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Abstract: One of the leading causes of reinforced concrete degradation is chloride attack. It occurs due
to the penetration of chlorides through pores and cracks into the concrete cover. This phenomenon
becomes more dangerous if reinforced concrete elements are subjected to cyclic temperature changes.
The concrete cover protects against corrosion. This paper presents research, the primary purpose of
which was to determine the effect of the addition of steel fibers to concrete on the development of
corrosion of the main reinforcement. The tests were carried out on three types of reinforced concrete
specimens made of ordinary concrete and concrete with different amounts of steel fibers (0.25%
and 0.50%). In order to initiate corrosion processes, specimens were partially submerged in a 3%
sodium chloride solution and were subjected to freeze–thaw cycles. The electrochemical polarization
galvanostatic pulse method was used for analyzing the reinforcement corrosion activity. Moreover,
it was verified whether the corrosion of reinforced concrete elements affects the acoustic emission
wave velocity. The addition of steel micro-reinforcement fibers increases the corrosion resistance of
reinforced concrete. In addition, a strong linear correlation between the AE wave velocity and the
values of the corrosion current density was revealed.

Keywords: AE method; chloride corrosion; concrete cover; freeze–thaw cycles; GP method; rebar;
steel fibers

1. Introduction

Chloride corrosion [1,2] is, apart from carbonation, one of the main causes of rein-
forcement corrosion in reinforced concrete structures. Reinforced concrete structures of
roads and bridges are particularly exposed to this type of corrosion (due to the use of
sodium chloride as a surface de-icing agent in winter), as well as facilities located in coastal
areas, mainly port facilities, both engineering and industrial (due to the presence of sodium
chloride in seawater and in the so-called salt fog in the air). Chloride ions (Cl−) penetrate
the concrete and move through the liquid-filled capillaries by diffusion into the concrete
cover [3–7]. Over time, these ions reach the passive layer protecting the reinforcement and
damage it, which initiates the process of electrochemical corrosion of the reinforcement
(Figure 1). Depending on the environmental conditions, this process develops at different
rates. Ions penetrate deeper and faster into the concrete structure together with the liquid,
the more humid the environment is, and the concrete is more porous, with continuous (con-
nected) pores. If there are cracks in the concrete, the progress of ion diffusion is even faster,
thereby increasing the risk of corrosion. Any micro-defects and defects in the concrete
increase the risk of initiating and developing chloride corrosion. Micro-defects include
shrinkage cracks in large-area and large-size elements of roads and bridges. They form
due to the intensive evaporation of water from the surface of the elements in the concrete
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mixture setting and hardening and due to exothermic processes of binding large masses of
the mixture (e.g., when making abutment bridges). Stresses resulting from this may lead
to numerous micro-cracks of the concrete cover, which reduces its tightness. In addition,
frost and repeated freezing and thawing of the liquid in concrete pores can also damage
the concrete cover [8,9]. Other defects may arise as a result of mechanical damage related
to, for example, overloading of the structure and improper use of engineering facilities.
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Figure 1. Pitting corrosion in concrete.

It is worth adding that, in the case of corrosion caused by chlorides, we are dealing
with the so-called pitting corrosion [10–13]. It is so dangerous that corrosion centers are
formed pointwise and can lead to the bursting of the concrete cover from the inside without
visible changes on the surface of the element.

The key factor in protecting the reinforcement against corrosion caused by the synergy
of chloride ions and frost is a properly designed and made concrete cover, which should be
of appropriate thickness, characterized by high tightness, preventing the penetration of
ions [14,15] and ensuring frost resistance. For this reason, it is recommended to adopt a low
w/c ratio, add an air-entraining agent and use metallurgical cement instead of Portland
cement, which, due to the addition of granulated blast furnace slag, makes the concrete
tighter [16–19]. However, concrete with metallurgical cement, although it protects the
reinforcement better against chloride corrosion, is less resistant to carbonation caused by
the effect of carbon dioxide on concrete. Meanwhile, in real conditions, there is often a
synergy of these factors. Therefore, in addition to using different types of cement, other
solutions are sought to effectively improve the tightness of concrete. One such solution is
improving concrete mixture parameters not by interfering with its chemical composition but
by adding randomly dispersed micro-reinforcement fibers. Furthermore, the presence of
fibers in structural concrete is recommended due to the reduction of shrinkage deformations
and increasing the strength parameters of this material.

Research on concrete with dispersed reinforcement, i.e., fiber-reinforced concrete, has
been conducted for decades, and many of its properties have already been recognized and
described [20–22]. Various fibers can be used as dispersed reinforcement: steel, synthetic
(polypropylene, polyester, polyacrylonitrile), glass, carbon, basalt or even organic. The basic
parameters characterizing fibers of selected types, helpful in determining their suitability
for use, were developed by, among others, the authors of the publication [23].

Fiber-reinforced concrete is a “quasi-plastic” and “quasi-homogeneous” material,
having better adhesion, deformability, tightness and higher early strength [21–28]. This
is important in the case of structures exposed to aggressive environments (i.e., bridges,
tunnels, viaducts, car parks), thin-walled elements (tanks and basins of swimming pools),
weirs, retaining walls, elements subjected to dynamic loads and concrete surfaces, including
airfield pavements [29,30] and industrial floors. Randomly dispersed fibers in the concrete
mix reduce stress concentration and thus limit cracking [20–22,28,31]. When added to the
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fresh concrete mix, they play a micro-reinforcement role, reducing plastic shrinkage. In
hardened concrete, fibers limit the formation of cracks from drying [32,33].

