of the gate voltage versus drain current. The drain current
increases as the conductance of the IGZO channel increases. In Figure 2b, the gray line
indicates the I-V curve when applying a voltage bias from −7 V to 7 V to the gate terminal
for the forming process. As shown in Figure S1b, the hysteresis loops from around 3 V are
different with and without the forming process. The accumulated charges are a factor that
controls the synaptic characteristics of the three-terminal device [65]. The drain voltage of
0.1 V is used for reading when applying voltages of −5 V to 5 V (green lines), 6 V (orange
lines), and 7 V (brown lines) with width/length (µm) of 200/100 to the ~30 nm CeOx device
(D30), as shown in Figure 2b. The applied negative bias (−5 V) causes the device to return to
its initial state. As the gate voltage increases in the positive direction, the drain current also
increases, but when the gate voltage decreases in the negative direction by the DC sweep, the
drain current decreases. The difference in current in the forward and backward directions
also depends on the maximum gate voltage. The values of drain current ratio above gate
voltage = 4 V are as follows:

Vg = 5 V, Id,a f ter/Id,be f ore : 7.41
Vg = 6 V, Id,a f ter/Id,be f ore : 36.3
Vg = 7 V, Id,a f ter/Id,be f ore : 49.5

where Vg is the gate voltage, Id,a f ter is the drain current after sweeping, and Id,be f ore is the
drain current before sweeping. As the voltage increases, the drain current increases. This
tendency also appears in Figure 2a,c which are the results applied to the same process as
Figure 2b including the forming switching which is not marked. Here, the gray lines depict
the cell-to-cell variations. Id,after/Id,before values in Figure 2a (Figure 2c) are 4.96 (3.65), 67.5 (76.7),
and 147 (450) when Vg values are 5, 6, and 7 V, respectively. The ~70-nm CeOx device (D70) in
Figure S2, which has the same fabrication process but different deposition times of the CeOx
layer, was also measured for cycle-to-cycle and cell-to-cell (CTC) changes. Figure S2b−d shows
the I-V curves during cycles and Figure S2e−g shows the I-V curves of CTC. D70 typically
demonstrates that the curve shifts as charge accumulates from cycle to cycle. Even in CTC,
the grain lines are curves of other cells, but they are not consistent. The D70 has the worst
cycle-to-cycle and CTC variations compared to D30. The results indicate that the thick layer,
which produced more Vo, is accompanied by fluctuations [66,67]. The ~30-nm CeOx device
without the HfAlOx layer was also fabricated for obtaining a switching material with higher
dielectric constant. As the result, the drain current went significantly higher (Figure S3) than
those of D30 and D70 although it was before the forming process. The sum of the current is
very large if the devices used in the neuromorphic system are connected in parallel, so high-κ
materials might play an essential role for low-power operation.

The threshold voltage (Vth) is the turn-on point of the three-terminal device. The Vth
values of D30 and D70 with 200/100 µm width/length are plotted in Figure 3. The ranges of
Vth in D30 are 4.1–4.2 V (Vg: 5 V), 4–4.2 V (Vg:6 V), and 3.8–4 V (Vg:7 V). Similarly, the ranges
in D70 are 3.2–3.4 V, 3.1–3.4 V, and 2.6–3 V. The Vth fluctuations are relatively larger in D70 than
in D30 owing to the larger Vo. The D30 (W/L = 200/100 µm) is appropriate for a device with
a small fluctuation to mimic synapses. It is an ANN system that is learned by transmitting
signals derived from the stimulus to the postsynapse. For learning, the synapse is activated by
updating the weights. From the device perspective, the gate acts as the presynapse (the terminal
into which a pre-synaptic neuron signal comes), the drain acts as the postsynapse (the terminal
through which a post-synaptic neuron signal goes out), and the channel layer acts as the weight
reactant. Accordingly, it is proposed that the current of the three-terminal synaptic transistor
should be changed by an electrical signal. This current is commonly referred to as EPSC. First,
as shown in Figure 4a–c, an amplitude of 1–7 V (N = 1, with = 100 µs), a pulse number of
N = 1–50 (amplitude = 5 V, width = 100 µs), and a pulse width of 10–1000 µs (N = 1,
amplitude = 5 V) are applied to the gate terminal. Further, a bias of 0.1 V is continuously
applied to the drain terminal to read the device state. The drain current increases as the
amplitude, pulse number, and pulse width increase. After the pulse is removed at the gate, the
triggered current gradually decreases over time, which proves the D30 device has short-term
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characteristics. It is also identified that the recovery time varies with the magnitude of the
current generated by the pulse. Table 1 shows the decay times of the drain currents immediately
after removing the pulse.

