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Abstract: Brillouin light scattering (BLS) has been established as a standard technique to study ther‑
mally excited sound waves with frequencies up to ~100 GHz in transparent materials. In BLS ex‑
periments, one usually uses a Fabry–Pérot interferometer (FPI) as a spectrometer. The drastic im‑
provement of the FPI contrast factor over 1010 by the development of the multipass type and the
tandem multipass type FPIs opened a gateway to investigate low energy excitations (h̄ω ≤ 1 meV)
in various research fields of condensed matter physics, including surface acoustic waves and spin
waves from opaque surfaces. Over the last four decades, the BLS technique has been successfully
applied to study collective spin waves (SWs) in various types of magnetic structures including thin
films, ultrathin films, multilayers, superlattices, and artificially arranged dots and wires using high‑
contrast FPIs. Now, the BLS technique has been fully established as a unique and powerful tech‑
nique not only for determination of the basic magnetic constants, including the gyromagnetic ratio,
the magnetic anisotropy constants, the magnetization, the SW stiffness constant, and other features
of various magnetic materials and structures, but also for investigations into coupling phenomena
and surface and interface phenomena in artificial magnetic structures. BLS investigations on the
Fe/Cr multilayers, which exhibit ferromagnetic‑antiferromagnetic arrangements of the adjacent Fe
layer’s magnetizations depending on the Cr layer’s thickness, played an important role to open the
new field known as “spintronics” through the discovery of the giant magnetoresistance (GMR) effect.
In this review, I briefly surveyed the historical development of SW studies using the BLS technique
and theoretical background, and I concentrated our BLS SW studies performed at Tohoku University
and Ishinomaki Senshu University over the last thirty five years. In addition to the ferromagnetic
SW studies, the BLS technique can be also applied to investigations of high‑frequency magnetization
dynamics in superparamagnetic (SPM) nanogranular films in the frequency domain above 10 GHz.
One can excite dipole‑coupled SPM excitations under external magnetic fields and observe them via
the BLS technique. The external field strength determines the SPM excitations’ frequencies. By per‑
forming a numerical analysis of the BLS spectrum as a function of the external magnetic field and
temperature, one can investigate the high‑frequency magnetization dynamics in the SPM state and
determine the magnetization relaxation parameters.

Keywords: Brillouin light scattering; spin wave; magnetic thin film; ultrathin film; magnetic
multilayer; magnetic superlattice; magnetic anisotropy; interlayer exchange coupling;
nanogranular film; superparamagnetic excitation

1. Introduction
Since the early 1960s, Brillouin light scattering (BLS) has been widely applied to study

acoustic properties near ferroelectric and ferroelastic phase transitions [1]. Usually, a
Fabry–Pérot interferometer (FPI) has been used as a spectrometer for BLS. For a tradi‑
tional single‑pass FPI, the contrast factor C1, which is defined by the ratio between the
maximum transmission and the minimum transmission, was limited to about 103 at most.
A traditional FPI with a higher contrast factor is a dark FPI with lower transmission effi‑
ciency. For successful BLS studies, high‑quality transparent samples, which have no in‑
clusions, polished surfaces, and dimensions larger than several mm, are strongly required
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to reduce the elastic scattering (Rayleigh scattering: RS) intensity. Although the index‑
matching technique is also helpful to reduce the RS intensity, it is rather difficult to find a
suitable index‑matching liquid. For these reasons, BLS in 1960–1970’s was a much more dif‑
ficult experiment than Raman scattering. One of the great improvements in Fabry–Pérot
interferometry was achieved by the piezoelectrically scanned FPI, which can be electri‑
cally stabilized and enable setting of an appropriate spectrum accumulation time, depend‑
ing on BLS signal intensity [2]. With a piezo‑scanning FPI, it is rather easy to assemble a
computer‑controlled BLS system, including the FPI stabilization, spectrum accumulation
on the computer memories, and spectrum analysis [3]. Other great improvements were
the development of the multipass‑type FPI and the vernier tandem multipass‑type FPI by
Sandercock and coworkers2) in the early 1980s [4,5]. The contrast factor of a multipass FPI
is given by Cp = (C1)p (p is the total number of passes through an FPI or FPIs). The drastic
improvement of the contrast factor of the multipass FPI without losing transmission effi‑
ciency has made BLS studies much easier than the BLS studies reported in 1960 through
the 1970s. The vernier tandem multipass FPI can eliminate the overlapping effect with
the adjacent interference‑order spectrum of a traditional FPI (a multipass FPI still retains
the overlapping effect), which has enabled the monitoring of overlap‑free BLS spectra up
to a few hundred GHz from collective excitations in various research fields of condensed
matter physics [6].

2. Historical Survey of Brillouin Light Scattering from Spin Waves
2.1. Experiment

Reviews on the early stage of BLS from SWs have been already given by Borovik‑
Romanov and Kreines [7], Patton [8], Sandercock [9], and Grünberg [10] by the middle
1980’s. Hillebrands gives a list of publications on SW BLS up to 1999 [11].

Since the mid‑1970s, the BLS technique has been intensively applied to study spin
waves (SWs) from opaque surfaces. The first observation of BLS from SWs was reported by
Grüenberg and Mitawe from ferromagnetic semiconductor EuO (TC = 69 K) [12]. Sander‑
cock and Wettling reported SW BLSs from Fe and Ni at room temperature [13]. Many SW
BLS results have been subsequently reported. Readers can find them in the list of refer‑
ences [11]. Thanks to the developments of high‑quality thin film preparation techniques,
such as the sputtering technique, the MBE technique, and so on, the BLS technique has
been successfully applied to study collective SWs in various types of magnetic structures
(thickness of L), including thin films, ultrathin films, multilayers, superlattices, and artifi‑
cially arranged dots and wires [14–21]. For BLS from metallic surfaces, it is important to
recognize that there is an essential difference between BLS phenomena from transparent
materials and from opaque surfaces. Visible laser light penetrates at most a few hundreds
of angstroms from the illuminated surface due to the skin effect (in other words, the ab‑
sorption effect) [22]. The skin effect strongly violates the momentum conservation law for
light scattering. For transparent materials, the momentum conservation law is fully con‑
served during scattering process. For description of the optical property of metals (for
convenience’s sake, this example is of an isotropic metal), one should introduce a complex
refractive index (n, κ). Here, n is the real part and κ is the imaginary part of the refrac‑
tive index. The imaginary part κ is usually larger than the real part n for visible light in
metals. Then, one should take into account the large uncertainty of ∆q⊥/q⊥~2 κ/n in the
momentum conservation law for the surface normal (perpendicular) component q⊥ of the
light momentum. The in‑plane (surface parallel) component Q// of the wave vector is de‑
fined as:

Q// =
2π

λ
(sin ϑin + sin ϑs) (1)

Here, λ is the vacuum wavelength of the laser light, and ϑin and ϑs are the incident and
scattering angles measured from the surface normal. Usually, the standard backscattering
geometry is employed, in which one sets ϑin = ϑs = ϑ as shown in Figure 1.
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the momentum conservation law for Q// is always conserved, just the same as transparent 
materials. It is convenient for later discussions to define the surface dispersion parameter, 
Q//L. 

The magnetic structures of thickness L are deposited on appropriate substrate. 
Within the skin depth of a magnetic structure, both of the SWs and surface acoustic 
waves (Rayleigh and the Sezawa waves) coexist and can be simultaneously observed in a 
BLS spectrum. For a thin magnetic structure which satisfies a condition of Q//L < 1 
(though in this example, this condition is satisfied for L by less than a few tens of na-
nometers for λ = 5320 Å (1 Å = 10−8 cm = 0.1 nm) laser light and 45=ϑ ), the SAW fre-
quencies are merely controlled by the elastic properties of the substrate and independent 
of the external magnetic fields [23]. Hence, the SAWs are not the subjects of present in-
terest. By examining the external magnetic field’s dependence on the observed peaks, one 
can readily identify the SAW peaks. As discussed later, the selection rule for SW scat-
tering helps eliminate the SAW contributions in a BLS spectrum. Because the SWs inter-
act with laser photons within the skin depth from the laser-illuminated surface, BLS can 
give us information on both bulk and surface-localized SWs. Note that the tail portion of 
the bulk SW within the skin depth reflects the surface’s pinning conditions for the SWs. 
The BLS technique can directly determine the pinning states. This is one of the most im-
portant reasons for the effectiveness of SW BLS in thin film magnetism studies. As al-
ready mentioned, the in-plane momentum conservation law (and also the energy con-
servation law) is satisfied, and one can expect sharp peaks for the surface-localized SWs 
in a BLS spectrum. On the other hand, one can expect broad bulk SW peaks due to the 
large uncertainty of Δq⊥ and possibly the bulk SW dispersion from the exchange cou-
pling. 

2.2. Theory 
Theoretical developments on SWs and SW BLSs from magnetic films were another 

motive force. Damon and Eshbach have already discussed magnetostatic SWs in a fer-
romagnetic slab and discussed the surface-localized SW now known as the Damon–
Eshbach (DE) mode by employing standard magnetic boundary conditions [24]. Beyond 
the magnetostatic framework of the film SW theory, the dipole-exchange framework was 

Figure 1. Schematic illustration of the present scattering geometry and the coordinate system for
BLS spectrum calculation. The s‑polarized component of the scattered beam is selected by using a
polarizing beam splitter placed in front of the tandem FPI.

In contrast to the momentum conservation law for the perpendicular component q⊥,
the momentum conservation law for Q// is always conserved, just the same as transparent
materials. It is convenient for later discussions to define the surface dispersion parame‑
ter, Q//L.

The magnetic structures of thickness L are deposited on appropriate substrate. Within
the skin depth of a magnetic structure, both of the SWs and surface acoustic waves (Rayleigh
and the Sezawa waves) coexist and can be simultaneously observed in a BLS spectrum.
For a thin magnetic structure which satisfies a condition of Q//L < 1 (though in this exam‑
ple, this condition is satisfied for L by less than a few tens of nanometers for λ = 5320 Å
(1 Å = 10−8 cm = 0.1 nm) laser light and ϑ = 45◦), the SAW frequencies are merely con‑
trolled by the elastic properties of the substrate and independent of the external magnetic
fields [23]. Hence, the SAWs are not the subjects of present interest. By examining the exter‑
nal magnetic field’s dependence on the observed peaks, one can readily identify the SAW
peaks. As discussed later, the selection rule for SW scattering helps eliminate the SAW
contributions in a BLS spectrum. Because the SWs interact with laser photons within the
skin depth from the laser‑illuminated surface, BLS can give us information on both bulk
and surface‑localized SWs. Note that the tail portion of the bulk SW within the skin depth
reflects the surface’s pinning conditions for the SWs. The BLS technique can directly deter‑
mine the pinning states. This is one of the most important reasons for the effectiveness of
SW BLS in thin film magnetism studies. As already mentioned, the in‑plane momentum
conservation law (and also the energy conservation law) is satisfied, and one can expect
sharp peaks for the surface‑localized SWs in a BLS spectrum. On the other hand, one can
expect broad bulk SW peaks due to the large uncertainty of ∆q⊥ and possibly the bulk SW
dispersion from the exchange coupling.

2.2. Theory
Theoretical developments on SWs and SW BLSs from magnetic films were another

motive force. Damon and Eshbach have already discussed magnetostatic SWs in a ferro‑
magnetic slab and discussed the surface‑localized SW now known as the Damon–Eshbach
(DE) mode by employing standard magnetic boundary conditions [24]. Beyond the mag‑
netostatic framework of the film SW theory, the dipole‑exchange framework was devel‑
oped [25]. In this approach, one must introduce additional boundary conditions. These
are known as the Rado–Weertman boundary conditions [26] and the Hoffman boundary
conditions [27]. These are related to the SW pinning effects at the interfaces.

In the late 1970s, many theoretical efforts were devoted to calculating a SW BLS spec‑
trum from an opaque surface. Cottam developed a BLS theory for a finite‑thickness ferro‑



Materials 2023, 16, 1038 4 of 63

magnetic slab in terms of the response functions within the magnetostatic framework [28].
Another description of the BLS spectrum calculation from opaque semi‑infinite ferromag‑
netic surfaces was published by Camley and Mills (CM) in 1978 [29]. Readers can refer
to reviews by Cottam [30] and Mills [31]. Camley, Rahman, and Mills successively devel‑
oped a quantitative theory for SW BLS from a ferromagnetic thin film, taking into account
both the exchange coupling and the surface pinning conditions [32]. In spite of excellent
agreement between the observed and calculated standing spin‑wave (SSW) BLS spectra,
their theory was too complicated. Another effort to calculate the SSW BLS spectrum was
proposed by Cochran and Dutcher [33]. With these theoretical efforts, a quantitative com‑
parison between the observed and calculated SW BLS spectra became possible.

Other efforts were devoted to calculating SW frequencies in thin magnetic film be‑
yond magnetostatic approximation and in layered magnetic structures. Rado and Hicken
calculated the SW frequencies from an epitaxial Fe thin film on W substrate taking into
account the exchange coupling, MAE, and the surface pinning energies [34]. Grünberg
discussed SWs in a trilayer, in which two magnetic layers sandwich a nonmagnetic spacer
layer, by adapting the magnetostatic boundary conditions at the top and bottom surfaces
and each interface [35,36]. Grünberg and Mika extended the trilayer approach to more
stacked multilayer films [37]. Their approach was quite intuitive, but it requires handling
a large boundary condition determinant (BCD) as the stacked multilayer increases. The
transfer matrix method was developed by Barnas and found to be effective in treating the
SWs in magnetic superlattices [38]. On the other hand, Camley, Rahman, and Mills devel‑
oped a theory of SWs in a superlattice consisting of ferromagnetic and nonmagnetic layers
within the magnetostatic framework [39]. Although the theory by Camley, Rahman, and
Mills was clear in the thread of the argument and much easier to handle than the theory by
Grünberg and Mika, it seems to be difficult to extend beyond the magnetostatic framework.
Vohl, Barnas, and Grünberg developed a SW theory based the dipole‑exchange model in
which the interlayer exchange coupling between ferromagnetic layers across the nonmag‑
netic spacer layer was taken into account [40]. I will give brief outlines of these theories as
I discuss each subject.