Moreover, adding fibers to the concrete mix affects its air entrainment, which improves
frost resistance [34]. Randomly dispersed fibers block the formation of a network of
interconnected pores in the concrete, making it difficult for various substances to penetrate
it. For the above reasons, adding fibers should improve the properties of the concrete cover
as a layer protecting the reinforcement and thus mitigate the corrosion of reinforcing bars
in reinforced concrete elements.

One of the most commonly used fibers, due to their multiple effectiveness aspects
and relatively low price, is steel. These types of fibers are produced in various shapes and
sizes. The content of steel fibers in the concrete mixture usually ranges from 0.25 to 2% (by
volume) per 1 m3 [20–23]. Adding fiber reinforcement in less than 0.25% is ineffective (the
tests show that it does not improve concrete parameters). On the other hand, adding more
than 2.0% makes the concrete mix very difficult to work with (even with superplasticizers).
The authors’ research shows that mix preparation is challenging even with adding fibers in
the amount of 1.5%. Due to the formation of “nests”, i.e., clusters of tangled fibers, the mix
becomes heterogeneous, and the concrete parameters are worse than those of mixed with
1.0% fiber addition [35,36].

The purpose of adding steel fibers to the concrete is to increase the composite’s strength
and mechanical properties, including tensile strength, fatigue strength, impact strength,
crack resistance and abrasion resistance [20–23], as well as to increase its cohesion and
homogeneity. Cohesion improvement in concrete containing fibers results from the effect
of “fastening” the concrete matrix, preventing the formation of large pores in the concrete
mix and limiting the formation and spread of shrinkage cracks [21] during concrete setting
and hardening, which is schematically shown in Figure 2.

Materials 2023, 16, x FOR PEER REVIEW 3 of 19 
 

 

tunnels, viaducts, car parks), thin-walled elements (tanks and basins of swimming pools), 
weirs, retaining walls, elements subjected to dynamic loads and concrete surfaces, includ-
ing airfield pavements [29,30] and industrial floors. Randomly dispersed fibers in the con-
crete mix reduce stress concentration and thus limit cracking [20–22,28,31]. When added 
to the fresh concrete mix, they play a micro-reinforcement role, reducing plastic shrinkage. 
In hardened concrete, fibers limit the formation of cracks from drying [32,33]. 

Moreover, adding fibers to the concrete mix affects its air entrainment, which im-
proves frost resistance [34]. Randomly dispersed fibers block the formation of a network 
of interconnected pores in the concrete, making it difficult for various substances to pen-
etrate it. For the above reasons, adding fibers should improve the properties of the con-
crete cover as a layer protecting the reinforcement and thus mitigate the corrosion of re-
inforcing bars in reinforced concrete elements. 

One of the most commonly used fibers, due to their multiple effectiveness aspects 
and relatively low price, is steel. These types of fibers are produced in various shapes and 
sizes. The content of steel fibers in the concrete mixture usually ranges from 0.25 to 2% 
(by volume) per 1 m3 [20–23]. Adding fiber reinforcement in less than 0.25% is ineffective 
(the tests show that it does not improve concrete parameters). On the other hand, adding 
more than 2.0% makes the concrete mix very difficult to work with (even with superplas-
ticizers). The authors’ research shows that mix preparation is challenging even with add-
ing fibers in the amount of 1.5%. Due to the formation of “nests”, i.e., clusters of tangled 
fibers, the mix becomes heterogeneous, and the concrete parameters are worse than those 
of mixed with 1.0% fiber addition [35,36]. 

The purpose of adding steel fibers to the concrete is to increase the composite’s 
strength and mechanical properties, including tensile strength, fatigue strength, impact 
strength, crack resistance and abrasion resistance [20–23], as well as to increase its cohe-
sion and homogeneity. Cohesion improvement in concrete containing fibers results from 
the effect of “fastening” the concrete matrix, preventing the formation of large pores in 
the concrete mix and limiting the formation and spread of shrinkage cracks [21] during 
concrete setting and hardening, which is schematically shown in Figure 2. 

 
Figure 2. Size and distribution of cracks in reinforced concrete elements subjected to tension: (a) 
ordinary concrete; (b) concrete with dispersed reinforcement (based on [21]). 

Some researchers suggest that concretes with dispersed steel micro-reinforcement are 
not resistant to corrosion [23,24]. Others [22,35] believe that steel fibers do not corrode 
because they are too short for corrosion centers to form. In addition, the fibers are not 
connected to each other and are made of more resistant steel. If there are single cases of 
corrosion, the volume of the fiber after corrosion is so slightly greater that it does not break 
the concrete and even increases the anchoring force with the matrix. The authors of this 
paper conducted research in this area, e.g., based on images from a scanning microscope 
and EDS analysis [36]. Figure 3 shows a scanning microscope image of the concrete sample 
cut from the concrete cover, with the visible fiber section, as well as the charts from EDS 

Figure 2. Size and distribution of cracks in reinforced concrete elements subjected to tension: (a) ordi-
nary concrete; (b) concrete with dispersed reinforcement (based on [21]).