Figure 2. The Id−Vg curves of ~30-nm CeOx with HfAlOx layer device. The drain currents from
(a) cell-to-cell measurements at W/L = 200/200 µm, (b) cycle-to-cycle with W/L = 200/100 µm, and
(c) cell-to-cell with W/L = 400/100 µm at Vd = 0.1 V. The green, yellow, and brown lines indicate
applied Vg in sweeping up to: 5 V, 6 V, and 7 V, respectively. The red arrows at the top indicate the
changes in length and width between the measured devices in (a,c) in reference to the device in (b).

Table 1. tdecay and I0 of the drain current according to amplitude, pulse number, and pulse width.

Amplitude (V) 1 2 3 4 5 6 7

Pulse number
(N) 1 2 5 10 20 50

Pulse width
(µs) 10 50 100 500 1000

Figure 4a
(amplitude)

tdecacy (ms) 0.040 0.046 0.050 0.056 0.063 0.073 0.086
I0 (µA) 26.00 42.29 56.80 69.60 81.03 91.25 99.63

Figure 4b
(pulse number)

tdecay (ms) 0.060 0.070 0.076 0.095 0.096 0.130
I0 (µA) 80.49 81.65 82.70 83.42 84.19 85.13

Figure 4c
(pulse width)

tdecay (ms) 0.046 0.056 0.060 0.080 0.090
I0 (µA) 70.79 78.91 80.72 82.80 83.61

Figure 3. Range of fluctuation in the threshold voltage turning on the device (W/L = 200/100 µm).
D30 (filled color) displays the ~30-nm CeOx with HfAlOx device and D70 (empty color) displays the
~70-nm with HfAlOx device.



Materials 2023, 16, 1249 7 of 11

Figure 4. Fired currents at different (a) amplitudes, (b) pulse numbers, and (c) pulse widths. They
are identical except for one variable and results at drain voltage of 0.1 V. (d) Pulse scheme (top) and
EPSC (bottom). To induce EPSC, pulses of 8 V for 500 ms are repeatedly applied at an interval of 1 ms.
(e) PPF (%); I2/I1, shows different currents increasing due to the interval time of a paired-pulse.

In Table 1, I0 is the triggered drain current directly after applying the pulse, and tdecay
indicates the time it takes for I0 to reduce by 100% or more. In Figure 4d, the EPSC is
obtained by applying a pulse width (interval time) of 500 ms (1 ms) and amplitude of
8 V. The resulting current tends to recover to a steady state due to the first pulse, but
it accumulates as the next pulse is input. The behaviors of brain show the property of
remembering for a long time if the frequency of stimulation is high, while memory duration
becomes short if the frequency is low [68]. The number of frequencies can be modulated
by controlling the interval time between pulses. The PPF, which measures dissimilarity
between only two pulses with time, is shown in Figure 4e. The interval time is set from
1 ms to 2000 ms, and the PPF is defined as Equation (1).

PPF (%) = 100 × I2/I1 (1)

In the D30 with short-term, as the interval time is longer, the difference between the
first and second current is small. On the contrary, if the time is short, it has a large change
of approximately 107%.