For SWs in magnonic crystals, which consist of artificial periodic structures instead of
mathematical descriptions, micromagnetic calculations have been widely utilized [41].

3. Spin Wave Light Scattering as Dynamic Magneto‑Optic Effects
The most dominant interaction between laser photon and spin waves is not the Zee‑

man interaction but the electro‑dipole interaction, which is given by [42] as below:

Hint = −∑
i,j
(Es)iδε(M)ij(Ein)j (2)

in which δε(M) is a magnetization‑dependent dielectric constant. A phenomenological
description of SW scattering with the magnetization‑dependent dielectric constant was de‑
veloped by Wettling, Cottam, and Sandercock [43]. For brevity’s sake, we assume there is
a transparent magnet which belongs to cubic (Oh) symmetry and has a dielectric constant
ε0. Spontaneous magnetization Mz is directed along the z‑axis. Because the spontaneous
magnetization appears as a result of breaking the time‑reversal symmetry, not due to the
symmetry lowering in the case of ferroelectrics, the dielectric tensor δε(M) should be in‑
variant under the Oh symmetry operations. For example, we can apply the C4z. operation,
which is π/2 rotation around the z axis, as below:

δε(Mz) =

δεxx δεxy δεxz
δεyx δεyy δεyz
δεzx δεzy δεzz

 =

 δεyy −δεyx −δεyz
−δεxy δεxx δεxz
−δεzy δεzx δεzz

 = C−1
4z δε(Mz)C4z. (3)
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By comparing the matrix elements before and after the operation, we can readily
obtain

δεxx(Mz) = δεyy(Mz) ̸= δεzz(Mz), δεxy(Mz) = −δεyx(Mz) (4)

and
δεxz(Mz) = δεzx(Mz) = δεyz(Mz) = δεzy(Mz) = 0 (5)

We can expand δε(Mz) into a power series of the magnetization Mz with complex
coefficients K and G as follows:

δε(Mz)αβ
∼= ∑

γ

(
K′

αβz + iK′′
αβz
)

Mz + ∑
γ,δ

(
G′

αβzz + iG′′
αβzz

)
M2

z (α, β, . . . = x, y, z) (6)

The dielectric constant should obey the Onsager’s reciprocal theorem [43] given by,
δε(Mz)αβ = δε(−Mz)βα, and we obtain

Kαβz = −Kβαz and Gαβzz = Gβαzz (7)

It is obvious that the diagonal elements of the dielectric matrix should be even func‑
tions of Mz, and that the expansion coefficient K should satisfy the following relations:

Kααγ = Kαγα = Kγαα = 0 and Kxy,z = −Kyx,z (8)

It is known that a second‑order tensor can be decomposed into the Hermitian part
(εH

αβ = εH∗
βα ) and the anti‑Hermitian part (εA

αβ = −εA∗
βα ) as follows:

εαβ =
εαβ + ε∗βα

2
+

εαβ − ε∗βα

2
= εH

αβ + εA
αβ (9)

Here, the asterisk means the complex conjugate. Combining with the Onsager’s the‑
orem [44], one can readily obtain

δεH
αβ(Mz) = δεH

βα(Mz)
∗ = δεH

αβ(−Mz)
∗ (10)

and
δεA

αβ(Mz) = −δεA
βα(Mz)

∗ = −δεA
αβ(−Mz)

∗ (11)

From Equations (6), (7), (10), and (11), one obtains

KH
αβ,γ = K′′

αβ,γ, GH
αβ,γδ = G′

αβ,γδ, KA
αβ,γ = K′

αβ,γ, and GA
αβ,γδ = G′′

αβ,γδ. (12)

Note that the real and the imaginary parts of the expansion coefficients K and G are
fully separated from each other. Because we are now considering a transparent magnet,
there is no optical absorption; the dielectric matrix should contain only the Hermitian com‑
ponents. The dielectric matrix is given as the following:

ε(Mz) = ε01+ δε(Mz) = ε01+

 G′
12M2

z iK′′ 63Mz 0
−iK′′ 63Mz G′

12M2
z 0

0 0 G′
11M2

z

. (13)

Here, we have introduced G′
11 = G′

zz,zz, G′
12 = G′

xx,zz = G′
yy,zz, and K′′ 63 = K′′ xy,z

in accordance with the conventional tensor index assignment. Although Equation (13) is
the fundamental equation to discuss the magneto‑optic effects, it depends only on static
magnetization. For discussions on SW scattering from opaque magnets, we should take
into account both the contributions from the small amplitude SW variables mx and my and
from the anti‑Hermitian components of the dielectric matrix as well as the Hermitian com‑
ponents. We can replace Mz in Equation (6) by the magnetization vector M and expand
Equation (6) up to the first‑order terms of mx and my. In accordance with the angular mo‑
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mentum operators in quantum mechanics [45], we can introduce the ladder operators m±
as follows: m± = mx ± imy. Then, the m− operator describes the SW creation (Stokes) pro‑
cess, and the m+ operator describes the SW annihilation (anti‑Stokes) process. Of course,
one can introduce the magnon creation and annihilation operators through the Holstein–
Primakoff representation [46]. Finally, we obtain the dielectric constant matrix, which de‑
scribes SW scattering in terms of the SW operators, m±, as follows:

δε
(±)

SW =
1
2

 0 0 ζ
(±)
13

0 0 ζ
(±)
23

ζ
(±)
31 ζ

(±)
32 0

m±, (14)

in which we can define:

ζ
(±)
13 =

(
G′

44Mz ∓ K′′
63
)
+ i
(
G′′

44Mz ± K′
63
)

(15)

ζ
(±)
23 =

(
±G′′

44Mz + K′
63
)
∓ i
(
G′

44Mz ∓ K′′
63
)

(16)

ζ
(±)
31 =

(
G′

44Mz ± K′′
63
)
+ i
(
G′′

44Mz ∓ K′
63
)

(17)

ζ
(±)
32 = ±

(
G′′

44Mz ∓ K′
63
)
∓ i(G′′

44Mz ± K′′
63) (18)

Here we used the tensor index assignment of G44 = Gxz,xz = Gyz,yz. Based on
Equation (14), we can summarize characteristic features of light scattering from SWs as
follows:
1. The polarization of the SW scattered light should be cross‑polarized from the polar‑

ization of the incident light. For example, we can consider the p‑polarized incident
beam in Figure 1 with the polarization vector ep =

(
sin ϑ − cos ϑ 0

)
. Then, the

scattered beam should be s‑polarized with the polarization vector es =
(
0 0 1

)
and vice versa. Because the SAW scattering is observed in the p‑p or s‑s scattering
geometry, we can eliminate the SAW structure from a SW BLS spectrum by inserting
an analyzer in front of FPI.

2. The Stokes and anti‑Stokes scattering intensities are generally different. In the above
example, this can be expressed as follows:∣∣∣ζ(+)
13

∣∣∣2 = |G′
44Mz − K′′ 63|2 + |G′′

44Mz + K′
63|2

̸=
∣∣∣ζ(−)

13

∣∣∣2 = |G′
44Mz + K′′ 63|2 + |G′′

44Mz − K′
63|2

(19)

Therefore, we can observe an asymmetrical SW spectrum around the elastic Rayleigh
peak. This is in contrast with the phonon BLS spectrum, which is symmetrical around
the Rayleigh peak. Furthermore, when we reverse the spontaneous magnetization Mz to
−Mz by changing the polarity of the magnetic field, the Stokes and anti‑Stokes spectra are
interexchanged. Figure 2 gives a schematic illustration of the reason why the Stokes and
anti‑Stokes intensities are different.

When the dynamical magnetization m(t) rotates around the static magnetization Mz,
the Faraday geometry k//m(t), and the Voigt geometry k⊥m(t) that coexist during one
cycle. Therefore, in SW scattering, two different magneto‑optic effects simultaneously con‑
tribute to and interfere with each other. For a magnet with the real refractive index n and
negligibly weak optical absorption, the real and imaginary parts of the expansion coeffi‑
cients in Equation (6) can be related to the magneto‑optic coefficients as follows [43]:

ΦMCB =
π

λn
∆ε′′ H =

π

λn
K′′

63Mz : Magneticcircularbirefringence, (20)

ΦMCD =
4π

λn
∆ε′A =

4π

λn
K′

63Mzz : Magneticcirculardichroism, (21)
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ΨMLB =
2π

λn
∆ε′H =

2π

λn
G′

12M2
z : Magneticlinearbirefringence, (22)

ΨMLD =
4π

λn
∆ε′′ A =

4π

λn
G′′

12M2
z : Magneticlineardichroism. (23)

3. Because the matrix components ζ
(±)
13 and ζ

(±)
23 are not equal to the ζ

(±)
31 and ζ

(±)
32 com‑

ponents, the p→s scattering and the s→p scattering intensities will be different in gen‑
eral. Because of the Brewster angle, the p‑polarized incident arrangement is prefer‑
able to the s‑polarized incident arrangement in Figure 1.
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Quantum mechanical description of the coupling coefficient K was given by Fleury
and Loudon [46]. Hereafter, we use the h̄ = 1 unit for convenience’s sake. In accordance
with their theory, let us consider a very simple example of a 3d electron magnetic crystal
placed in the electromagnetic radiation specified by the vector potentialA. We assume that
the ferromagnetic ground state is specified by L = 0 and S = 1/2, and we also assume the
L = 1 and S = 1/2 intermediate states. We took into account the orbital quenching effect at
the ground state. The intermediate states split into a J = 3/2 quartet and a J = 1/2 doublet
with an energy separation of 3ζ/2 due to the spin‑orbit coupling ζL·S. The Hamiltonian
interaction between an electron at r within a magnetic ion and the uniform or long wave‑
length radiation in second quantized notation is given as follows:

H′ = −er · E = er · ∂A
∂t

∝ ∑
λ

(r · ελ)
[
a+λ exp(iωλt)− aλ exp(−iωλt)

]
(24)

where a and a+ are the photon annihilation and creation operators, ελ is the polarization
vector of the radiation, and we omitted the coefficient of the vector potential, which is not
important for our discussion. We use the |L, Lz⟩|S, Sz⟩ notation for electron wave func‑
tions. The wave functions for the ground state and for the spin excited state are given by
|G⟩ = |0, 0⟩|1/2, 1/2⟩ and |G∗⟩ = |0, 0⟩|1/2,−1/2⟩, respectively. The intermediate wave
functions responsible for the dipole transition are given by [45] as follows:

Φ3/2 1/2 =

√
2
3
|1, 0⟩|1/2, 1/2⟩+

√
1
3
|1, 1⟩|1/2,−1/2⟩ (25)

and

Φ3/2 −1/2 =

√
1
3
|1,−1⟩|1/2, 1/2⟩+

√
2
3
|1, 0⟩|1/2 , − 1/2⟩ (26)



Materials 2023, 16, 1038 8 of 63

for the quartet, and

Φ1/2 1/2 = −
√

1
3
|1, 0⟩|1/2 ,1/2⟩+

√
2
3
|1, 1⟩|1/2,−1/2⟩ (27)

and

Φ1/2 −1/2 = −
√

2
3
|1,−1⟩|1/2, 1/2⟩+

√
1
3
|1, 0⟩|1/2,−1/2⟩ (28)

for the doublet, respectively. The photon state changes from the initial state given by
|n1⟩|n2⟩ to the final state given by |n1 − 1⟩|n2 + 1⟩. Here, subscripts 1 and 2 refer to the
incident and scattered field quantities. The transition from the |G⟩ state to the |G∗⟩ state is
interpreted as the SW creation process (the Stokes process). We can then perform pertur‑
bation calculations on the SW creation process with these wave functions and the Hamil‑
tonian interaction, and obtain the final result given by [22,42,47] as below:

e2ζ

2
√

2
⟨00|z| 10⟩⟨1 − 1|x − iy|00⟩[ε1zε2+ − ε1+ε2z]

[
1

(εCF − ω1)
2 − 1

(εCF + ω2)
2

]
(29)

where εCF is the crystal field splitting energy given by εJ=1/2 − εG. It is important to recog‑
nize that the spin‑orbit coupling constant ζ is the key parameter to determine the scattering
efficiency from a 3d electron magnet.

4. Experimental
The experimental setup for SW BLS is a rather standard one for conventional BLS

studies with a 3 + 3 pass tandem FPI, except for the backscattering geometry. Figure 1
shows a standard scattering geometry for SW BLS and the coordination system employed
in our SW calculations. The magnetic field H is applied along the z‑direction within the
plane of the sample and perpendicular to the x‑z scattering plane defined by the incident
and scattered light beams. We always measure the SWs propagating perpendicular to the
magnetic field. We can employ three different scattering geometries: (A) magnetic fields
applied in the in‑pane easy direction (shown in Figure 1), (B) magnetic fields applied in
the in‑plane hard axis, and (C) a constant magnetic field rotated from the easy direction
to the hard direction. Note that the magnetization M and the external magnetic field H
are not collinear with each other in the (B) and (C) geometries. The incident angle ϑ is
measured from the surface normal along the x direction and is chosen to be the same as
the scattered angle. The incident angle ϑ can be arbitrarily changed between 25◦ and 65◦.
The scattering geometries (B) and (C) can be employed for the in‑plane MAE studies. In
general, scattering intensity from the surface SW mode increases for larger incident angles,
and in contrast, the bulk SW mode intensities increase for smaller angles.