Some researchers suggest that concretes with dispersed steel micro-reinforcement are
not resistant to corrosion [23,24]. Others [22,35] believe that steel fibers do not corrode
because they are too short for corrosion centers to form. In addition, the fibers are not
connected to each other and are made of more resistant steel. If there are single cases of
corrosion, the volume of the fiber after corrosion is so slightly greater that it does not break
the concrete and even increases the anchoring force with the matrix. The authors of this
paper conducted research in this area, e.g., based on images from a scanning microscope
and EDS analysis [36]. Figure 3 shows a scanning microscope image of the concrete sample
cut from the concrete cover, with the visible fiber section, as well as the charts from EDS
analysis performed for the concrete covering the fiber and the fiber itself. The observed
results of the analysis showed no corrosion products in the structure of the concrete around
the fiber.
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Nevertheless, considering the above discrepancies in the corrosion resistance of
fiber-reinforced concrete with dispersed steel reinforcement, it is worth analyzing in
laboratory conditions.

This article presents research aimed at evaluating the effect of adding steel fibers
to concrete on the development of the corrosion process of ordinary reinforcement in
specimens exposed to chloride ions and frost. Two non-destructive methods were used in
the tests: the electrochemical polarization galvanostatic pulse method using the GP-5000
GalvaPulseTM measuring set [37] and the acoustic emission method for the comparative
analysis of mechanical wave parameters caused by the calibration pulse of acoustic sensors
and propagating in concrete and fiber-reinforced concrete due to the action of chloride ions
and frost.

2. Materials and Methods
2.1. Research Material

The components of the concrete mixture and their quantity per 1m3 of concrete are
listed in Table 1.

Table 1. The compositions of concrete mixture.

Ingredients Quantity per 1 m3 of Concrete Mixture

Portland cement CEM I (42,5 N-MSR/NA) 384 kg

Mine sand 680 kg

Basalt aggregate 2 ÷ 8 600 kg

Basalt aggregate 8 ÷ 16 650 kg

Water 166 L

Plasticizer ADVA Flow 440 (BV/FM) 0.5% (per 1 kg of cement)

Air entrainer Darex AEA W (LP) 0.2% (per 1 kg of cement)

The specimens were made in three series. The first series consisted of “witness
specimens” made of the base concrete mixture (marked with the symbol C). The specimens
in the two other series were made from a mixture to which randomly dispersed steel fibers
were added in various amounts. The specimens with 0.25% fibers by volume of the mixture
were marked SF_0.25, and those with 0.5% were marked SF_0.5. In the tests, straight fibers
with hooked ends of the BauMix 60/1 type, 60 mm long and 1.0 mm in diameter, were
used (Figure 4a).
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Figure 4. (a) Steel fibers used to make the specimens, (b) selected test specimen, (c) scheme of the
tested specimen. Dimensions are given in (mm).

Six specimens with dimensions of 210 × 228 × 100 mm3 were prepared (Figure 4b,c),
including two C specimens (witnesses), two SF_0.25 specimens and two SF_0.5 specimens,
for the main tests aimed at assessing the corrosion of reinforcement in concrete. In all
specimens, two ribbed bars with a diameter of φ 8 mm made of BST 500 steel, placed in
parallel at 70 mm spacing from the side edges of the specimens, were concreted (Figure 4b).
The adopted concrete cover was 25 mm.

Three cubic specimens in each series (C, SF_0.5 and SF_0.25) were also prepared to
determine the compressive strength according to [38,39].

All specimens were made under identical laboratory conditions at 20 ± 2 ◦C and
relative humidity 50 ± 5%. The specimens were removed from the molds the next day
after concreting.

In order to reflect the influence of an aggressive corrosive environment and initiate
corrosion processes, the specimens were placed in a plastic tub in a 3% sodium chloride
solution, which was tightly wrapped with foil. The immersion of the specimens was
partial—it covered only half of each specimen with one reinforcement bar, which was
to assess the impact of ambient conditions on the activation of the corrosion process. In
the immersed parts of the specimens, Cl− ions were transported with the liquid directly
into the concrete. In the specimen parts above the surface of the solution, the chloride
ion migration was due to capillary action and the action of salt fog. The specimens were
immersed for 50 days in a 3% NaCl solution. After this time, the specimens (still immersed
in the solution) were placed in a freezing chamber and subjected to 100 cycles of freezing
and thawing. Freezing cycles were carried out in a frost resistance test chamber with an
automatically controlled research program. The temperature range was +18 ÷ −18 ◦C.
There were ~3 cycles per day. The course of the test is shown in Figure 5a. During the
freeze–thaw cycles, reinforcement bar ends protruding from the specimens were insulated.
They did not come into contact with the solution, as shown schematically in Figure 5b.
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Figure 5. (a) The course of the test with marked measurement points; (b) test scheme.

Reference measurements using the GalvaPulse method were made before immersing
the specimens in the solution at a constant temperature, while measurements using the
acoustic emission method were made before placing the specimens in the freezing chamber.
These results were reference measurements for later measurements. The arrangement of
the measurement points is shown in Figure 6a (GP method) and Figure 6b (AE method).
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2.2. Research Methods

In order to assess the corrosion activity of the main reinforcement bars, the specimens
were subjected to semi-destructive tests using the galvanostatic pulse method. To assess
the impact of an aggressive environment on concrete and fiber-reinforced concrete, the
non-destructive acoustic emission method was applied. In addition, tests accompanying
the assessment of the compressive strength of the specimens were performed.