Utilizing the property, short-term potentiation (STP) and short-term depression (STD)
can be realized. Short-term synaptic plasticity means that synaptic efficiency changes
when the period of presynapse is mirrored: STP is the increase of synaptic strength under
repeated stimuli, and STD is the decrease under repeated stimuli [69]. The STP is conducted
by input signals that are repeatedly applied at 5 V and 300 ms with 20 ns interval time in
Figure 5b. Due to short-term characteristics, the conductance accumulated in the channel
recovers over time. If the same signal is applied before returning to the steady state in time
without inducing the potentiation, the reduction speed is delayed. STD takes place when
the same signal with intervals of 1 ms as STP is applied to the devices. The recovering
memory is delayed by controlling only the interval time of the pulse, which is the same
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as STP. It is possible to show the depression due to the slowdown time. The stable state is
achieved when 0 V (blue) is applied to the gate terminal, and the activated state is observed
when the pulse with 5 V for 300 ms (red) is applied. For 10,000 cycles, it displays extremely
strong endurance and has an on/off ratio of roughly 50%. By modifying the design of the
pulse, the conductance of the channel can be set as predictive. High recognition can be
obtained in artificial neural simulations since the high linearity in weight update [70]. The
results, as shown in Figure 5e, are obtained by applying the increasing/decreasing pulse
design. The linearly-changing input scheme in potentiation or depression shows better
linearity in weight change than identical-input scheme. Consequently, the D30 can control
channel conductance by optimizing the pulse scheme. This is equal to the results in D70
(Figure S4a,b).

Figure 5. (a) By applying a pulse to the gate terminal (black line) and drain terminal (red line), (b) the
conductance update of potentiation (red)/depression (blue). The pulse width is 300 ms and the amplitude
is 5 V (at Vd = 0.1 V). In potentiation, an interval time has 20 ns, while it is 1 ms in depression. (c) The
pulse endurance of the activated (red) and steady (blue) state during 10,000 cycles. The gate pulse is
designed 5 V/300 ms for activation, and 0 V/300 ms for stabilization. (d) The increasing/decreasing pulse
design: in potentiation and depression, 5~6 V/300 ms (step: 0.02 V) and 5~6 V/300 ms (step: −0.02 V) are
applied as the input signals, respectively. (e) The conductance update from (d) gets more linear compared
with that in (b).

4. Conclusions

In conclusion, a novel three-terminal synaptic transistor have been fabricated and eval-
uated for application in the neuromorphic systems. The device without the HfAlOx layer
performs a high working current, which causes high power consumption. For the devices
with thick CeOx (~70 nm), the variation was worse than that with thin CeOx (~30 nm). In
addition, the extended channel width (200 µm to 400 µm) and length (100 µm to 400 µm) are
analyzed considering the identical area to optimize the device. Experimentally, the CeOx 30 nm
device (D30) with HfAlOx layer is appropriate as an efficient synaptic device when the channel
width and length are 200 and 100 µm, respectively. In particular, the fluctuation of Vth was 0
to 0.1 V when the gate voltage is applied up to 5 V. The EPCS, PPF, STP, and STD have been
performed to mimic the biological synapse. The larger the amplitude (7 V), the higher the pulse
number (100), or the longer the pulse width (1000 µs), the higher the current. Additionally, as
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the current increases, the time to return to the steady state is increased, which has been proven
through the PPF test. Since D30 has short-term memory characteristics, it causes potentiation or
depression under different interval times between pulses. By controlling the pulse amplitude,
conductance is updated linearly, making it simple to predict. Moreover, the property is a factor
that allows a high recognition rate in the artificial neural network towards the online learning.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16031249/s1, Figure S1: Device schematic and DC characteristics;
Figure S2. Dependency of current characteristics on channel dimension in the double-layer structure;
Figure S3. Dependency of current characteristics on channel dimension in the single-layer structure;
Figure S4. Learning operations of the ~70-nm synaptic device.
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