At the early stage of our SWBLS studies, weused a laboratory‑constructed Sandercock‑
type 3‑pass (or 5‑pass) FPI as an interferometer, depending on the surface quality of the
prepared films. The FPI was assembled at the machine shop of the Research Institute for
Scientific Measurements (RISM), Tohoku University [48,49]. For some sputtered films, we
observed SW spectra by using the 3‑pass FPI [50–52]. The spectra were excited by the
5145 Å or 4880 Å line of an argon ion laser in single‑mode operation and detected by a
thermoelectrically cooled photomultiplier tube (PMT) for a dark count of less than 1 cps.
Later, we constructed a Sandercock‑type 3 + 3 pass vernier‑tandem FPI in 1994 at the ma‑
chine shop of RISM, Tohoku University [53], and the multipass type FPI was replaced by
the tandem FPI. The 5145 Å or 4880 Å line of argon ion laser can be replaced by the 5320 Å
or 4730 Å line of diode‑pumped solid‑state (DPSS) single‑mode laser. Various types of
DPSS laser are now commercially available. The DPSS laser is much easier to use and also
more economical compared with a water‑cooled argon ion laser. The PMT can be also
replaced by an avalanche photo‑diode (APD) detector, which possesses higher quantum
efficiency than the PMT detectors.
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In our system, a laser beam was introduced by a 45◦ right‑angle prism with 3 × 3 mm2

input‑face into an optical axis of the FPI. A camera lens (50 mm f1.2) focused the beam on
the sample and also collected the backscattered light. We used a spatial filter that consisted
of two camera lenses (135 mm f2.8 and 50 mm f1.2) and a 200 µm pinhole. To eliminate the
scattering from the SAWs and most of the intense Rayleigh peaks and FPI ghost peaks, a
cross‑polarizing beam splitter (extinction ratio = 1/200) was inserted in front of the FPI. We
found that the elastically scattered light was still intense enough in many cases even after
the polarization selection. In order to protect the highly sensitive PMT or APD from optical
damage due to elastically scattered light and ghosts, we introduced a tandem acousto‑optic
modulator (AOM), which was activated around the Rayleigh and ghost peaks as an inten‑
sity attenuator. We also added a mechanical shutter, which was activated only when the
peak intensity was getting higher than a preset level.

In some cases, we experienced that a sample exposed to an intense laser beam (even
less than 50 mW) in air was easily damaged by the local heating and oxidizing effects.
Therefore, we found that we should place the sample inside a vacuum chamber or under an
appropriate atmosphere during BLS measurements. In order to make possible the degree
of atmosphere control and also the low‑temperature studies under magnetic fields, we
prepared a liquid He cryostat which could be used as a vacuum chamber. Furthermore, a
closed‑cycle refrigerator was used to generate low temperatures down to 15 K. In order to
perform variable‑temperature and magnetic field studies, we assembled a refrigerator tip
suitable for BLS study under magnetic fields of up to 4.5 kOe at the RISM machine shop.
During a spectral accumulation time over several hours, the lowest temperature of 15 K
could be fully stabilized within ±0.5 K.

5. BLS Results
5.1. Semi‑Infinite Magnet

Figure 3 shows typical BLS spectra obtained from nanogranular Co‑Al‑O films of
1~2 µm thickness prepared by means of radio frequency‑reactive magnetron sputtering
onto glass substrates at the Research Institute of Electric and Magnetic Materials
(RIEMM) [54].

These spectra were excited by the p‑polarized 4880 Å line from an Ar+ laser operated
in a single‑cavity mode with the output power below 30 mW to protect films from local
heating by the laser beam. Typical spectrum accumulation time was about 4 h. An external
magnetic field of H = 2.0 kOe was applied parallel to the film plane and perpendicular to
the scattering plane (x‑z plane). The incident angle was chosen to be the same as the scat‑
tered angle (ϑ = 45◦) in these measurements. We observed very similar BLS spectra from
a sputtered Fe film and from Fe‑Al‑O nanogranular films deposited on oxidized Si(001)
substrates at the Institute of Multidisciplinary Research for Advanced Materials (IMRAM),
Tohoku University. These spectra were excited by the p‑polarized 5320 Å line from a DPSS
laser [55] The TM‑Al‑O nanogranular films (TM = Fe, Co), which consist of crystalline TM
particles with several tens of angstrom in diameter, were surrounded by the Al‑O grain
boundary. The Al‑O grain boundary was of ~10 Å in thickness. The BLS technique ob‑
serves SWs with an in‑plane wavelength λ// defined by 2π/Q//. The in‑plane wavelength
λ// (typically ~3500 Å) is much longer than the characteristic lengths of granules but much
shorter than the in‑plane lengths of magnetic structures. For long‑wavelength SWs ob‑
served with the BLS technique, the real magnetic structure may not be important, and the
magnetic properties averaged over in‑plane wavelength λ// within the laser‑illuminated
area determine the SW response in BLS spectra. The peak assignment of these spectra was
quite obvious as will be discussed soon. The labels DE and B refer to the Damon‑Eshbach
(DE) surface wave and the bulk SWs, respectively. Note that the DE peak appears only on
the anti‑Stokes side in these spectra in contrast to the bulk SW peaks. When we changed
the polarity of the external magnetic field, the DE peak appeared on the Stokes side of a
spectrum. Another interesting observation is the line shape of the bulk peaks. The bulk
peaks are asymmetric with tails to higher‑frequency sides. This is due to the relaxation of
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the momentum conservation law as already mentioned and the SW dispersion (energy as
a function of the wave vector) [54].
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In order to understand the characteristic feature of the SW spectra and the magnetic
field dependence of the SW frequencies for qualitative discussions and determination of
the magnetic constants, I will describe a standard magnetostatic theory rather in‑detail for
readers not familiar in SW BLS [22,56]. Because we are interested in the magnetization
dynamics below 1011 Hz, which is well below the optical frequency of ~6 × 1014 Hz, we
ignore the time‑dependent terms in Maxwell’s equations. We consider a magnetic film of
the magnetization M and thickness L prepared on a nonmagnetic substrate. For the sake
of convenience, we can ignore the exchange coupling and the magnetic anisotropy energy
(MAE) at this stage, and then set the surfaces as x = 0 and −L. Let us introduce the SW
variables m as the small amplitude precession motion around the static magnetization M
and the demagnetization field h. The Landau–Lifshitz (LL) equation of motion on M(t) =
M + m(t) is given as follows:

1
γ

dM
dt

= M × He f f (30)

where γ is the gyromagnetic ratio (γ/2π = 1.4g GHz/kOe, where g is the Lande’s g factor).
The effective magnetic field He f f consists of the external magnetic field H and the demag‑
netization field h as below:

He f f = H + h (31)

The demagnetization field h should satisfy Maxwell’s magnetostatic equations, given
below:

∇× h = 0 and ∇ · (h + 4πm) = 0. (32)
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The first equation of Equation (32) guarantees the introduction of a magnetic scalar
potential φ satisfying the below condition:

h = −∇φ (33)

We consider SWs propagating along the (0, cosθ,− sin θ)direction measured from the
y‑axis to be within the film plane, and we assume plane‑wave‑type space‑time dependence
for the dynamical variables:(

m(r, t)
φ(r, t)

)
=

(
m
φ

)
exp[iωt − iq⊥x − i(Q// cos θ)y + i(Q// sin θ)z] (34)

Furthermore, the continuity conditions of the variables φ and bx = hx + 4πmx at x = 0
and −L should be satisfied. Outside of the magnet, the scalar potentials are given

φout(r, t) = φ∓ exp(∓Q//x) exp[iωt − i(Q// cos ϕ)y + i(Q// sin ϕ)z] (35)

Here, we should choose the exp(−Q//x) term for x ≥ 0 and the exp(Q//x) term for
x ≤ −L. Inside the magnet, we have

φin(r, t) = [φ(+) exp(−iq⊥x) + φ(−) exp(iq⊥x)]
× exp[iωt − i(Q// cos θ)y + i(Q// sin θ)z]

(36)

We can solve the LL equation in terms of the susceptibilities:

mx(ω) = χxx(ω)hx + χxy(ω)hy =
−MH

H2 − (ω/γ)2

(
∂φin
∂x

)
+

iM(ω/γ)

H2 − (ω/γ)2

(
∂φin
∂y

)
(37)

and

my(ω) = χyx(ω)hx + χyy(ω)hy =
−iM(ω/γ)

H2 − (ω/γ)2

(
∂φin
∂x

)
+

−MH

H2 − (ω/γ)2

(
∂φin
∂y

)
. (38)

Combining Equations (32) and (36)–(38), we obtain

q2
⊥ + Q2

// + 4π
(

Q2
// cos2 θ + q2

⊥

)
χxx = 0 (39)

The perpendicular wave vector q⊥ is found to be

q2
⊥ = −1 + 4πχxx cos2 θ

1 + 4πχxx
Q2

// =
(ω/γ)2 − H

(
H + 4πM cos2 θ

)
H(H + 4πM)− (ω/γ)2 Q2

// (40)

Because q⊥ should be real for the bulk mode, we obtain a SW band given by

H
(

H + 4πM cos2 θ
)
≤
(

ω

γ

)2
≤ H(H + 4πM) (41)

The SW band became a single level at θ = 0 (along the y‑axis) and gradually spread
wider as θ approached π/2 (along the z‑axis) as shown in Figure 4a. It is important to note
that at the upper‑bound SW frequency, the perpendicular component q⊥ became much
larger than the in‑plane component Q⁄⁄. On the contrary, we have q⊥ = 0 for the lower‑
bound frequency.
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Figure 4. (a) Propagation angle development of the bulk SW band (−) and the DE mode frequency
(−). We used the following set of magnetic constants: g = 2.09, H = 4.0 kOe, and 4πM = 21.0 kG. Here,
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field dependence of the critical angle θC. The inset shows a schematic illustration of the nonreciprocal
propagation characteristics of the DE mode. The critical angle is indicated by the broken lines. The
allowed propagation direction of the DE mode localized on the top and bottom magnetic surfaces is
indicated by the arrows on the rectangle.

There is another type of SW solution which satisfies the magnetic continuity condi‑
tions at the boundaries. This solution is the surface‑localized SW and is known as the
Damon–Eshbach (DE) mode. For discussions of the surface mode, it is convenient to
rewrite Equations (34) and (40) as follows:(

m(r, t)
φ(r, t)

)
=

(
m
φ

)
exp[iωt + q⊥x − i(Q// cos θ) y + i(Q// sin θ) z] (42)

and

q⊥ =

[
1 + 4πχxx cos2 θ

1 + 4πχxx

]1/2

Q// = αQ// (43)

By eliminating the potential amplitudes φ∓ outside of the magnet using the boundary
conditions, we obtain a set of homogeneous equations on φ(±) to determine the surface‑
localized SW frequency. Per the requirement for nontrivial solutions of the homogeneous
equations, we obtain:

−β

[
α

(
1 + 4πMH

H2−(ω/γ)2

)
− 1
]2

+ β

[
4πM(ω/γ)

H2−(ω/γ)2 cos θ

]2

+

[
α

(
1 + 4πMH

H2−(ω/γ)2

)
+ 1
]2

−
[

4πM(ω/γ)

H2−(ω/γ)2 cos θ

]2
= 0.

(44)

Here, we define β = exp(−2Q//L). To obtain the DE mode frequency, we must solve
numerically Equation (44). Fortunately, we can obtain an analytical expression of the DE
mode frequency in following two cases.

Case 1: θ = 0 (α = 1)(
ω

γ

)2
= (H + 2πM)2 − (2πM)2 exp(−2Q//L) (45)

For a film with a thickness larger than L ∼= λ/2, the exponential term in Equation (45)
can be safely neglected. It means that a film thicker than L ∼= λ/2 can be treated as a
semi‑infinite magnet.
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Case 2: β = 0

α

(
1 +

4πMH

H2 − (ω/γ)2

)
+ 1 ± 4πM(ω/γ)

H2 − (ω/γ)2 cos θ = 0 (46)

After some calculations, we obtain the below:

2π∆νDE = ±γ

2

[
H

cos θ
+ (H + 4πM) cos θ

]
(47)

Equation (47) at θ = 0 gives the frequency which is exactly the same as the frequencies
given by Equation (45) because of β = 0. However, we should check whether these modes
are truly eligible for the surface mode or not. From the boundary conditions, we obtain

q⊥ = −Q//
4π
(
−iχxy

)
cos θ + 1

1 + 4πχxx
(48)

Because the semi‑infinite magnet occupies the space below x ≤ 0, the perpendicular
component q⊥ should be positive for the eligible surface mode. By substituting the frequen‑
cies in Equation (47) into Equation (48), we find that the positive frequency in Equation (47)
always gives q⊥ < 0 and fails to satisfy the localization condition. We should abandon the
positive frequency solution. Meanwhile, the negative frequency gives

q⊥ = −Q//

(
4πM cos2 θ + H sin2 θ

)
[H − (H + 4πM) cos2 θ]

2

[
H − (H + 4πM) cos2 θ

]
(49)

Therefore, the negative frequency mode propagating within the critical angle given
by Equation (50) can be the surface‑localized DE mode [24]:

cos θ ≥
(

H
H + 4πM

)1/2
= cos θC (50)

Figure 4a shows the propagation angle θ development of the bulk SW band given by
Equation (41) and the DE mode frequency given by Equation (47). At the critical angle θC,
the DE mode frequency coincided with the upper bound of the bulk SW band. In this cal‑
culation, we used a set of the magnetic constants suitable for Fe: g = 2.09, H = 4.0 kOe, and
4πM = 21.0 kG. Figure 4b shows the critical angle θC as a function of the external magnetic
field for the same set of the magnetic constants. The critical angle was gradually squeezed
with the increasing magnetic field. The inset displays a schematic illustration of the non‑
reciprocal propagation characteristics of the DE mode. The DE mode always propagates
from the left to the right across the magnetization as indicated by the arrows. At an angle
θ beyond the critical angle θC, the attenuation factor for the DE mode q⊥ in Equation (49)
becomes negative, and the DE mode is no longer allowed above θC. The existence of the
critical angle is the reason why the DE peak appears on only one side of a SW BLS spectrum.
The nonreciprocal propagation characteristics of the DE mode are schematically illustrated
in Figure 4c. Note that the counterpart of the DE mode propagating along the opposite di‑
rection is located on the bottom surface of the magnet. The incident laser photon can never
interact with the counterpart DE mode because of the absorption effect of visible light, as
we have already mentioned. The DE mode frequency was always above the bulk SW fre‑
quency band. At the critical angle, the DE mode frequency was just on the upper bound
of the bulk SW band (see Equation (41)). Sandercock and Wettling nicely presented how
the DE mode behaves as the propagation angle approaches the critical angle [13]. Their
results clearly show that the DE mode decays into the bulk SW band, and no surface mode
is allowed beyond the critical angle.