2.2.1. Galvanostatic Pulse Method

The galvanostatic pulse method belongs to the electrochemical polarization research
methods group—the essence of its application results from the electrochemical process
of corrosion of reinforcement in concrete. Concrete has a porous structure with pores
filled with liquid, so it is a kind of electrolyte. The steel rebar is an electrode placed in an
electrolyte. As a result of differences in the concentration of ions in the electrolyte and
possible micro-defects in the steel, local anode and cathode areas are formed on the surface
of the rod—microcells that initiate the flow of electrons—and the liquid-filled concrete
is a carrier of ions. When such a cell is connected to a device equipped with an electric
meter and a reference electrode, and the current flow is induced correctly, it is possible
to obtain data on corrosion probability and estimate the corrosion activity. The GP-5000
GalvaPulseTM measuring set was used in the described studies. It enables determining the
probability of corrosion based on measurements of the stationary potential of reinforcement
and resistivity of the concrete cover, estimating the reinforcement corrosion activity and
predicting corrosion rate based on the measurements of the corrosion current density. The
scheme of operation of the device in connection with a reinforced concrete element is
shown in Figure 7a. Figure 7b shows the measurement with the GalvaPulse apparatus on a
selected specimen.
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Of the three parameters measured with the GP-5000 GalvaPulseTM device, the most
effective and reliable in the case of the presented tests were the measurements of the
corrosion current density. In the case of the other two parameters, the obtained results
could lead to their incorrect interpretation. This resulted from the influence of steel fibers,
disturbing the measurements of the stationary potential of reinforcement [36], and from
the young age of the specimens, which affects the measurements of the concrete cover
resistivity [16]. Therefore, the analysis of the results obtained by the galvanostatic pulse
method was based on the measurements of the corrosion current density. The obtained
results were related to the borderline results presented in Table 2.

Table 2. Criteria for assessing the degree of reinforcement corrosion risk resulting from measurements
of the corrosion current density carried out using the galvanostatic pulse method.

Reinforcement Corrosion Activity,
icor (µA/cm2) Forecasted Rate of Corrosion

Corrosion Current
Density

<0.5 Not forecasted <0.006 mm·year−1

0.5 ÷ 2.0 Irrelevant 0.006 ÷ 0.023 mm·year−1

2.0 ÷ 5.0 Low 0.023 ÷ 0.058 mm·year−1

5.0 ÷ 15.0 Moderate 0.058 ÷ 0.174 mm·year−1

>15.0 High >0.174 mm·year−1

Corrosion current density (icor) measurements were performed for three series of
reinforced concrete specimens (C, SF_0.25 and SF_0.5) in two stages. The first stage included
measurements on specimens before they were immersed and frozen in a 3% NaCl solution.
The second stage concerned the measurements of specimens after 100 cycles of freezing
and thawing in a solution. Measurements were made on the surface of each specimen at
four measurement points located on the line of the reinforcement bar (Figure 5b), where
the points with coordinates (1, 1) and (1, 2) concerned the bar not immersed in the solution,
and the points with coordinates (2, 1) and (2, 2) concerned the immersed rod.

2.2.2. Acoustic Emission Method

The acoustic emission method is one of the non-destructive methods, an overview
of which can be found, among others, in [40–42]. It analyzes elastic waves propagated
due to processes occurring inside and outside the material. Recommendations regard-
ing damage detection and their assessment using the acoustic emission method can be
found, for example, in [42–45]. A standard research direction is determining whether
active destructive processes occur in the specimen. To determine this, during the test, the
measuring apparatus registers the elastic waves propagating in the material as a result of
the damage. Then, a team of specialists interprets and evaluates the results [46,47] and
classes the damage [48,49]. One of the acoustic methods (IADP) consists of classifying
the received acoustic emission signals based on assigning them to typical damage of the
material, which is contained in the database of reference signals created before the test
in the laboratory condition. Examples of the application of this method are given, for
example, in [50,51], where it was used to identify destructive processes in the diagnosis of
reinforced concrete objects. In [52–54], it was used to identify active destructive processes
in unloaded concrete or in [55] for monitoring the course of the alkali-silica reaction. The
difficulty of this method involves not only the need to develop a signal base of model
destructive processes before testing but also to determine the velocity of the longitudinal
wave, which is necessary to locate these processes. Analysis of elastic waves is the basis
of acoustic methods, and study of the wave propagation in various materials is essential
to best recognize the phenomena occurring in them. One of the directions of analysis is
the characteristic of elastic wave propagation in parameters such as longitudinal wave
velocity, amplitude, energy, frequency, duration, rise time or waveform. To perform a
reliable analysis, the elastic wave is excited multiple times by an artificial acoustic emission
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source. Various methods of generating an elastic wave source exist, i.e., breaking a glass
capillary [56,57], dropping a steel ball [56,58], breaking the graphite of a pencil in the
Hsu Nielsen test [59,60], a simulated acoustic emission wave by AE system [61,62] or an
ultrasonic wave by a pulse generator [63]. The artificial sources of acoustic emission are
characterized by a short duration of the elastic wave, which is typical for a natural source
of acoustic emission [64]. In the study of acoustic emission wave parameters in concrete,
two methods of wave generating have been used in practice, i.e., breaking graphite in the
Hsu Nielsen test [65] and a pulse from an acoustic emission sensor [66], which is currently
not a very recognized source, probably due to the availability of the sensors.

