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Abstract: Composite material uses ceramic reinforcement to add to the metal matrix to obtain
higher material properties. Structural design is an important direction of composite research. The
reinforcement distribution of the core-shell structure has the unique advantages of strong continuity
and uniform stress distribution. In this paper, a method of preparing boron carbide (B4C)-coated
titanium (Ti) powder particles by ball milling and preparing core-shell B4C-reinforced Ti matrix
composites by Spark Plasma Sintering was proposed. It can be seen that B4C coated on the surface
of the spherical Ti powder to form a shell structure, and B4C had a certain continuity. Through
X-ray diffraction characterization, it was found that B4C reacted with Ti to form layered phases of
titanium boride (TiB) and titanium carbide (TiC). The compressive strength of the composite reached
1529.1 MPa, while maintaining a compressive strain rate of 5%. At the same time, conductivity and
thermal conductivity were also characterized. The preparation process of the core-shell structure
composites proposed in this paper has high feasibility and universality, and it is expected to be
applied to other ceramic reinforcements. This result provides a reference for the design, preparation
and performance research of core-shell composite materials.

Keywords: B4C; Ti matrix composite; core-shell composite; mechanical properties

1. Introduction

Compounding is an important material design method, which uses ceramic (such as
SiC, B4C, AlN, Si3N4, etc.) reinforcement to compound with a metal matrix to obtain higher
material properties [1–3]. B4C is an ideal reinforcement with a light weight, high hardness
and high elastic modulus [4,5]. It is used in metal matrix composites to greatly improve the
mechanical properties. Based on the excellent properties of B4C, high-strength and high-
wear resistant composites have been developed and applied in the military, automotive
and nuclear industries [6,7].

The reinforcement of traditional B4C/metal composites is mainly B4C particles (B4Cp).
Researchers have carried out structural design research on B4Cp/Al and B4Cp/Ti ma-
trix composites by adjusting the volume fraction, morphology and dispersion of B4C.
Luo and Zhang et al. [8,9] found that increasing the B4Cp content could effectively improve
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the properties, but when the mass fraction was 27.5%, B4Cp agglomerated significantly,
resulting in no further improvement in strength. Wu et al. [10] found that when the volume
fraction was fixed, the smaller the B4Cp diameter, the higher the strength. Small-size
B4Cp can effectively lead to larger values in strain gradient strengthening as well as CTE
mismatch strengthening. Zhang et al. [11] prepared B4Cp/TiAl composites with different
mass fractions. It was found that the flexural strength and fracture toughness of 20 wt.%
B4Cp/TiAl were significantly improved compared with 10 wt.%. Selvakumar et al. [12]
prepared 10 wt.% B4Cp/Ti6Al4V composites and found that the hardness of the com-
posites increased with the increase of the ball milling time. Chen et al. [13] prepared
30 wt.% B4Cp/6061Al composites by hot pressing-extrusion-rolling. The high-volume
fraction B4Cp was uniformly dispersed, and the tensile strength of the composite reached
265 MPa. B4C/Ti composites were prepared by a laser engineered net-shaping process by
Nartu et al. [14], and the microscopic process of TiB and TiC formed by the reaction of B4C
and Ti was studied and analyzed.

A new study found that the powder with a core-shell structure has unique perfor-
mance characteristics when sintered. The shell structure is connected into a network after
sintering, which can effectively transfer the load and exert excellent mechanical proper-
ties. Yang et al. [15–17] oxidized Ti6Al4V titanium alloy powder at a high temperature to
prepare a core-shell structure with the oxide of Ti6Al4V as the core and titanium as the
shell. The titanium alloy powder with the core-shell structure was sintered into titanium
matrix composites by spark plasma sintering. It was found that this structure has good
oxidation resistance and high temperature stability. Li et al. [18] adsorbed B4C on the
surface of spherical Ti powder to prepare Ti-B4C particles with a core-shell structure, and
then reinforced 2024Al alloy. It was found that the yield strength of 10 wt.% Ti-B4C/2024Al
composites increased by 37.2% and the elongation increased by 6.3%. The excellent perfor-
mance was attributed to the combined effect of the Ti particles, B4C particles and in situ
TiAl3 phase. Zygula et al. [19] used B4C to react with β-Ti alloy in situ to form TiB and
TiC, and clarified the diffusion and reaction behavior of alloying elements. Jiang et al. [20]
studied the reaction process of B4C and Ti during SPS reaction. The products were mainly
TiC, and a small amount of TiB and TiB2. However, the current research on B4C/Ti com-
posites is mostly focused on particle-reinforced metal matrix composites. The distribution
of B4C is dispersed, and there is no preparation method for core-shell B4C/Ti composites.
Furthermore, the effect of the shell-like distribution of B4C on the properties of composites
is not clear.