Figure 5 shows the SW frequencies as a function of the magnetic field for Fe64Al19O17
nanogranular film [54]. The inset shows a BLS spectrum observed at H = 0.5 kOe. Because
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we have not performed the polarization selection for the scattered beam, SAW peaks ap‑
pear as a pair of small peaks just below the B‑peaks. I will soon explain the solid lines, the
broken line, and the dots and dashes.
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Figure 5. SW frequencies of Fe64Al19O17 film as a function of the magnetic field. A BLS spectrum at
H = 0.5 kOe is also shown. The solid lines are the calculated SW frequencies using Equation (33) with
g = 2.07, 4πMB = 11.1 kG, 4πMDE = 11.3 kG, and Hex = 0.34 kOe. The broken line (4πMB = 11.1 kG)
and dots and dashes (4πMB = 12.7 kG) are the calculated frequencies without the Hex term [54].

In these measurements, both the bulk and DE modes were propagating perpendicular
to the magnetization, and their frequencies are given by

∆νB =
γ

2π
H1/2(H + 4πM)1/2 (51)

and
∆νDE =

γ

2π
(H + 2πM) (52)

Because the frequency shifts ∆νB and ∆νDE were directly obtained from the BLS spec‑
trum, both frequencies should be reproduced by the same magnetic constants as a function
of the magnetic field. However, sometimes we encountered somewhat different 4πM val‑
ues for the bulk and DE modes. The broken line and dots and dashes in Figure 5 are the
calculated bulk SW frequencies using Equation (51) by changing the 4πM value. It is clear
that Equation (51) fails to reproduce the observed magnetic field dependence of the bulk
SW frequency. Because our model is oversimplified in the first attempt, we will try to
include the exchange coupling term into Equation (51). For long wavelength SWs, the ex‑
change coupling can be represented by the differential operator Hex = −D∇2. Because
the external magnetic field and the magnetization are collinear, we can replace the exter‑
nal magnetic field H with H + DQ2. Here, Q is the wave vector of the SW, and D is the SW
stiffness constant and related to the exchange stiffness constant A through the relation of
D = 2A/M. With the exchange field term, Equation (51) is replaced by

∆νB =
γ

2π

(
H + DQ2

)1/2(
H + DQ2 + 4πM

)1/2
(53)

The solid lines in Figure 5 are calculated bulk SW frequencies with the exchange field
term (DQ2 = 0.34 kOe) in Equation (53). Although the exchange field value is usually much
smaller than the other fitting parameters, typically less than 0.5 kOe, agreements between
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the observed and calculated bulk SW frequencies are excellent. In spite of the importance
of the exchange field term for qualitative fitting of the bulk SW frequencies, as shown in
Figure 5, we cannot determine theD constant from the fitting because we have no informa‑
tion on the SW wave vectorQ in Equation (53) due to the relaxation of the momentum con‑
servation law. The DE mode frequency is rather insensitive to the exchange term because
of the linear dependence of the frequency on the external magnetic field. Furthermore, the
existence of the DE mode was derived from the boundary conditions, and the negligibly
small DQ2

// term was completely masked by the other quantities in Equation (52).
Up to this stage, we considered soft ferromagnetic materials with negligibly small

MAE. For such small‑MAE cases, it may be an easy‑ or hard‑ axis type, and we can readily
align the magnetization along the external magnetic field. Let us consider the uniaxial
in‑plane MAE given by

EK = −K//

(
Mz

M

)2
(54)

Here, K// is the in‑plane MAE constant. When we apply the magnetic field along the
easy direction and examine SWs propagating perpendicular to the magnetization (θ = 0),
the SW frequencies are given by

∆νB =
γ

2π

(
H + HK// + DQ2

)1/2(
H + HK// + DQ2 + 4πM

)1/2
(55)

and
∆νDE =

γ

2π
(H + HK// + 2πM) (56)

Here, we defined the in‑plane anisotropy field HK// = 2K///M. Meanwhile, for the
magnetic field along the hard direction, we have

∆νB =
γ

2π

[(
H + DQ2

)(
H − HK// + DQ2 + 4πM

)
− 4πMHK//

(
Q⊥
Q

)2
]1/2

(57)

and
∆νDE =

γ

2π

(
H + 2πM − HK//

2

)
(58)

The bulk SW in an isotropic magnet forms the bulk SW band given by Equation (41).
The bandwidth depends on the in‑plane propagation direction θ. On the other hand, when
the external magnetic field is applied along the hard direction, the MAE introduces the
SW band for the bulk SW propagating even for the θ = 0 direction. The bandwidth given
by 4πMHK// depends on both the strength of the MAE and the perpendicular component
of the SW wave vector. The main contribution for the SW BLS is from Q⊥/Q < 0.5, and
the bandwidth 4πMHK// is usually smaller than the bulk SW’s peak width. Hence, it is
impractically difficult to determine the MAE parameters from BLS measurement by itself.

Next, we consider the out‑of‑plane type MAE given by

EK = −K⊥

(
Mx

M

)2
(59)

We can also define the out‑of‑plane anisotropy field HK⊥ = 2K⊥/M. For a weak
anisotropy field, which satisfies the in‑plane magnetization condition given by 4πM −
HK⊥ ≥ 0, the magnetization is confined within the film plane and aligned colinear to the
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external magnetic field. In this case, the upper and lower bounds of the SW band are given
by (

ω
γ

)2
=
(

H + DQ2)(H + DQ2 + 4πM − HK⊥
)
− 4πMHK⊥

(
Q//

Q

)2

=


(

H + DQ2)(H + DQ2 + 4πM − HK⊥
)
(Q///Q = 0)(

H + DQ2 − HK⊥
)(

H + DQ2 + 4πM
)
(Q///Q = 1)

(60)

and the DE mode frequency is given by

ω

γ
= H + 2πM − HK⊥

2
(61)

In this case, the main contribution for the bandwidth is from Q⊥/Q > 0.5. For weak
magnetic fields which satisfy H +DQ2 − HK⊥ ≤ 0, the lower bound of the SW band should
be set to zero. On the contrary, the out‑of‑plane MAE is large enough to overcome the in‑
plane magnetization condition, and the perpendicular magnetization state is the ground
state under zero magnetic field. We will discuss this case later.

5.2. Thin Films
As already mentioned, a magnetic film thicker than ~λ/2 can be treated as a semi‑

infinite magnet. Now, what happens for thinner films? For thinner films with thicknesses
less than ~1000 Å, new aspects of SWs, known as the standing SWs (SSWs), appear in a
BLS spectrum. The first BLS observation of the SSWs was reported by Grimsditch and
Malozemoff on metallic amorphous Fe80B20 films. They determined the SW stiffness con‑
stant of DBLS = (1.4 ± 0.2) × 10−9 Oe·cm2 [57]. Successively, BLS from the SSWs has been
reported on various ferromagnetic thin films [11]. Neutron scattering is the best technique
to investigate SW dynamics in the entire Brillouin zone and can be used to determine the
SW stiffness constant DNS. However, neutron scattering requires a reactor and eventually
becomes a huge project. In this section, in order to distinguish the SW stiffness constant ob‑
tained from BLS and neutron scattering, we add the subscript BLS and NS to theD constant.
Otherwise, we simply use the symbolD for the BLS SW stiffness constant. By observing the
SSW structure, we can precisely determine the SW stiffness constant DBLS even in a small
optical laboratory. This is one of the virtues of the SW BLS technique. The research group
in Brookhaven National Laboratory (NBL) extensively investigated SWs in Fe, Ni, and Co
in the 1960s [58]. Note that the BLS technique gives information near the Brillouin zone
center thanks to visible laser light as an excitation source. We can change theDBLS value in
the 10−9 Oe·cm2 unit to the DNS value in the meV·Å2 unit used in neutron scattering and
magnetization studies by a formula of DBLS = 1.728 × 10−2DNS/g. Neutron scattering and
BLS give DNS~280 meV·Å2 for Fe, and these results are in good agreement [58,59].

Figure 6 shows an example of SSW spectrum observed from a 450 ± 10 Å thick epi‑
taxial

(
1010

)
Co film deposited on a 500 Å thick Cr (211) buffer layer prepared on MgO

(110) substrate at IMRAM, Tohoku University [60,61].
This spectrum was excited by the p‑polarized 5320 Å line from a DPSS laser. Because

we have not performed the polarization selection for the scattered light in this measure‑
ment, the SAW structures, indicated by phonons, were also observed. The peaks indicated
by labels 1 and 2 are the first and second SSW peaks. The peak indicated by 1 + DE on
the anti‑Stokes side consists of the first SSW and the DE peaks. Note that the DE mode
in thinner films also retained the nonreciprocal propagating character. When we define
the critical angle θC, at which the DE mode frequency given by Equation (45) is equal to
the upper bulk band frequency, we obtain Equation (50) again by using Equation (44). For
brevity’s sake we ignore the exchange term for the upper bulk band. For thinner mag‑
netic films, the perpendicular component q⊥ of the SW wave vector was quantized into
q⊥(n) = nπ/L (n = 1, 2, . . . ). In this case, the perpendicular components q⊥(n) were
well‑defined, and the momentum conservation law during the scattering process recov‑
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ered. This is the reason why we can observe sharp SSW peaks in our spectrum. On our
BLS results from this epitaxial

(
1010

)
Co film, we will discuss details later.
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Figure 6. BLS spectrum observed from an epitaxial
(
1010

)
Co thin film 45 nm thick at room tem‑

perature. Because no polarization selection has been done, scattering from SWs and SAWs was ob‑
served. The structure labeled “phonons” within ±30 GHz around the elastic RS peak was due to
SAWs. These were assigned to the Rayleigh wave and the first and second order Sezawa waves with
increasing frequency. SW peaks up to the second order SSW appeared above ±40 GHz. Note that
the phonon peak intensities are symmetrical for the Stokes and anti‑Stokes peaks. On the other hand,
the SW peaks were asymmetric. The insert shows calculated n = 1 (−) and 2 (−) SSW and DE mode
(−) profiles [60]. For clarity’s sake, I display the profiles of the DE mode localized on the top surface
and the SSW modes for the bottom surface.

Figure 7 shows another example of SSWs observed from 1000 ± 50 Å‑thick sputtered
Co85Nb12Zr3 film on a glass substrate prepared at RISM, Tohoku University [62].
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DE surface mode. (Copyright (1994) The Japan Society of Applied Physics) [62].
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We set ϑ = 15◦ andH = 0.5 kOe. We could observe the SSW peaks up to the fifth order in
this spectrum. Note that the peak intensities are highly asymmetric between the Stokes and
anti‑Stokes sides. This is a characteristic feature of SW BLS, as I have already mentioned,
as the interference effects it. The DE peak appears only on the anti‑Stokes side. The DE
peak intensity is not high compared to the SSW peaks because of the small incident angle.
In fact, when we increase the incident angle ϑ, the DE peak intensity gradually increases.
Figure 8 shows the SW frequencies as a function of the magnetic field.
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Figure 8. Magnetic field dependence of the SSW and DE mode frequencies. The open symbols and +
symbol are for the SSW modes, and (•) is for the DE mode. Here, the labels 1 to 5 stand for the SSW
mode number. The solid and broken lines were calculated from Equations (59) and (60) with the
magnetic constants given in the text (Copyright (1994) The Japan Society of Applied Physics) [62].

The open symbols stand for the SSWs, and the filled circles stand for the DE mode.
Above H = 1.0 kOe, we could not fully resolve the DE mode from the second‑lowest‑order
SSW peak. In order to determine the magnetic constants of the Co85Nb12Zr3 film while
taking into account the quantization effect on the q⊥ components, we employed a conven‑
tional formula given below:

∆ν(n) =
γ

2π

[
H + D

{
Q2

// +
(nπ

L

)2
}]1/2[

H + D
{

Q2
// +

(nπ

L

)2
}
+ 4πM

]1/2

(n = 1, 2, . . .) (62)

and
∆νDE =

γ

2π

[
(H + 2πM)2 − (2πM)2 exp(−2Q//L)

]
(63)

It can be readily recognized from Equation (62) that the D constant governs the split‑
ting between the SSW frequencies. The solid lines in Figure 8 are the calculated SSW fre‑
quencies from Equation (62), and the broken line is the calculated DE mode frequency from
Equation (63) with the magnetic constants listed in Table 1.

We obtained 4πMVSM = 10.1± 0.2 (kG) from a VSM measurement and evaluated the
exchange stiffness constant A = 0.98 ± 0.14 (×10−6 erg/cm) using the magnetic constants.
With these constants, an excellent agreement between the calculation and observation was
obtained. This agreement is not only for this case. Usually, Equations (62) and (63) gave
good agreement between calculations and observations.
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Table 1. Magnetic constants of Co85Nb12Zr3, bcc Fe, and hcp Co films used for the SW frequency
calculations.

Magnetic Constants Co85Nb12Zr3 bcc Fe hcp Co

γ/2π (GHz/kOe) 2.98 2.09 2.17
4πMB (kG) 10.0 21.5 17.8
4πMS (kG) 10.0 21.5 17.8

D (10−9 Oe·cm2) 2.47 2.34 3.39
K1 (106 erg/cm3) − 0.45 3.45
K2 (106 erg/cm3) − − 0.9

Figure 9 shows the SW stiffness constant D in Co100−xCr x binary alloy of 300~500 Å
in thickness as a function of the Cr at % [63,64].