In this paper, the repetitive source from the acoustic emission sensor was chosen to
analyze the wave velocity and waveform. The advantage of this method of generating an
acoustic wave is the reduction of the impact of human error. The test was performed using
the PK6I sensor [61] with a resonant frequency of 55 kHz (Figure 8) with a built-in 26 dB
preamplifier, operating in the frequency range of 35–65 kHz. In addition, the Pocket AE
device with the built-in Auto Sensor Test system was used for the AE wave measurement.
It made it possible to send an artificial wave of acoustic emission to the medium and
simultaneously receive a wave from the medium [67].

Materials 2023, 16, x FOR PEER REVIEW 8 of 19 
 

 

methods of generating an elastic wave source exist, i.e., breaking a glass capillary [56,57], 
dropping a steel ball [56,58], breaking the graphite of a pencil in the Hsu Nielsen test 
[59,60], a simulated acoustic emission wave by AE system [61,62] or an ultrasonic wave 
by a pulse generator [63]. The artificial sources of acoustic emission are characterized by 
a short duration of the elastic wave, which is typical for a natural source of acoustic emis-
sion [64]. In the study of acoustic emission wave parameters in concrete, two methods of 
wave generating have been used in practice, i.e., breaking graphite in the Hsu Nielsen test 
[65] and a pulse from an acoustic emission sensor [66], which is currently not a very rec-
ognized source, probably due to the availability of the sensors. 

In this paper, the repetitive source from the acoustic emission sensor was chosen to 
analyze the wave velocity and waveform. The advantage of this method of generating an 
acoustic wave is the reduction of the impact of human error. The test was performed using 
the PK6I sensor [61] with a resonant frequency of 55 kHz (Figure 8) with a built-in 26 dB 
preamplifier, operating in the frequency range of 35–65 kHz. In addition, the Pocket AE 
device with the built-in Auto Sensor Test system was used for the AE wave measurement. 
It made it possible to send an artificial wave of acoustic emission to the medium and sim-
ultaneously receive a wave from the medium [67].  

 

(a) (b) 

Figure 8. (a) Resonance sensor—PK6I, (b) graph of the sensitivity of the PK6I resonant sensor de-
pending on the frequency [61] 

Before starting the test, the sensor application site was adequately prepared by: clean-
ing and applying a coupling agent. In addition, sensors were calibrated using the Hsu-
Nielsen test [59,60]. The acoustic emission test consisted in recording the arrival time of 
the longitudinal wave generated by the calibration pulse from the sensor. The generated 
elastic wave passed through one of the two tested zones of a given specimen (air or solu-
tion) (Figure 5a). In order to verify the errors of the apparatus, the wave was generated 
ten times by both sensors in two directions, while in order to eliminate overlapping of the 
waves, 10-second excitation intervals were adopted. The distance between the sensors was 
228 mm. The location of the sensors on the specimen and the measuring stand are shown 
in Figure 9a. The measurement results obtained were analyzed using the Vallen System 
GmbH software. 

  
(a) (b) 

Figure 9. (a) Measuring stand with apparatus—Pocket AE; (b) diagram of AE wave propagation in 
a specimen. 

Figure 8. (a) Resonance sensor—PK6I, (b) graph of the sensitivity of the PK6I resonant sensor
depending on the frequency [61].

Before starting the test, the sensor application site was adequately prepared by: clean-
ing and applying a coupling agent. In addition, sensors were calibrated using the Hsu-
Nielsen test [59,60]. The acoustic emission test consisted in recording the arrival time of the
longitudinal wave generated by the calibration pulse from the sensor. The generated elastic
wave passed through one of the two tested zones of a given specimen (air or solution)
(Figure 5a). In order to verify the errors of the apparatus, the wave was generated ten
times by both sensors in two directions, while in order to eliminate overlapping of the
waves, 10-second excitation intervals were adopted. The distance between the sensors was
228 mm. The location of the sensors on the specimen and the measuring stand are shown
in Figure 9a. The measurement results obtained were analyzed using the Vallen System
GmbH software.
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2.2.3. Compressive Strength Tests

The tests of the specimens to determine the compressive strength were carried out
28 days after concreting following the standard recommendation [38,39]. Cubic specimens
of 150 × 150 × 150 mm3 were destroyed in the SP-Z6000 Zwick/Roell tester with a
maximum compressive force of 6000 kN. The specimens were continuously loaded to
failure at a load speed of ~0.5 MPa/s. The results (Table 3), together with the graphs
(Figure 10), were generated in the testXpert program compatible with the testing machine.

Table 3. The results of the compressive strength of the tested concrete and fiber-reinforced concrete
after 28 days of curing.