In this paper, Ti powder was used as the core and granular B4C as the shell. The re-
search on the preparation of composite materials with core-shell Ti-B4C powder was carried
out. The dispersion and preparation processes were optimized to guide the preparation of
core-shell structural materials. The particularity of the core-shell structure and its unique
mechanical properties were studied.

2. Materials and Methods
2.1. Raw Materials

The Ti powder used in this project was high-purity titanium powder, which was sup-
plied by the Northwest Institute of Nonferrous Metals, China. In addition, its morphology
was a spherical titanium powder with a larger particle size through plasma spheroidization.
The energy spectrum analysis of the original spherical Ti powder was carried out. The
experimental results are shown in Figure 1. It can be seen that the purity of Ti powder was
high. Ti powder particle size distribution was in the range of 40~100 µm, and the shape in a
better spherical, enlarged observation of its surface can be found on the surface of a smooth,
not foreign matter, which also led to the powder having good fluidity. B4C powders were
supplied by Nangong Jingrui Alloy, China. The morphology of the original B4C particles is
shown in Figure 2. The average diameter of Ti powder used was 80 µm and that of B4C
powder was 10 µm.
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Figure 2. Raw material characterization of B4C powder.

In this paper, the precursor particles (B4C) were uniformly coated on the surface of the
Ti powder by mechanical ball milling to form a core-shell structure of the B4C precursor
shell-coated Ti powder, as shown in Figure 3. B4C coating on the surface of the Ti powder
was achieved by mechanical ball milling. The volume fraction of B4C was 30% in ball
milling. The equipment used was the planetary ball mill apparatus QM-3SP2, from the
Instrument Factory of Nanjing University, China. The mill and the ball used in the ball mill
were both made of alumina. The diameter of the ball was 3 mm, and the volume of the ball
mill was 500 mL. The rotation speed was 250 r/min, the ball milling time was 8 h and the
ball milling atmosphere was ball milling under argon protection. The ball to material ratio
was 5:1.
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2.2. Preparation of Ti-Based Composites with a Core-Shell Microstructure

The core-shell structured powders were prepared by the Spark Plasma Sintering (SPS)
process. SPS is a new material-sintering technology, which is widely used in the research
and development of composite materials because of its fast-heating rate, short sintering
time, controllable structure, energy saving and environmental protection [21,22]. After the
powder coating process, 110 g mixed powder was stacked into high-density graphite die
with an internal diameter of 50 mm. Then, sintering was performed on the SPS furnace
(FCT HPD-250, Germany, Rauenstein) under a vacuum environment. For the sintering
temperature, please reference the Ti alloy preparation temperature [23,24]. In this paper,
the core-shell structure powder was continuously sintered at 1200 ◦C for 35 min. The
sintering pressure, soaking time and vacuum were maintained at 40 MPa, 15 min and <8 Pa,
respectively. After sintering, sintered composites were furnace-cooled to room temperature
and the pressure was removed at 600 ◦C.

2.3. Microstructure Characterization of Ti-Based Composites

The phase composition of both the mixed powders and the composites were charac-
terized by an Empyrean Intelligent X-ray Diffractometer (Malvern Panalytical, Malvern,
UK). The specific test conditions were as follows: accelerating voltage 40 kV, current 40 mA,
Cu-Kα radiation, scanning speed 10◦/min and scanning angle range 10~90◦. Before the
collection of the diffraction patterns, the tested powder was evenly and randomly laid on
the glass test platform, and the surface of the tested composite block was sandpapered and
cleaned with an acetone solution.

The microstructure of the mixed powder and the composites were observed and
snapped by a ZEISS459315 (Carl Zeiss A.G., Oberkochen, Cermany) metallographic micro-
scope and Quanta 200FEG (FEI Company, Hillsboro, OR, USA) field-emission scanning
electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The
sample with a dimension of 4 mm × 5 mm × 3 mm was obtained by electro discharge wire
cutting. Before this, the observed samples were successively polished, cleaned and etched
(400 #, 800 #, 2000 # and 4000 # sandpaper were selected for polishing, and a diamond
polishing agent was selected for polishing cloth; the etched solution was Kroll reagent with
a ratio of 20 vol%HF + 20 vol%HNO3 + 60 vol%H2O).