Figure 9. A summary of the SW stiffness constant D of the Co1−xCrx binary system (x in at % unit)
as a function of the Cr content x. We added theDBLS values for x = 12.5 from [65] and x = 18 from [66].
The colored area shows the transition region between the uniform alloy state and the two‑phase
separated state. The broken lines give D (x) = (3.41 − 0.043x) × 10−9 Oe·cm2 and 0.7 × 10−9 Oe·cm2,
respectively [63,64].

These alloys were prepared at RISM, Tohoku University. For the CoCr binary al‑
loy system, phase separation occurred from the Co‑rich uniform state below x~10 at % to
the phase‑separated state. In the phase‑separated state, the Co‑rich ferromagnetic regions
were surrounded by the nonmagnetic Cr‑rich grain boundaries above x~12 at %. Because
the exchange coupling is purely a quantum mechanical effect due to the electron itineracy,
overlapping of the electron wave functions, or both, we can expect that the exchange cou‑
pling strength is very sensitive to the microscopic atomic structure inside a film. Figure 9
clearly shows that a drastic change of the exchange coupling scheme from the direct cou‑
pling in the Co‑rich uniform state to a weak indirect coupling via Cr‑rich regions took place
around x = 10~15 at %. In this way, the BLS technique can provide quantitative information
on these magnetic interactions.

Because we have phenomenologically introduced Equation (62), we must take into
account the exchange coupling and the MAE and derive more rigorous descriptions of the
SW frequencies. We applied the dipole‑exchange model with continuum approximation
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to discuss the SWs. The exchange coupling can be calculated with the second derivative
operator given by Hex = −D∇2 in this model. Recent developments in film preparation
techniques allowed us to examine various types of epitaxial structures. For materials with
hexagonal or tetragonal structures, the MAE played more important roles than for the
cubic structures. Thinking of the epitaxial Co

(
1010

)
films, we considered the uniaxial

in‑plane MAE up to the fourth order as below [60]:

EK = K1 sin2 ϕ + K2 sin4 ϕ (64)

Figure 10 shows the coordinate systems and scattering geometry used in our discus‑
sions. The crystallographic coordinates are shown by (xc, yc, zc).
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Figure 10. Schematic illustration on the magnetization rotation by the external magnetic field ap‑
plied in the y–z plane. The magnetic field was applied along the θ direction measured from the
crystal easy axis zC. The rotation angle of the magnetization measured from the easy axis ϕ can be
determined by Equation (65). BLS observed the SWs propagating along the y direction, which is
always perpendicular to the external magnetic field.

Here, the xc axis is along the surface normal direction, and the film surfaces are located
at x = ±L/2. The easy axis is along the zc direction. We applied a magnetic field H to
make an angle θ between the magnetic field H and the zc axis, and we always measured
SWs propagating perpendicular to H, as shown in Figure 10. Then, the magnetization M
rotates from the easy axis. However, M will be not collinear with H because of the MAE.
For convenience’s sake, we introduced the magnetization coordinates (x,y,z) by rotating
the crystallographic coordinates around the xc axis by an angle ϕ. The z direction is along
the magnetization direction. The rotation angle ϕ can be determined by the competition
between the external magnetic field and the MAE as given by

H sin(θ − ϕ) = sin 2ϕ

(
K1

M
+

2K2

M
sin2 ϕ

)
(65)

We introduced the SW variable m as the small amplitude precession motion around
the static magnetizationM. The LL equation of motion onM(t) =M +m(t) is already given in
Equation (30). The effective magnetic fieldHeff consists of the external magnetic fieldH, the
uniaxial magnetic anisotropy field HK = −∇MEK, the exchange field Hex = (D/M)∇2M,
and the demagnetization field h as follows:

He f f = H + HK + Hex + h (66)
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When H and M are not collinear with each other, we must include the longitudinal
components mz and hz in addition to the their transverse components. Because the MAE
in Equation (39) is defined in the crystallographic coordinates, we must rewrite it in the
magnetization coordinate variables in order to evaluate the anisotropy field. It is given by

EK ∼= sin 2ϕ
(
K1 + 2K2 sin2 ϕ

)(my
M

)
+
{

K1 cos 2ϕ + 2K2
(
sin2 2ϕ − sin2 ϕ

)}(my
M

)2

+ cos2 ϕ
(
K1 + 2K2 sin2 ϕ

)(mx
M
)2.

(67)

The linearized LL equation into a compact form given by

1
γ

d
dt

mx =
(

H1 − D∇2
)

my − Mhy, (68)

1
γ

d
dt

my = −
(

H2 − D∇2
)

mx + Mhx, (69)

and
1
γ

d
dt

mz = (H sin θ cos ϕ − Ha sin ϕ)mx = 0 (70)

Here, we define Ha, H1, and H2 as follows:

Ha = H cos θ +

(
2K1

M
+

4K2

M
sin2 ϕ

)
cos ϕ, (71)

H1 = H cos(θ − ϕ) +
2K1

M
cos 2ϕ +

4K2

M

(
sin2 2ϕ − sin2 ϕ

)
, (72)

and
H2 = H cos(θ − ϕ) +

2K1

M
cos2 ϕ +

K2

M
sin2 2ϕ. (73)

Equation (70) confirms that the longitudinal component mz does not contribute to the
SWs. We assume plane‑wave‑type space‑time dependence for the dynamical variables:(

m(r, t)
hd(r, t)

)
=

(
m
hd

)
exp[iωt − iq⊥x − iQ// cos(θ − ϕ)y + iQ// sin(θ − ϕ)z] (74)

The first equation of Equation (32) gives only two independent equations—for
example,

(∇× h)y = Q// sin(θ − ϕ)hx + q⊥hz = 0 (75)

and
(∇× hd)z = q⊥hdy − Q// cos(θ − ϕ)hdx = 0 (76)

Combining these equations, we obtain the (∇× h)x component. The second equation
of Equation (32) can be regarded as an additional equation of motion to the LL equation.

q⊥(hx + 4πmx) + Q// cos(θ − ϕ)
(
hy + 4πmy

)
− Q// sin(θ − ϕ)hz = 0 (77)

A set of five homogeneous equations for the five variables
(
mx, my, hx, hy, hz

)
gives an

equation for the nontrivial solutions:(
P2)3

+ (H1+H2+4πM)

DQ2
//

(
P2)2

+
{H1(H2+4πM)−4πMDQ2

// sin2(θ−ϕ)−(ω/γ)2}
(DQ2

//)
2

(
P2)

+
4πM{H2 cos2(θ−ϕ)−H1}

(DQ2
//)

2 = 0.

(78)
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Here, we define P2 =
(

q2
⊥ + Q2

//

)
/Q2

// and adapt the partial wave technique in
which SWs are constructed by a sum of bulk partial waves. By adjusting coefficients for
the partial waves, we made the constructed SWs satisfy the proper boundary conditions.
Equations (75) and (76) give six q⊥ solutions allowed for the bulk partial waves [34].

Combining the linearized LL equation with the effective magnetic field given by
Equation (66) and Maxwell’s equations, as seen in Equation (32), we obtain in terms of
the partial waves

mx =
6

∑
j=1

M

(
H1 + DQ2

j

)
hjx − iω̃hjy(

H1 + DQ2
j

)(
H2 + DQ2

j

)
− ω̃2

=
6

∑
j=1

M

(
H1 + DQ2

j

)
− iω̃ Q//

q⊥j
cos(θ − ϕ)(

H1 + DQ2
j

)(
H2 + DQ2

j

)
− ω̃2

hjx (79)

and

my =
6

∑
j=1

M
iω̃hjx +

(
H2 + DQ2

j

)
hjy(

H1 + DQ2
j

)(
H2 + DQ2

j

)
− ω̃2

=
6

∑
j=1

M
iω̃ +

(
H2 + DQ2

j

)
Q//
q⊥j

cos(θ − ϕ)(
H1 + DQ2

j

)(
H2 + DQ2

j

)
− ω̃2

hjx (80)

Here, we introduced ω̃ = ω/γ for convenience and used the demagnetization fields
instead of the magnetic potential φ. By adapting the magnetic boundary conditions at
x = ±L/2, we can eliminate the demagnetization fields outside of the magnet and obtain
a set of two equations given by

6

∑
j=1

1 + 4πM

(
H1 + DQ2

j

)
− iω̃ Q//

q⊥j
cos(θ − ϕ)(

H1 + DQ2
j

)(
H2 + DQ2

j

)
− ω̃2

± i
Q//

q⊥j

 exp
(
∓iq⊥jL/2

)
hxj = 0 (81)

The upper compound symbols in Equation (81) are for the top surface at x = L/2
and the lower symbols for the bottom surface at x = −L/2, respectively. Because we have
six unknown variables hxj, we need four more boundary conditions. Rado and Weertman
derived generalized boundary conditions, which is known as the Rado–Weertman surface
pinning conditions [26], based on the LL equation. It is given by

M ×
(

D
M

∂

∂n
m −∇MEsur f

)∣∣∣∣
x=±L/2

= 0 (82)

where Esur f is the surface magnetic anisotropy (SMA) energy and we assume a SMA energy
with the in‑plane and out‑of‑plane terms as given by

Esurf = −k⊥
(mx

M

)2
− k//

(my

M

)2
(83)

Now, we have a set of six homogeneous equations for six unknown variables. The SW
frequencies can be obtained by solving numerically a 6 × 6 boundary condition determi‑
nant (BCD) equation. When we have no SMEs (no surface pinning) and the limiting case
of Q// ≈ 0, we can obtain asymptotic expression for the SW frequencies given by

∆ν(n) =
γ

2π

[
H + D

(nπ

L

)2
]1/2[

H + D
(nπ

L

)2
+ 4πM

]1/2

(n = 1, 2, . . .) (84)

and
∆νDE =

γ

2π

[
(H + 2πM)2 − (2πM)2 exp(−2Q//L)

]
(85)

These are exactly the same as Equations (62) and (63). As already we have seen, these
expressions can describe well the magnetic field dependence of the SW frequencies.
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Figure 11 shows an example of the SW frequencies of bcc Fe propagating with Q// =
1.85 × 105 cm−1 along the [110] direction on the (001) surface at H = 3.0 kOe as a function
of film thickness down to 10 Å.
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Figure 11. Calculated SW frequencies (−) propagating along the [110] direction on the epitaxial 
(001) Fe film as a function of the film thickness. The magnetic field was applied along the [1–10] 
direction, and the cubic MAE and the effective demagnetization factor D⊥ were included in this 
calculation. The broken lines are just for eye. 

Figure 11. Calculated SW frequencies (−) propagating along the [110] direction on the epitaxial (001)
Fe film as a function of the film thickness. The magnetic field was applied along the [1–10] direction,
and the cubic MAE and the effective demagnetization factor D⊥ were included in this calculation.
The broken lines are just for eye.

The SW frequencies were obtained by solving the 6 × 6 BCD equation. We used a set
of the magnetic parameters listed Table 1 in this calculation. It is known that the demagne‑
tization factor 4π for thick films should be replaced by the effective demagnetization factor
4πf⊥. The f⊥ factor was given by 1−0.4245/n for the bcc (001) structure and 1−0.2338/n for
the fcc (001) structure [67]. Here, n is the number of the atomic layers stacked on the film.
We have included the 4πD⊥ term in our calculations. In Figure 11, the label DE stands
for the DE mode frequency, and the labels 1, 2, and 3 stand for the first, second, and third
SSW frequencies. For Fe films with thicknesses less than 100 Å, only the DE mode appears
in a BLS spectrum, and the SSW peaks appear well above 50 GHz. Another interesting
observation is the anticrossing effect between the DE mode and each SSW mode. There‑
fore, it is clear that Equations (84) and (85) give a good description of the DE and SSW
frequencies when these frequencies are well separated. For thinner films with thicknesses
less than ~300 Å, the DE mode localized on the opposite surface may appear in a spectrum.
The amplitude of the opposite DE mode was roughly estimated to be exp(−Q//L)~0.57 on
the laser‑illuminated surface. Of course, the spectrum exhibited quite asymmetric peak
intensities.

Various structures of thin Co films, including polycrystalline films [63,68], bcc
films [69–71], and fcc, bcc, and hcp films [72], have been extensively investigated by BLS
since the early stage of the BLS SW studies. One of the most pronounced magnetic prop‑
erties of Co in the hcp structure is the large uniaxial MAE, which is about one order of
magnitude larger than the MAE of cubic Fe and Ni. The MAE for hcp Co is given by
Equation (64). The K1 and K2 constants take positive values of ~106 erg/cm3 at room tem‑
perature. Because of the large MAE, hcp Co‑based alloys have been widely applied for
many industrial applications. As I have already mentioned, it is possible to grow epitaxial(
1010

)
Co films which possess both the easy direction (hcp [001] axis) and the hard direc‑

tion (hcp [010] axis) within a film plane. A BLS analysis from the epitaxial
(
1010

)
Co thin

films was performed by Grimsditch, Fullerton, and Stamps [73]. The SW stiffness constant
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of hcp Co has been a subject of controversy. TheDNS values of 490–510 meV·Å2 for hcp Co
crystals by the BNL group [58] were obviously larger than the recent BLS values of DBLS =
430–470 meV·Å2 [63,68,71,73].

We performed BLS measurements on the epitaxial hcp
(
1010

)
Co thin films [73,74].

When we adapt the scattering geometry (A) in which the magnetic fields were applied
along the easy direction, only the K1 term in Equation (61) contributed to the SW frequen‑
cies because θ = ϕ = 0◦ in Equations (72) and (73). An example of a BLS spectrum observed
from the scattering geometry (A) is shown in Figure 6. The first and second order SSWs
and the DE mode can be seen. The inset shows the mode profiles of these SSWs. In order
to determine the K2 constant, we must adapt the scattering geometries (B) and (C). The
magnetic field dependence of the SW frequencies obtained from the scattering geometry
(B) is shown in Figure 12.