Specimens C SF_0.25 SF_0.50

1 64.93 65.41 63.19

2 64.71 68.91 60.88

3 61.74 67.71 62.16

Mean value 63.79 67.34 62.08

Stand. dev. 1.45 1.45 0.94

Variation (%) 2.28 2.16 1.52
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3. Research Results and Analysis
3.1. Analysis of Results Obtained from Tests Using the Galvanostatic Pulse Method

Figure 11 graphically presents the values of the corrosion current density obtained
after two stages of measurements made on specimens of individual series (Figure 10a–c)
for non-immersed parts (points 1–4) and immersed parts (points 5–8), respectively. In order
to analyze the obtained results, they were compared to the data given in Table 2.

As seen from the graphs, the reference measurements (stage I) were in the range
of icor = 0.2 ÷ 1.31 µA/cm2, which indicated unpredicted or irrelevant corrosion activity
of the tested bars (Table 2). They proved no risk of corrosion. The values measured
after 100 cycles of freezing and thawing specimens in 3% NaCl solution (stage II) at
23 measurement points were in the icor range of 2.33 ÷ 4.60 µA/cm2 (indicating low
corrosion activity of the tested bars), and at one point, the current density increased to
icor = 10.68 µA/cm2 (moderate corrosion activity of the tested rod). In all tested specimens,
the corrosion activity of the reinforcement bars increased due to the action of chloride ions
and cyclic freezing and thawing of the specimens.
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In addition, Table 4 summarizes the results of the corrosion current density measured
in the second stage of measurements for the specimens from individual series, separately for
non-immersed and immersed parts. The table also includes the average values determined
for the measurement points for specimens of the same series stored in the same ambient
conditions (air or solution). In the case of the SF_0.25 series, due to one result that was
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significantly different from the others (* point 7: icor = 10.68 µA/cm2), the average of
the results was presented in two variants: including this result and omitting it (values
in parentheses).

Table 4. Corrosion current density values determined in stage II of measurements for individual
series of specimens (non-immersed and immersed parts).

Specimens SF_0.25 Specimens SF_0.50 Specimens C

Air Solution Air Solution Air Solution

Stage II 4.60 2.95 3.47 2.61 3.30 3.66

3.14 2.87 3.13 2.69 3.47 3.14

2.45 10.68 * 3.23 2.77 3.59 3.28

2.36 2.33 3.52 2.52 4.14 3.61

Mean value (MPa) 3.14 4.71 (2.72) 3.34 2.65 3.63 3.42

Standard deviation (MPa) 0.90 3.46 (0.28) 0.16 0.09 0.31 0.22

Coefficient of variation (%) 29 70 (10) 5 4 9 6

Analysis of the results obtained from the tests (excluding the result of the SF_0.25
point 7 series) indicates that the corrosion activity of the main reinforcement bars after
100 cycles of freezing and thawing in 3% NaCl solution was the highest in the specimens
of series C (concrete without fibers), with the highest increase in the average corrosion
current density icor = 3.63 µA/cm2 (for non-immersed parts) and icor = 3.42 µA/cm2 (for
immersed parts). Lower corrosion current density values were recorded in the specimens
with the addition of fibers. In the specimens of the SF_0.5 series, the average values of the
current density were icor = 3.34 µA/cm2 (for non-immersed parts) and icor = 2.65 µA/cm2

(for immersed parts), and the specimens of the SF_0.25 series (excluding the result of
the SF_0.25-point series 7) were, respectively, icor = 3.14 µA/cm2 and icor = 2.72 µA/cm2.
However, considering the value of the corrosion current density at point 7 in the SF_0.25
series specimen (icor = 10.68 µA/cm2), it should be assumed that a corrosion center was
formed in the tested area. It could have resulted from micro-defects in the concrete cover
(cracks caused by stresses in the concrete), which led to increased diffusion of Cl− ions.

Analysis of the values of standard deviation and coefficient of variation (Table 4)
shows that the dispersion of results was the smallest in the specimens of the SF_0.5 series. It
follows that the addition of steel fibers in the amount of 0.5% of the volume of the concrete
mix improved the coherence and tightness of the concrete cover. However, the greatest
dispersion of results occurred in the specimens of the SF_0.25 series, in which both the
lowest values of the corrosion current density (at most measurement points) and the highest
values (at two measurement points) were recorded. It can therefore be assumed that the
addition of fibers in the amount of 0.25% of the concrete mix volume was insufficient to
improve the cohesion and tightness of the concrete cover comprehensively. Probably, the
fibers locally limited the shrinkage and partially blocked the network of interconnected
pores. However, due to their insufficient number, there were areas without fibers, where
internal stresses in the concrete (caused initially by shrinkage and cyclic freezing and
thawing of specimens) led to the formation of internal microcracks and thus more intensive
diffusion of Cl− ions into the lagging. The percentage of micro-reinforcement fibers dosed to
reduce shrinkage in concrete is, therefore, significant, taking into account the effectiveness
of the cover in protecting the reinforcement against corrosion.

The measurements of the corrosion current density made it possible to determine the
corrosion activity of the reinforcement and estimate the corrosion rate. For this purpose,
Faraday’s law was used to estimate that the corrosion current density with the value of
icor = 1 (µA/cm2) corresponds approximately to the depth of loss of the cross-section of
the reinforcing bar equal to 11.6 (µm/year) [37]. The maximum values of the corrosion
current density were adopted for the analysis as the most representative for each series
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of specimens. On this basis, it was estimated that in the specimens of the C series, the
corrosion rate may be 48.02 µm/year, in the specimens of the SF_0.5 series, the least, i.e.,
40.83 µm/year, and in the specimens of the SF_0.25 series, the highest, i.e., 123.89 µm/year.