2.4. Performance Tests of Ti-Based Composites
2.4.1. Compression Test

The compression test was carried out on an Instron-8862 (Instron, Norwood, MA, USA)
universal electronic testing machine with a constant displacement velocity of 0.25 mm/min
for the indenter of the machine. To avoid defects from adversely affecting the compression
test results, the test samples with a dimension of 4 mm × 4 mm × 6 mm were ground with
1500 # sandpaper until the surface had no obvious macroscopic defects. The compressive
strength (P) of the composite could be estimated by:

P =
F
S

(1)

where F is the maximum load when the specimen is fractured in compression and S denotes
the cross-sectional area of the specimen perpendicular to the direction of the load. All
samples were tested repeatedly more than five times to ensure the stability of the results.

2.4.2. Thermal Conductivity Measurement

The cylindrical specimen with the size of Φ12.7 mm × 3.2 mm was processed by the
wire-cutting method, and then the upper and lower surfaces of the specimen were polished
with 1000 # sandpaper to ensure a smooth and flat surface. To ensure that the surface
of the specimen was evenly heated during the thermal conductivity measurement, the
upper and lower surfaces of the specimen were evenly coated with carbon powder after
polishing. The thermal conductivity test experiments were performed on an LFA-447 laser



Materials 2023, 16, 1166 5 of 10

thermal conductivity meter manufactured by NETZSCH, which tests the thermal diffusion
coefficient k of composite specimens at room temperature. The thermal conductivity λ of
the composites could be obtained from:

λ = k × ρ × C (2)

where k, ρ and C are the thermal diffusion coefficient, density and thermal capacity of
the composites. ρ was obtained by Archimedes method and C was evaluated by the law
of mixing.

3. Results and Discussion
3.1. Microstructure Characterization of Core-Shell Ti-B4C Particles

Using the ball milling process parameters determined above, the large-sized spherical
titanium powder and small-sized B4C particles were ball milled to prepare a core-shell
structure with spherical titanium powder as the core and B4C as the shell. In order to
prepare a thicker shell, the B4C volume fraction was selected to be 30%. The surface
morphology of the core-shell structure formed after ball milling is shown in Figure 4. It can
be seen that the surface of the spherical titanium powder was obviously coated, but the
uniformity was poor. The spherical titanium powder had a slight deformation in shape,
but it was still spherical on the whole. After further magnification observation, compared
with the original spherical titanium powder, it can be found that the spherical titanium
powder particles were no longer smooth on the surface. Due to the high-volume fraction of
the reinforcement precursor, some precursors were agglomerated on the surface, and many
small particles were distributed on the surface.
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In order to analyze the composition distribution, the energy spectrum characterization
of the core-shell structure Ti-B4C was carried out, and the results are shown in Figure 5. It
can be seen that the main component of the spherical particles was the Ti element, and a
small amount of B and C elements were distributed on the surface, corresponding to the
B4C particles added by ball milling. It can be seen that B4C particles were dispersed on the
surface of the Ti powder after ball milling, forming the microstructure of B4C-coated Ti. A
discontinuous B4C shell was formed on the surface of the Ti powder after sintering.

3.2. Microstructure Characterization of Ti-B4C Composites

The Ti-B4C core-shell structure was sintered by SPS with the parameters of 1200 ◦C
−35 min and a preset pressure of 40 MPa. The metallographic structure is shown in Figure 6.
The sintered composite formed a clear network structure, but there were obvious holes
between the powder particles, and the density of the material was low. The composites
were observed by SEM, as shown in Figure 7. It can be seen that the core-shell structure
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unit based on the spherical Ti powder was retained, and the precursor particles coated with
the spherical Ti powder formed a network reinforcement during the sintering process and
bonded well with the matrix interface.
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The XRD phase compositions of the Ti-B4C core-shell structure before sintering, after
ball milling and the as-sintered composite were compared and analyzed. The results
are shown in Figure 5. It can be seen that the reaction occurred during the ball milling
process to generate TiB and TiC. After sintering, the phases were still dominated by Ti, B4C,
TiC and TiB, but the intensity of the characteristic peak of TiC increased, indicating that
the interfacial reaction between B4C and Ti further increased during sintering. A similar
reaction process was found in the conventional particulate B4C/Ti composites [14,25].