Materials 2023, 16, 1038 27 of 70 
 

 

80

60

40

20

0
543210

Magnetic field (kOe)

80

60

40

20

0

 
Figure 12. Magnetic field dependence of the SW frequencies (•) in the scattering geometry (B). The 
solid lines were calculated for the SW frequencies (−) and the rotation angle φ of the magnetization 
(−) using the full magnetic constants given in the text [74]. 

In this case, the magnetic field was always applied along the yc-direction in Figure 
10. The calculated SW frequencies and the rotation angle are shown by the solid lines. We 
summarized the parameters used in our calculations in Table 1. These MAE constants, K1 
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are independent NS results on hcp Co reported by using the Kraków neutron spectrom-
eter [75]. Both NS groups employed a two-parameter model for SW dispersion given by 
εQ = DNSQ2(1–βQ2). The Kraków group obtained DNS = 437±20 meV·Å2 and β = 0.345 Å2, 
whereas the BNL group obtained a set of DNS = 510 meV·Å2, β = 1.8 Å2, DNS = 490 meV·Å2, 
and β = 3.3 Å2. The calculated dispersion curves with these three parameter sets are very 
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Figure 12. Magnetic field dependence of the SW frequencies (•) in the scattering geometry (B). The
solid lines were calculated for the SW frequencies (−) and the rotation angle ϕ of the magnetization
(−) using the full magnetic constants given in the text [74].

In this case, the magnetic field was always applied along the yc‑direction in Figure 10.
The calculated SW frequencies and the rotation angle are shown by the solid lines. We
summarized the parameters used in our calculations in Table 1. These MAE constants, K1
and K2, and the SW stiffness constant are in good agreement with the ones reported by
Grimsditch et al. [73], The present SW stiffness constant of DBLS = 3.39 × 10−9 Oe·cm2 is
equivalent to DBLS = 427 meV·Å2 and in good agreement with the previous values. There
are independent NS results on hcp Co reported by using the Kraków neutron spectrom‑
eter [75]. Both NS groups employed a two‑parameter model for SW dispersion given by
εQ =DNSQ2(1− βQ2). The Kraków group obtainedDNS = 437± 20 meV·Å2 and β = 0.345 Å2,
whereas the BNL group obtained a set ofDNS = 510 meV·Å2, β = 1.8 Å2, DNS = 490 meV·Å2,
and β = 3.3 Å2. The calculated dispersion curves with these three parameter sets are very
close in the limited range of Q between 0.08Å and 0.25 Å. More extensive studies on bulk
Co are strongly recommended.

The mode profile calculation revealed complicated mode conversion schemes as a
function of the magnetic field. The lowest mode possessed a uniform amplitude across the
film (n = 0 SSW mode) under zero magnetic field and gradually changed into the DE‑like
mode as field strength increased, finally changing into the n = 1 SSW mode at well above
H = 5.0 kOe. The second‑lowest mode retained the n = 1 SSW character up to H~5.0 kOe
and finally changed into the DE mode at well above H = 5.0 kOe. Figure 13 shows the SW
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frequencies obtained from the scattering geometry (C) as a function of the field direction
at H = 3.0 kOe.
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Figure 13. Field angle dependence of the SW frequencies (•) in the scattering geometry (C). The
solid lines were calculated for the SW frequencies (−) and the rotation angle ϕ of the magnetization
(−) using the full magnetic constants given in the text [74]. Here, e.a. and h.a. mean the easy axis
(yC‑direction) and the hard axis (zC‑direction) in Figure 10.

The solid lines give the calculated SW frequencies and the rotation angle ϕ of the
magnetization. We also performed the mode profile calculation in this geometry. The
lowest‑frequency mode at θ = 0◦ was the n = 1 SSW, which gradually changed into the 0th
SSW mode at θ = 90◦. The second‑lowest mode changed the character from the generalized
DE mode at θ = 0◦ into the n = 1 SSW mode at θ = 90◦. As shown in Figure 6, the n = 1 SSW
mode and the De mode frequencies were very close. In this interpretation, we took account
of the anti‑crossing effect shown in Figure 11.

The SW stiffness constants of the Heusler compounds and alloys, Co2MnSi,
Co2MnAlxSi1−x, Co2FeAl, and Co2Cr0.6Fe0.4Al were intensively investigated with
BLS [76–78].

5.3. Ultrathin Films
Let us define magnetic films with thicknesses less than the exchange length ℓex =

(D/4πM)1/2 [67], which is estimated to be ~30 Å for Fe as an ultrathin film. It is possible to
prepare epitaxial ultrathin films by means of the molecular beam epitaxy (MBE) technique.
Magnetic properties of such ultrathin films will be strongly affected by the SMA [67]. Here
we have a question: what does BLS observe from such ultrathin films? When the film
thickness L goes to zero, the DE mode frequency is well‑separated from the bulk SSW
frequencies as shown in Figure 11. Because the surface dispersion parameter Q//L is quite
small, the DE mode amplitude is almost uniform across the film. It seems to be preferable
to name this the uniform DE (UDE) mode or simply as the uniform mode. I will use the
term “UDE mode” in this section. The DE mode was originally discussed for an isotropic
slab taking account of the magnetic boundary conditions. The UDE mode is quite different
from the slab DE mode because of the SMAs. Then, how can we take into account the SMAs
in our discussions? If it is possible, we can positively apply the BLS technique to investigate
the SMAs of ultrathin films.
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We consider an ultrathin film with surfaces at x = 0 and −d, and the LL equation
given by

1
γ

dM
dt

= M ×
(

H + HK + hd +
D
M

d2M
dx2

)
(86)

Here we ignored the in‑plane exchange term. For an ultrathin film, the UDE mode
profile is regarded as uniform across the film. Then, we can readily integrate the LL equa‑
tion across the film and obtain

1
γ

dM
dt

= M × (H + HK + hd) +
1
d
· D

M
M × dm

dx

∣∣∣∣x=0

x=−d
(87)

When we notice ∂/∂n = −d/dx in this case, the last term in the right‑hand side can
be replaced by the Rado‑Weertman pinning boundary condition given by Equation (82),
thus producing

1
γ

dM
dt

= M ×
(

H + HK,e f f + h
)

(88)

and
HK,e f f = −∇MEK − 2

d
∇MEsur f (89)

where HK,e f f is the effective magnetic anisotropy field consisting of the MAE and IMA
SMA terms. We assumed the same SMA for both surfaces. When we adapt the bulk MAE
given by Equations (54) and (59) and the SMA given by Equation (83), we obtain

1
γ

dmx
dt

−
[

H − 2
M

(
K// +

2k//

d

)]
my + Mhdy = 0 (90)

and
1
γ

dmy

dt
+

[
H − 2

M

(
K⊥ +

2k⊥
d

)]
mx − Mhdx = 0 (91)

With these results, we obtain the UDE frequency as follows:(
ω

γ

)2
=

[
H − 2

M

(
K// +

2k//

d

)][
H − 2

M

(
K⊥ +

2k⊥
d

)
+ 4πM

]
(92)

Here, we define the effective saturation magnetization as

4πMeff = 4πM − 2
M

(
K⊥ +

2k⊥
d

)
(93)

The 1/d factor in Equation (93) gives a multiplication factor of 108/d in the angstrom
unit, and the SMA term dominates the out‑of‑plane magnetic anisotropy field for the UDE
mode. As already discussed, the 4πMeff variable is the essential parameter to distinguish
the magnetization state under zero magnetic field. For a positive 4πMeff, the film is in
the in‑plane magnetization state under zero magnetic field, and it is in the perpendicular
magnetized state for a negative 4πMeff.

We performed a BLS study on an ultrathin epitaxial Fe wedge with Fe layer thick‑
nesses up to 8.9 Å under the magnetic fields of up to 4.5 kOe [79]. The wedge was prepared
at the Electrotechnical Laboratory (ETL), Tsukuba using the MBA technique.
Figure 14 shows a schematic illustration of the structure of the MBE‑prepared wedge with
the crystallographic coordinate systems showing the epitaxial relations.
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Figure 14. Schematic illustration of the crystallographic wedge structure and scattering geome‑
try [79].

A 20 Å‑thick Au (001) cap layer was deposited to protect the wedge from crucial sur‑
face deterioration. We applied the magnetic field along the crystallographic [1–10] direc‑
tion, and the SWs propagating along the [110] direction were measured. For a cubic sym‑
metry crystal, the MAE is given by

EK =
K1

M4

(
M2

x M2
y + M2

y M2
z + M2

z M2
x

)
(94)

When the magnetization is directed along the [1–10] direction, in terms of the SW
variables, the MAE can be written as [35]

EK ∼= const. − K1

2M2

(
2m2

y − m2
x

)
(95)

Taking account of the possible tetragonal distortion along the surface normal direc‑
tion, the SMA energy can be reduced into a simple form given by

Esur f
∼= −k(s)//

(
my
M

)2
−
(

k(s)u − k(s)//
2

)(mx
M
)2

= −k(s)//

(
my
M

)2
− k(s)⊥

(mx
M
)2,

(96)

in which k(s)u is the uniaxial out‑of‑plane SMA constant due to tetragonal distortion.
Figure 15 shows the thickness development of the BLS spectra of the wedge at

H = 3.0 kOe. The thickness was indicated on each spectrum.
These spectra were excited by the p‑polarized 4880 Å line of an Ar+ ion laser in a single‑

cavity mode with a power of 80 mW directed at the wedge. The incident angle ϑ was fixed
to 45◦ (Q// = 1.82 × 105 cm−1). The Fe layer thickness was thin enough to observe scattering
from the UDE modes existing on both surfaces. Typical accumulation time for a spectrum
was only less than 1 h. Because we had not performed polarization selection, both the
USW and SAW peaks were observed in a spectrum. The SAW peaks were masked by the
Rayleigh peak in Figure 15. The intensity asymmetry between the Stokes side and the
anti‑Stokes side is one of the characteristic features of SW scattering, as already discussed.
The UDE frequency rapidly decreased from about 20 GHz to 12 GHz with decreasing Fe
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thickness. Figure 16 shows the external field development of BLS spectra observed at an
Fe thickness of d = 2.6 Å.
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Figure 16. Magnetic field development of BLS spectra observed at d = 2.6 Å. The applied field is
indicated on each spectrum. SW peaks are indicated by arrows. The peaks on the broken lines
are due to the Rayleigh surface acoustic waves, which mainly reflect the elastic properties of the
Au/Ag/MgO structure [79].

The applied magnetic field was indicated on each spectrum. The UDE peaks are indi‑
cated by the arrows, and the SAW peaks are indicated by the broken lines. The sharp UDE
peaks shown in Figures 15 and 16 indicate that a well‑defined ferromagnetic order was re‑
alized in the wedge at room temperature even at 2.6 Å, which corresponds to a ~1.8 atomic
layer. Taking into account the extremely short photon–UDE interaction length, although
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multiple reflections would take place, the large BLS efficiency seems to have been closely
related to the enhancement of the magneto‑optical Kerr rotation and ellipticity observed
around 2.5 eV of incident photon energy due to the plasma‑edge effect of the Au layers [80].
This energy is close to our 4880 Å laser photon energy (2.54 eV). Figure 17 shows the inten‑
sity ratio between the Stokes peak and the anti‑Stokes peak.
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Figure 17. Film thickness and magnetic field dependences of the intensity ratio between the Stokes
peak and the anti‑Stokes peak of the Au/Fe/Au films and the wedge [61].

Above d > 40 Å, the intensity ratio was about 0.5 in a wide range of Fe thicknesses,
whereas it became larger than 1 below d < 40 Å. The intensity ratio for the 45◦ incident
p‑polarized geometry can be written as follows in terms of the matrix components defined
in Equations (15)–(18):

IS
IaS

=

∣∣ξ−31 − ς−32

∣∣2∣∣ξ+31 − ς+32

∣∣2 (97)

As shown in Equation (29), the K coefficient and possibly also the G coefficient are
sensitive to the spin‑orbit coupling constant and the wave functions for the ground state
and intermediate state. Because the ultrathin Fe layer was sandwiched by the thicker Au
layers, the Fe wave functions were strongly modified by mixing between the Au wave
functions at d < 40 Å. This situation can be regarded as a quantum well effect.

Figure 18 shows the thickness development of the SW frequencies of the Au/Fe/Au
films, including the wedge and the epitaxial films, with thicknesses between 80 and 1000 Å
for H = 3.0 kOe.

These thin Au/Fe/Au epitaxial films were also prepared at ETL, Tsukuba using the
MBE technique. The solid circles are the DE and UDE mode frequencies, and the open
circles are the 1‑st SSW frequencies. The solid lines are the calculated SW frequencies
with the same magnetic constants used in Figure 11. It is obvious that the observed UDE
frequencies decreased more rapidly than the calculated frequency as the Fe thickness de‑
creased below 100 Å. In contrast to the present Au/Fe/Au films, for the ultrathin Fe (110)
film deposited on the W (110) substrate, the UDE frequency increased with decreasing Fe
thickness because of the negative k(s)⊥ constant (this means that the surface normal is the
hard direction) [34,81]. Because we have not included the SMA terms in Equations (92)
and (93) in our calculations, our calculations gave higher SW frequencies below 100 Å.
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Figure 19 shows the UDE frequencies as a function of the external magnetic field for four
Fe thicknesses: 8.9, 6.5, 3.9, and 2.6 Å.
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Figure 18. SW frequencies (□ for the DE mode, # for the n = 1 SSW mode) observed from the SWs
propagating along the [110] direction on the epitaxial (001) thin Fe films and Fe wedge as a function
of the Fe thickness. The solid lines are the calculated SW frequencies, and the results above d≥ 1 nm
are already shown in Figure 11. Although the MAE and the effective demagnetization factor were
included in the calculation, the surface perpendicular anisotropy term was not included [61]. The
broken lines are just for eye.
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Figure 19. SW frequencies for four Fe thicknesses, 8.9, 6.5, 3.9, and 2.6 Å, as a function of the mag-
netic field. The solid lines are the SW frequencies calculated by solving numerically the BCD equa-
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Figure 19. SW frequencies for four Fe thicknesses, 8.9, 6.5, 3.9, and 2.6 Å, as a function of the magnetic
field. The solid lines are the SW frequencies calculated by solving numerically the BCD equation [79].