It is also worth noting the differences in the corrosion current density values that
occurred depending on whether the measurement points were located in the non-immersed
(air) or immersed (solution) part of the specimens. In most of the obtained results, the
corrosion current density was lower for some of the specimens immersed in the solution (in
the specimens of the SF_0.5 series, it concerned all measurement points). Therefore, the bars
immersed in the solution were characterized by lower corrosion activity than those above
the solution. This is probably related to the essence of the corrosion process. Although the
concentration of chloride ions in the solution was probably higher than in the “salt mist”
(not measured in this study), oxygen was necessary to develop reinforcement corrosion,
thereby making chloride ion migration in the concrete above the solution easier than in the
immersed parts of the specimens, whose capillaries were filled with liquid [20,21].

3.2. Analysis of Test Results Using the AE Method

The reference measurement using the acoustic emission method was made before the
freeze–thaw cycles in the chamber, i.e., after 50 days of specimen care in a 3% NaCl solution.
Measurements were made in two specimen zones (Figure 6b). The first measurement
was made in the zone where the concrete cured in the air and the second in the part of
the specimen previously immersed in the solution. AE signals in a given direction were
generated alternately from each sensor. This means that after a series of ten excitations
of the wave from sensor no. 1 and recording these waves by sensor no. 2., the order
was reversed, and the wave was generated from sensor no. 2 and recorded with sensor
no. 1. This procedure was aimed at verifying the obtained AE results by eliminating the
situation related to the error resulting from the sensor’s defect. As a result, each sensor
obtained a coefficient of variation not exceeding 0.5% in the values of the wave velocities
generated independently. Figure 12 presents, in a graphical form, the average velocity
values (reference for further measurements) of the propagating acoustic wave in individual
specimens in stage I of the test.
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The recorded wave parameters show that each immersed part of the specimens (100%
care) had higher wave velocity values compared with those recorded in the part of the
specimen treated in the air. In both cases, the maintenance time was the same (50 days).
Therefore, immersion of some of the specimens in the solution positively affected the
course of the cement hydration process, which was complete in relation to the part of the
specimens left in the air.
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Figure 13 presents the values of the AE wave velocity propagating in individual
specimens recorded during two stages of the test, with air or solution parts of the tested
specimen taken into account. The first stage represents the measurement immediately after
the curing time in the NaCl solution, while in the second stage, the specimen was subjected
to 100 freeze–thaw cycles. The blue color indicates the results of reference measurements
(stage I), and the red color indicates the results obtained after 100 freeze–thaw cycles in
specimens immersed in 3% sodium chloride solution (stage II).
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Table 5 summarizes the basic statistical parameters of the velocities obtained in con-
crete and fiber concrete tests. A low coefficient of variation distinguishes the research results.

Table 5. Acoustic wave velocity values recorded in specimens C, SF_0.25 and SF_0.50 with statistical
parameters.

AE Wave Velocity (m/s)

Series C Series SF_0.25 Series SF_0.50

Air Solution Air Solution Air Solution

Stage I

Specimen 1 3746 4151 3644 4043 3750 4083

Specimen 2 3828 4251 3357 4160 3876 4209

Mean value (m/s) 3787 4201 3501 4101 3813 4146

Stand. dev. (m/s) 41.3 49.9 143.1 58.5 62.9 63.1

Coeff. of variation (%) 1.1 0.01 0.04 0.01 0.02 0.02

Stage II

Specimen 1 3980 4122 3662 3665 3808 3901

Specimen 2 4102 4234 3600 4109 3960 4141

Mean value (m/s) 4041 4178 3631 3887 3884 4021

Stand. dev. (m/s) 60.7 55.9 30.8 221.9 76.1 120.1

Coeff. of variation (%) 0.02 0.01 0.01 0.06 0.02 0.03

Figure 14 shows the wave velocity increase after 100 cycles of heating and cooling,
respectively, in some of the specimens immersed (Figure 14a) and those remaining in the
air (Figure 14b) compared to the reference velocity (100%) before testing in the freezing
chamber. In all specimens tested in the immersed part, a decrease in the AE wave velocity



Materials 2023, 16, 1174 14 of 19

was observed, which indicates the negative impact of the heating and freezing cycles on
the concrete structure in the part whose pores were filled with water. The highest decrease
in wave velocity was observed in concrete SF_0.25 and amounted to 9.35%. It may indicate
greater damage to the concrete in comparison to the remaining specimens.
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Figure 14. Increase in the velocity of the elastic wave recorded in the specimens (a) in the immersed
part (measurement 2) and (b) in the non-immersed part (measurement 1).

In the second part of each specimen (non-immersed part), an increase in the velocity
of the AE wave was observed, which may indicate the influence of humidity on the
concrete sealing.

Figure 15 shows the waveform recorded by the AE sensor (receiver) during the test
(amplitude vs. time) of the example specimen SF_0.25 at various stages of the test.
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Figure 15. The waveform received by the sensor in stages I and II: (a) specimen SF_0.25—stage I
(solution); (b) specimen SF_0.25—stage II (solution); (c) specimen SF_0.25—stage I (air); (d) specimen
SF_0.25—stage II (air).