From the back-scattering characterization results of Figure 7, it can be seen that the Ti
element was spherically distributed, while the light elements (B and C) were distributed
on the surface of Ti, forming a shell structure. This structure was consistent with previous
research results. The interfacial reaction between B4C and Ti occurred, and a small amount
of B4C decomposed to form TiB and TiC, as shown in XRD (Figure 8). The needle-like
TiB and TiC phase was distributed from the surface of Ti particles to the inside of the Ti
particles. The B and C atoms provided by B4C were diffused from the core-shell structure
shell to the core, thus forming a staggered lamellar reinforcement inside the core-shell
structure unit, and the results are shown in Figure 7.
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Figure 8. XRD characterization of Ti-B4C core-shell structure powder and composite.

3.3. Mechanical and Functional Properties of Ti-B4C Composites

The ability of a material to withstand axial static pressure at room temperature reflects
the ability of the material to resist deformation during application, which depends on the
type of reinforcement, interfacial bond strength, reinforcement distribution pattern and
reinforcement content of the core-shell composite.

Figure 9 demonstrates the compressive stress–strain curves of the three core-shell
structure composites B4C/Ti. It can be seen that the plastic deformation phase was not
obvious in the stress–strain curves of the three composites, which proves that the intro-
duction of a large number of brittle reinforcements significantly increases the brittleness
of the composites. For the B4C/Ti composites, the interfacial reaction between B4C and
Ti produced TiB and TiC, forming a better interfacial bond. The good interfacial bonding
strength resulted in the B4C/Ti core-shell structure composite with a compressive strength
of 1529.1 MPa. Compared to the compressive strength of the Ti matrix, the yield strength
of all three composites was significantly improved. Typically, the B4C/Ti composite has a
3.8-times improvement in the yield strength, as shown in Table 1.

Figure 10 shows the room-temperature compression fracture morphology of B4C/Ti
core-shell structure composites. It can be seen that the fractures’ surfaces of B4C/Ti com-
posites were uneven, which suggest that the crack expansion path in the composite was
increased, causing the composite to absorb more energy before the fracture. Therefore, the
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compressive strain rate of more than 5% is still maintained at a high B4C volume fraction
(30 vol.%).
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Table 1. The mechanical properties of B4C/Ti composites were reported.

Composite Mechanical Properties

Zhang [11] 30 wt.% B4C/TiAl Bending 437.3 MPa
Yang [15,16] (TiB, TiC, Nd2O3)/Ti Bending 1150 MPa
Choi [25] 20 wt.% B4C/Ti Tensile 699 MPa
Wu [27] Monolithic B4C/Ti Flexural 496.2 MPa
Han [28] 1 wt.% B4C/Ti Tensile 945 MPa
Li [29] 5 wt.% B4C/Ti Tensile 1126.1 MPa
This work 30 vol.% core-shell B4C/Ti Compressive 1529.1 MPa
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In addition, the hardness, thermal conductivity and electric conductivity of the B4C/Ti
composites were tested, and the results are shown in Table 2. The hardness of the B4C/Ti
composites reached a high level (697.89 HV), which indicates that the B4C reinforcement
has a more favorable strengthening effect. At the same time, due to the influence of pores,
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the electrical conductivity and thermal conductivity of the composites were low. The test
results of this material provide a reference for subsequent core-shell material designs.

Table 2. Functional properties of B4C/Ti composites.

Properties B4C/Ti Ti

Density 4.32 g/cm3 4.54 g/cm3

Hardness 697.9 HV 210 HV
Thermal conductivity 13.0 W/m·K 14.6 W/m·K
Electric conductivity 0.64 Ω·mm2/m 2.34 Ω·mm2/m

4. Conclusions

In this paper, Ti-B4C core-shell structure composites were prepared by ball milling
and SPS. The mechanical properties, electrical conductivity and thermal conductivity of
the composites were studied. B4C reacts with Ti to form TiB and TiC, and obvious pores
and defects are observed in the composites. The compressive strength of core-shell B4C/Ti
composites is up to 1529.1 MPa, which, compared with the Ti matrix, has a substantial
increase, while the material maintains a compressive strain of 5%. This result has reference
significance for the preparation of core-shell B4C/Ti composites.
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