In order to analyze these results, we solved numerically the 6 × 6 BCD equation with
the SMA terms given by Equation (95). The solid lines in Figure 19 are the calculated UDE
frequencies by solving the BCD equation as a function of the magnetic field. Because we
found that the bulk MAE was negligibly small, we retained only the SMA terms and a
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bulk spin wave stiffness constant of D = 2.34 × 10−9 Oe·cm2 throughout the present BCD
analyses, which can also be applied for the in‑plane magnetized films. For d = 2.6 Å, we
can solve the BCD equation above H = 1.57 kOe. Figure 20 shows the in‑plane and out‑of‑
plane SMA constants and the 4πMeff defined in Equation (93) as a function of Fe thickness.
Because the in‑plane SMA constant k(s)// was negligibly small, as shown in Figure 20, the out‑

of‑plane SMA constant k(s)⊥ stems from the uniaxial SMA constant k(s)u , which reflects the
tetragonal distortion of the bcc Fe layer. Although k(s)⊥ gradually decreased with decreasing
Fe thickness, the d−1 factor in Equation (93) increased much faster than the decrease of
k(s)⊥ . Therefore, 4πMeff changes its sign from positive to negative at around d~3 Å, and
the stable direction of the magnetization under zero magnetic field turns over from the
in‑plane direction to the surface normal direction. The in‑plane to out‑of‑plane transition
of the stable magnetization configuration under zero magnetic field has been observed in
several ultrathin films [81–84].
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Figure 20. SMA constants for k(s)⊥ (□) and k(s)// (#) and 4πMeff (•) for four Fe thicknesses. The solid
lines are just for eye [79].

Apart from the ultrathin films, let us consider SWs in magnetic films with the out‑of‑
plane MAE as given by Equation (59). Dutcher et al. [82] and Rahman and Mills [85] treated
this problem using the magnetostatic framework. Here, the K⊥ coefficient can be regarded
as an effective constant including both the bulk and surface terms, which depend on the
crystallographic structure of the magnet and the film thickness. The magnet occupies the
x–z plane between x = 0 and –L, and the applied magnetic field is always fixed to the z‑axis.
The magnetization always lies in the x–zplane with the equilibrium angle ϕ measured from
the x‑axis, as shown in Figure 21.

We adapted the LL equation of motion with the effective fields given by Equation (66).
Because the magnetizationM is tilted in the x–z plane, we should add the demagnetization
field Hd term given by

Hd = −4π(M cos ϕ + mx, 0, 0) (98)

Then, we obtain a set of linearized LL equations:

1
γ

dmx

dt
=
(

H − D sin ϕ∇2
)

my − M sin ϕ hy (99)
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1
γ

dmy
dt = M cos ϕ[HC sin ϕ − H]

+ cos ϕ
(

HC − D∇2) mz + D sin ϕ∇2mx + M(sin ϕ hx − cos ϕ hz),
(100)

and
1
γ

dmz

dt
= − cos ϕ

(
HC − D∇2

)
my + M cos ϕ hy (101)

Here, we define the critical field HC as

HC =
2K⊥
M

− 4πM = HK⊥ − 4πM (102)

The equilibrium angle ϕ is determined from the torque‑free condition around the y
axis given by

cos ϕ[HC sin ϕ − H] = 0 (103)

We obtain three angles:
(1) ϕ = π/2 for 4πM > HK⊥,
(2) ϕ = sin−1(H/HC) for HC ≥ H > 0,

and
(3) ϕ = π/2 for H > HC > 0.

Figure 21. Schematic illustration on the magnetization rotation by the external magnetic field H ap‑
plied the in‑plane zdirection (H≤HC). The equilibrium angle ϕ can be determined by Equation (103).
By counterclockwise π/2‑ϕ rotation around the y‑axis, we can introduce the magnetization‑based co‑
ordinates (xM, yM, zM). In this coordinate choice, we can decouple the LL equation of motion on the
zM component from the set of equations on the xM and yM components.

We introduce a 3 × 3 susceptibility matrix χ by m = χ·h through the LL equation. For
the present scattering geometry shown in Figure 21, among the nine components of χ, four
components,χxx, χxy, χyx, and χyy, are relevant, and their explicit expressions are given as

χxx(ω) = M
(

H + DQ2 sin ϕ
)

sin ϕ

(Ω/γ)2 − (ω/γ)2 , (104)

χyy(ω) = M
(

HK − 4πM + DQ2) cos2 ϕ +
(

H −
(

HK − DQ2) sin ϕ
)

sin ϕ

(Ω/γ)2 − (ω/γ)2 , (105)

and
χyx = −χxy = M

i(ω/γ) sin ϕ

(Ω/γ)2 − (ω/γ)2 (106)

We also define

(Ω/γ)2 =
[

H −
(

HK − DQ2
)

sin ϕ
](

H + DQ2 sin ϕ
)

+ cos2 ϕ
(

HK − 4πM + DQ2
)2

(107)
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We have obtained the relevant susceptibilities, and we can follow our calculations
performed for the in‑plane thin films. Therefore, we will not repeat them here. When we
ignore the exchange terms, we can summarize our results on the bulk SW as follows:

For 4πM > HK⊥ (
ω

γ

)2
= H(H + 4πM − HK)− 4πMHK

Q2
//

Q2 (108)

The upper and lower bound frequencies are given by

H(H + 4πM − HK⊥) :Q2
///Q2 = 0 (109)

and
(H − HK⊥)(H + 4πM) :Q2

///Q2 = 1 (110)

For H > HC > 0 (
ω

γ

)2
= H(H − HC)− 4πMHK

Q2
//

Q2 (111)

The upper and lower bound frequencies are given by

H(H − HC) :Q2
///Q2 = 0 (112)

and
(H − HK⊥)(H + 4πM) :Q2

///Q2 = 1 (113)

and for HC ≥ H > 0(
ω

γ

)2
= HC

2 − H2 +
Q2

//

Q2

[
HC(HK − HC)−

H2
K

H2
C

H2 + H2

]
(114)

We have two boundary frequencies given by

H2
C − H2 :Q2

///Q2 = 0 (115)

and

HC HK −
H2

K
H2

C
H2 :Q2

///Q2 = 1 (116)

Note that these boundaries are crossed at H = HC[HC/(HC + HK⊥)]
1/2 in

Equation (114). We also performed numerical fits using the upper bounds in Equations
(108) and (111) with our BLS results shown in Figure 19, and we obtained reasonable agree‑
ment between the calculated and observed SW frequencies.

The discussions on the DE and UDE modes are a little more complicated. The surface
mode frequency is determined by a BCD equation given as∣∣∣∣α(1 + 4πχxx)−

(
1 − i4πχxy

)
α(1 + 4πχxx) +

(
1 − i4πχxy

)
α(1 + 4πχxx) +

(
1 + i4πχxy

) [
α(1 + 4πχxx)−

(
1 + i4πχxy

)]
β2

∣∣∣∣ = 0 (117)

Here we define q⊥ = αQ// =
[(

1 + 4πχyy
)
/(1 + 4πχxx)

]1/2Q// and β2 =
exp(−2αQ//L). We rewrite Equation (117) as

tanh(αQ//L) = − 2α(1 + 4πχxx)

α2(1 + 4πχxx)
2 +

(
1 − i4πχxy

)(
1 + i4πχxy

) (118)

Note that the case of tanh(αQ//L) = 0 corresponds to an ultrathin film, and the case of
tanh(αQ//L) = 1 corresponds to a semi‑infinite magnet. It is not difficult to show that the
DE and UDE modes are always allowed for in‑plane films (ϕ = π/2) with the frequency
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given by Equation (62). On the other hand, because of negative α, these surface modes are
forbidden for the out‑of‑plane films above H > HC.

Next let us consider an out‑of‑plane film under a magnetic field of H ≤ HC. For a
semi‑infinite magnet, Equation (115) becomes a simple form given by[

α(1 + 4πχxx) +
(
1 + i4πχxy

)] [
α(1 + 4πχxx) +

(
1 − i4πχxy

)]
= 0 (119)

These equations can be analytically solved and give solutions with opposite signs. We
solved the first one here and obtained a surface mode solution with a frequency given by
ω/γ = H2

C/2H in a limited range of the external field
√

HC/2HK < H/HC < 1/
√

2.
Figure 22 shows a simulation of the SW frequencies as a function of the magnetic field
for an out‑of‑plane, magnetic, semi‑infinite slab calculated using the magnetic constants
obtained from the Fe wedge:

γ/2π = 2.8 GHz/kOe, HC = 1.57 kOe, 4πM = 18.6 kG, and Hk = 20.17 kOe.
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Figure 22. A simulation of the SW frequencies for an out-of-plane magnetized ferromagnetic slab as 
a function of the magnetic field. Here, the red lines and the green lines show the upper and lower 
bound of the bulk SW band. We used the magnetic constants obtained from the Fe wedge given in 
the text. The inset shows the lower field result below 2.5 kOe. Note the boundary crossing below 
H∼0.4 kOe. 

For an ultrathin film, Equation (118) merely gives the bulk upper and lower bounds, 
and we have no UDE solution, as already discussed. For a finite thickness film, we must 
solve Equation (118) numerically, but we will discuss no more on this case. 

5.4. Multilayers and Superlattices 
Figure 23 shows an example of a trilayer structure consisting of a nonmagnetic layer 

sandwiched between magnetic layers [35]. 

Figure 22. A simulation of the SW frequencies for an out‑of‑plane magnetized ferromagnetic slab as
a function of the magnetic field. Here, the red lines and the green lines show the upper and lower
bound of the bulk SW band. We used the magnetic constants obtained from the Fe wedge given in
the text. The inset shows the lower field result below 2.5 kOe. Note the boundary crossing below
H~0.4 kOe.

For an ultrathin film, Equation (118) merely gives the bulk upper and lower bounds,
and we have no UDE solution, as already discussed. For a finite thickness film, we must
solve Equation (118) numerically, but we will discuss no more on this case.

5.4. Multilayers and Superlattices
Figure 23 shows an example of a trilayer structure consisting of a nonmagnetic layer

sandwiched between magnetic layers [35].
These magnetic layers need not be the same with respect to their thicknesses and ma‑

terials [36]. The thicknesses of the magnetic layers are usually set to be less than 100 Å
in order to fully separate the bulk SSWs and the DE mode as shown in Figure 11. In our
following discussions based on [36], we consider the SWs in the trilayer by combining the
DE modes in each magnetic layer. We have two choices on the origin of the x‑coordinate.
In this example, we use the first setting shown on the left‑hand side of Figure 23.
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Here, the superscript j (= 1, 2) specifies the magnetic layer. The magnetic potentials 
outside and inside of the trilayer are given as follows:  
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The magnetic boundary conditions at each surface and interface give us a set of six 
homogeneous equations for the unknown variables A to F. To obtain the non-trivial so-
lutions of the set of the homogeneous equations, the BCD should vanish at the SW fre-
quencies.  

Figure 23. Schematic illustration of a (M1/spacer/M2) trilayer structure and the x‑axis setting. We set
x = 0 on top of the M1 layer in the first setting and in the center of the M1 layer in the second setting.

At first, we consider the SWs propagating along the y‑axis in Figure 23 and solve the LL
equation for each magnetic layer in terms of the susceptibilities and the magnetic potentials
as follows:

m(j)
x = χ

(j)
xx h(j)

x + χ
(j)
xy h(j)

y = −
(

χ
(j)
xx

∂

∂x
+ χ

(j)
xy

∂

∂y

)
φ(j) (120)

and
m(j)

y = χ
(j)
yx h(j)

x + χ
(j)
yy h(j)

y = −
(

χ
(j)
yx

∂

∂x
+ χ

(j)
yy

∂

∂y

)
φ(j) (121)

Here, the superscript j (=1, 2) specifies the magnetic layer. The magnetic potentials
outside and inside of the trilayer are given as follows:

φ = φ> exp(iωt − Q//x ± iQ//y) (122)

φM1 = (A exp(−Q//x) + B exp(Q//x)) exp(iωt ± iQ//y) (123)

φNM = (C exp(−Q//x) + D exp(Q//x)) exp(iωt ± iQ//y) (124)

φM2 = (E exp(−Q//x) + F exp(Q//x)) exp(iωt ± iQ//y) (125)

and
φ = φ< exp(iωt + Q//x ± iQ//y) (126)

The magnetic boundary conditions at each surface and interface give us a set of six ho‑
mogeneous equations for the unknown variablesA to F. To obtain the non‑trivial solutions
of the set of the homogeneous equations, the BCD should vanish at the SW frequencies.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ(+)
1 − 1 −

(
Λ(−)

1 + 1
)

0 0 0 0
1 α −1 −α 0 0

Λ(+)
1 −αΛ(−)

1 −1 α 0 0
0 0 1 β −1 −β

0 0 1 −β −Λ(+)
2 βΛ(−)

2

0 0 0 0 Λ(+)
2 + 1 −γ

(
Λ(−)

2 − 1
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (127)

in which we defined
α = exp(−2Q//L1) (128)

β = exp(−2Q//(L1 + d)) (129)

γ = exp(−2Q//(L1 + d + L2)) (130)

and
Λ(j)

± = 1 + 4πχ
(j)
xx ± i4πχ

(j)
xy (131)
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For isotropic (no MAE) magnetic layers, the SW frequencies are given by the solution
of Equation (127) as below:

exp(−2Q//d)[1 − exp(−2Q//L1)] [1 − exp(−2Q//L2)](2πM1)(2πM2)

×
{(

H + 2πM1 ± ω
γ1

)(
H + 2πM2 ∓ ω

γ2

)}
=

{
(H + 2πM1)

2 − (2πM1)
2 exp(−2Q//L1)−

(
ω
γ1

)2
}

×
{
(H + 2πM2)

2 − (2πM2)
2 exp(−2Q//L2)−

(
ω
γ2

)2
}

.