The waves recorded in the SF_0.25 in the second stage of the research, after 100 freeze-
thaw cycles, had a lower amplitude than the amplitude recorded in the specimen in Stage I.
In the immersed part, the amplitude decreased from 115 mV (Figure 15a) to approx. 25 mV
(Figure 15b) and from 100 mV (Figure 15c) to 11 mV (Figure 15d) in the non-immersed part.
The cause may include destructive processes in the fiber concrete resulting from freezing
and thawing processes.
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4. Discussion

Analysis of the test results shows that the corrosion activity of the main reinforcement
bars after 100 cycles of freezing and thawing in 3% NaCl solution was the highest in the
C series specimens (concrete without fibers), in which the average increase in corrosion
current density was highest, icor = 3.63 µA/cm2.

The decrease in the wave velocity in the immersed parts during the freezing cycles was
most likely due to micro-defect formation in the concrete. However, the bars in these parts
of the specimens showed slightly lower reinforcement corrosion activity than the bars in
the non-immersed parts of the specimens. It can therefore be assumed that, despite greater
losses in the concrete cover, the ambient humidity of 100% contributed to the slowdown of
the corrosion process, probably due to the oxygen deficit, which is necessary for the process
to proceed.

In the non-immersed parts of the specimens, there was no such destruction of con-
crete resulting from the freezing and thawing cycles. The effect of filling the voids of
the concrete pores with corrosion products resulted in the “sealing” of the concrete and
increasing the wave velocity. Hence, further tests are planned to supplement the AE wave
measurements, the location and quantitative assessment of destructive processes taking
place in unloaded concrete in an analogous environment in order to demonstrate the cause
of the increased number of destructive processes in the submerged zone compared to the
non-immersed zone.

The results of the GP and AE tests showed a strong relationship between the tested
parameters, i.e., the corrosion current density and AE wave velocity. The Pearson coefficient
determined for these parameters for the immersed part of the specimens is 0.85, while
in the non-immersed part it is 0.97. This information is important in the context of the
possibility of developing a non-destructive method that enables the diagnosis of corrosion
in reinforced concrete and fiber-reinforced concrete based on the analysis of the AE wave
velocity. Figure 16 shows the correlation between the mentioned parameters, the value of
R2 and the equations of the assumed linear functions.
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Initially, it can be concluded that in concrete elements cured in water containing
NaCl, the development of the corrosion process can be signaled based on wave velocity
analysis. It was observed that, due to the possible filling of concrete voids with corrosion
products, partial sealing of the concrete might occur, corresponding to a local increase in
the wave velocity relative to places not exposed to corrosion development. However, this
dependence requires further analysis and in-depth research.

In particular, the last issues related to the correlation of the longitudinal wave velocity
with the degree of rod corrosion and the impact of concrete moisture on the longitudinal
wave velocity (stage I) or the effect of cyclical heating and freezing of concrete on the
longitudinal wave velocity (stage II) can be considered as a novelty in the conducted tests.
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However, to fully confirm the observed phenomena, the work in this direction should be
continued due to the scope of work carried out so far.

For this reason, one of the directions of further work will be verifying the corre-
lation between the wave velocity change and the progressive corrosion of reinforced
concrete elements.

In addition, tests will be carried out to compare the method of sending a reference
source in the form of the Hsu-Nielsen method (wave generated by breaking a pencil lead)
and from a sensor, determining the advantages and disadvantages of both methods of
generating a longitudinal wave source and measuring its velocity for samples subjected to
NaCl and cyclic heating and cooling.

These tests will also include comparisons of elastic wave shapes and amplitudes and
the impact of the corrosive degradation of concrete on these parameters.

5. Conclusions

As a result of the conducted research and analysis, the following conclusions can
be drawn:

1. The corrosion activity in the specimens with 0.5% fibers was the lowest, and the
dispersion of the results was the smallest. The highest corrosion activity was shown
by bars in the concrete specimen without fibers. The largest scatter of results was
observed in the specimen with the addition of 0.25% of fibers. This indicates that the
addition of steel micro-reinforcement fibers to concrete affects the effectiveness of the
cover as a layer protecting the reinforcement against corrosion caused by the action
of chloride ions and frost. However, the percentage of fiber content in the concrete
mixture is of significant importance.

2. The content of steel fibers in the concrete mixture in the amount of 0.25%, defined as
the minimum anti-shrinkage micro-reinforcement in concrete, is insufficient to obtain a
homogeneous and tight concrete cover protecting the reinforcement against corrosion.

3. The use of steel fibers as micro-reinforcement does not increase the corrosion risk of
the main reinforcement in concrete.

4. Randomly dispersed fine steel fibers covered with concrete do not constitute
corrosion centers.

5. Corrosion caused by chloride ions is pitting corrosion, which means that in concrete
elements, there may be point corrosion centers with high corrosion activity of the
reinforcement.

6. Heating and freezing cycles in a 3% NaCl water solution affect the destruction of
concrete—the wave velocity and amplitude decreased in this medium.

7. There is a strong linear correlation between the AE wave velocity induced by the
calibration pulse from the PK6I acoustic sensor and the values of the corrosion current
density recorded in the main reinforcement bars.

Based on the results and presented conclusions, it can be predicted that further tests
will allow for the determination of the procedure for inferring the reinforcement corrosion
activity based on the AE tests and their correlation to the GP tests.
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