(132)

The composite symbols in Equations (131) and (132) correspond to the SW propaga‑
tion directions given by exp(±iQ//y). It is clear that for identical magnetic layers,
Equation (132) gives two SW frequencies which are independent of the propagation di‑
rection. When the surface dispersion parameter Q//d is zero, the SW frequencies are given
by the DE mode frequency for a 2L thick film (set L→2L in Equation (45)), and the bulk
SW frequency is given by Equation (51). For the large Q//d values, the SW frequencies
approach to the DE mode frequency is given by Equation (45) for two different isolated
magnetic layers. Now, we consider parallel and anti‑parallel arrangements of two differ‑
ent isotropic magnetic layers [35]. Figure 24a shows the SW frequencies as a function of
the Q//d parameter for the parallel arrangement under zero magnetic field.
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technique; of course, it thus depends on the free spectral range setting. The lower fre-
quency peaks were be masked by the intense Rayleigh peak. When the magnetization 
arrangement was changed from the parallel to anti-parallel arrangements, the frequency 
difference between the levels 3 and 1 was 2 GHz, and it was easily detected by the BLS 
technique. 

For thinner spacer layers with thicknesses below the exchange length, we must take 
into account the interlayer exchange coupling (IEC) between the magnetic layers across 
the spacer layer [40]. The simplest form of IEC is given by the Heisenberg-type coupling 
given as 

Figure 24. The solid lines are calculated SW frequencies in the (M1/spacer/M2) trilayer at zero mag‑
netic field as a function of Q//d in which d is the spacer thickness. (a) Parallel arrangement and (b)
anti‑parallel arrangement. The magnetic and layer parameters used in the calculations are given in
the text.
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In the calculations, we set the surface wave vector Q// to 2.0 × 10−7 m−1 and used
4πM1 = 10.6 kG, g = 2.13, and L1 = 50 Å for layer 1 (CoNbZr) and 4πM2 = 19.8 kG, g = 2.17,
and L2 = 150 Å for layer 2 (Co). Figure 24b shows the SW frequencies as a function of the
Q//d parameter for the anti‑parallel arrangement under zero magnetic field. It is impor‑
tant to note that the anti‑parallel arrangement of the magnetizations is unstable even for
weak external magnetic fields. We have various spin valve devices [86]. The spin valve
structure consists of the pinned layer, in which the magnetization is pinned to prevent free
motion against the external magnetic field, and the free layer, in which the magnetization
can be freely aligned along the external field even under a weak magnetic field. Because
the trilayer consists of two different magnets, the BLS spectrum is eventually asymmetric
between the Stokes and anti‑Stokes sides for the Q//d parameters below ~1. The frequency
difference between levels 3 and 4 in the anti‑parallel arrangement was 1.9 GHz, whereas the
difference between levels 1 and 2 was 0.7 GHz in the parallel arrangement. Note that the
frequency difference of 0.7 GHz is rather difficult to detect by means of the BLS technique;
of course, it thus depends on the free spectral range setting. The lower frequency peaks
were be masked by the intense Rayleigh peak. When the magnetization arrangement was
changed from the parallel to anti‑parallel arrangements, the frequency difference between
the levels 3 and 1 was 2 GHz, and it was easily detected by the BLS technique.

For thinner spacer layers with thicknesses below the exchange length, we must take
into account the interlayer exchange coupling (IEC) between the magnetic layers across
the spacer layer [40]. The simplest form of IEC is given by the Heisenberg‑type coupling
given as

HIEC = − A12

M1M2
(M1 · M2) (133)

in which the IEC constantA12 depends on the spacer layer thickness d and changes its sign
similar to the Ruderman–Kittel–Kasuya–Yoshida (RKKY) coupling [87]. For a positiveA12,
the parallel arrangement of M1 and M2 is preferable, and the anti‑parallel arrangement is
preferable for negative A12. The equations of motion for M1 and M2 are given as

1
γ

dM1

dt
=

A12

M1M2
(M1 × M2) (134)

and
1
γ

dM2

dt
=

A12

M1M2
(M2 × M1) (135)

The ICE acts as torque for the magnetization on each layer. We can take into account
the torque through the Hoffmann boundary conditions [27] at the magnet–spacer inter‑
faces. The Hoffmann boundary conditions are given by

M1 ×
[

2A1

M2
1

∂M1

∂n
−∇ME(1)

int

]
+

2A12

M1M2
M1 × M2 = 0 (136)

and

M2 ×
[

2A2

M2
2

∂M2

∂n
−∇ME(2)

int

]
+

2A12

M1M2
M2 × M1 = 0 (137)

Here, Aj (=DjMj/2) is the intra‑layer exchange stiffness constant in the j‑th magnetic
layer, and ∂/∂n is always directed to the inside of the magnets. For brevity’s sake, we
adapted the same energy form for both of the interfacial magnetic anisotropy energy (IME)
and the SME.

E(j)
int = −λ

(j)
⊥

(
m(j)

x
Mj

)2

− λ
(j)
//

m(j)
y

Mj

2

(j = 1, 2) (138)

After some calculations, we obtained the explicit expressions of the linearized Hoff‑
mann boundary conditions as follows [40]:
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For the magnetic layer 1: A1

M1

∂m(1)
y

∂x
+

λ
(1)
//

M1
m(1)

y − A12

M1
m(1)

y

∣∣∣∣∣∣
x=−L1

+
A12

M2
m(2)

y

∣∣∣
x=−L1−d

= 0 (139)

and (
A1

M1

∂m(1)
x

∂x
+

λ
(1)
⊥

M1
m(1)

x − A12

M1
m(1)

x

)∣∣∣∣∣
x=−L1

+
A12

M2
m(2)

x

∣∣∣
x=−L1−d

= 0 (140)

For the magnetic layer 2: A2

M2

∂m(2)
y

∂x
−

λ
(2)
//

M2
m(2)

y +
A12

M2
m(2)

y

∣∣∣∣∣∣
x=−L1−d

− A12

M1
m(1)

y

∣∣∣
x=−L1

= 0 (141)

and (
A2

M2

∂m(2)
x

∂x
−

λ
(2)
⊥

2M2
m(2)

x +
A12

M2
m(2)

x

)∣∣∣∣∣
x=−L1−d

− A12

M1
m(1)

x

∣∣∣
x=−L1

= 0 (142)

Because the Hoffmann boundary conditions were adapted at the magnet–spacer in‑
terfaces and the Rado–Weertman boundary conditions at the top and bottom magnetic
surfaces, we must use the dipole‑exchange framework which has been already discussed
for thin films and results in a 6 × 6 BCD equation to determine the SW frequencies for a
single magnetic film. In the present case, we have two mutually coupled magnetic layers
and must solve a 12 × 12 BCD equation to obtain the SW frequencies. We have already
given the explicit expressions of mx and my in Equations (37) and (38). Grünberg and his
coworkers successfully showed the oscillatory behavior of theA12 constant as a function of
the spacer layer thickness in Fe/Cr/Fe trilayers using the BLS technique [40]. They found
the giant magnetoresistance (GMR) effect in the anti‑parallel state of the layer magnetiza‑
tions [88]. In the anti‑parallel magnetization state, the spin‑flop phenomena can be induced
by the external magnetic field [89,90].

In magnetic multilayers (MMLs) and superlattices (MSLs), a fundamental structure,
for example magnetic layer 1 on magnetic layer 2, is stacked an arbitrary number of times.
SWs, as a whole of the multilayers and superlattices, are constructed from the DE or UDE
mode in each magnetic layer. As an example, we consider a (M1/M2)3 multilayer. Here,
the (M1/M2)3 symbol means that the fundamental unit consisting of magnetic layers M1
and M2 is repeated three times. We can successively apply the appropriate boundary con‑
ditions at each interface and solve a BCD equation to obtain the MML and MSL SW frequen‑
cies [37]. In this example, we employed the second setting for the origin of the x‑axis shown
in the right‑hand side of Figure 23. We set x = 0 at the center of the top M1 layer. When
we set susceptibilities to zero in the M2 layers, the M2 layers can be treated as nonmag‑
netic spacer layers. In contrast, when a nonmagnetic layer undergoes a magnetic phase
transition, for example Fe/Gd multilayers, we can examine SW dynamics near the phase
transition. In order to make our discussions clear and easy, we assumed no MAE and IEC
for the magnetic layers. Because the calculations are rather straightforward but tedious
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even under these simplifications, I only show the final result. It is a 12 × 12 BCD equation
given by Equation (143).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ma mb
m1 m2 m3 m4
m5 m6 m7 m8

m9 m10 m11 m12
m13 m14 m15 m16

m1 m2 m3 m4
m5 m6 m7 m8

m9 m10 m11 m12
m13 m14 m15 m16

m1 m2 m3 m4
m5 m6 m7 m8

mc md

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (143)

Here, we give ma to md elements in a matrix form for convenience’s sake.

ma mb
m1 m2 m3 m4
m5 m6 m7 m8

m9 m10 m11 m12
m13 m14 m16 m16

mc md



=



1 − Λ(1)
+ α−1

(
1 + Λ(1)

−

)
1 α −1 −α

Λ(1)
+ −αΛ(1)

− −Λ(2)
+ αΛ(2)

−
γ−1 β −1 −α−1

γ−1Λ(2)
+ −βΛ(2)

− −Λ(1)
+ α−1Λ(1)

−
γ
(

1 + Λ(2)
+

)
β
(

Λ(2)
− − 1

)


,

(144)

in which α = exp(−Q//L1), β = exp(−Q//L2), γ = exp(−Q//Λ) (Λ = L1 + L2), and Λ(j)
±

(j = 1, 2) have been defined in Equation (131). The rest of the determinant and matrix ele‑
ments are all zero. It is clear that the elements m1 to m16 appear as a set in Equation (143).
This set is the algebraic description of the M1/M2 structure. When we insert an additional
set into Equation (143), we have SWs in the (M1/M2)4 multilayer. In this way, we can gener‑
ate an arbitrary number of (M1/M2) stacking MMLs. This approach is quite intuitive and,
of course, it is possible to take into account the MAEs and IECs into the above framework
of the SW frequency calculations; to do so, we must solve a huge and complicated BCD
equation.

Another approach to obtain the MSL SWs was developed by Camley, Rahman, and
Mills [39]. For an infinite stack of periodic structures with the periodic length Λ, the prop‑
erty of translational invariance gives us Bloch’s theorem. In the present case, Bloch’s theo‑
rem requires the magnetic potential φ(x) to satisfy

φ(x + Λ) = exp(−iQ⊥Λ)φ(x) (145)

and
φ(x) = exp(−iQ⊥x)u(x) (146)
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where u(x) is a periodic function which satisfies u(x + Λ) = u(x), and Q⊥ is a wave vector
confined to the first Brillouin zone, 0 ≤Q⊥ ≤π/Λ. For nth layer, we can write the magnetic
potential in the nth layer as

u(M1)(x) = exp[iQ⊥(x + nΛ)][A exp{−Q//(x + nΛ)}+ B exp{Q//(x + nΛ)}] (147)

for 0 ≤ x + nΛ ≤ −L1 and

u(M2)(x) = exp[iQ⊥(x + nΛ)][C exp{−Q//(x + nΛ)}+ D exp{Q//(x + nΛ)}] (148)

for –L1 ≤ x + nΛ ≤ −Λ, respectively. By virtue of Bloch’s theorem, four amplitude vari‑
ables,A toD, are enough for our discussions. We consider MSL SWs propagating along the
y‑direction and apply the magnetic boundary conditions at x = −Λ and −Λ−L1. Finally,
we obtain a 4 × 4 BCD equation to determine the bulk SL SW frequencies.∣∣∣∣∣∣∣∣∣

αδ δ −β−1 −γ
1 α −1 −α

αδΛ(1)
+ −δΛ(1)

− −β−1Λ(2)
+ γΛ(2)

−
Λ(1)

+ −αΛ(1)
− −Λ(2)

+ αΛ(2)
−

∣∣∣∣∣∣∣∣∣ = 0 (149)

in which α = exp(−Q//L1), β = exp(−Q//L2), γ = exp(−Q//Λ), and δ = exp(iQ⊥Λ).
When we replace magnetic layer 2 with a nonmagnetic layer, Λ(2)

± = 1, Equation (149) can
be reduced into

[1 + Λ+Λ−]sinhQ//L1sinhQ//L2 + (cosh Q//L1 cos Q//L2 − cos Q⊥Λ)[Λ+ + Λ−] = 0 (150)

We write Λ(1)
± as Λ± for convenience’s sake. The bulk MSL SW frequency is found

to be (
ω

γ

)2
=

H(H + 4πM)

1 + ∆
+

∆
1 + ∆

[
H2 + (H + 4πM)2

]
(151)

Here, the MSL band factor ∆(Q//, Q⊥) is defined by

∆(Q//, Q⊥) =
sinhQ//L1sinhQ//L2

cosh Q//L1 cos Q//L2 − cos Q⊥Λ
(152)

For a semi‑infinite MSL, we cannot apply Bloch’s theorem because of the MSL surface,
which violates the translational invariance. Taking into account the infinite MSL discus‑
sions, let us assume the magnetic potentials at the nth period are as follows:

φ
(M1)
n (x) = exp(−εnΛ)[A exp{−Q//(x + nΛ)}+ B exp{Q//(x + nΛ)}] (153)

for 0 ≤ x + nΛ ≤ −L1 and

φ
(M2)
n (x) = exp(−εnΛ)[C exp{−Q//(x + nΛ)}+ D exp{Q//(x + nΛ)}] (154)

for –L1 ≤ x + nΛ ≤ −Λ. Here, ε is a positive attenuation parameter of MSL surface mode.
We can eliminate C andD from the boundary conditions and obtain another homogeneous
equation on A and B given as(
Λ(2)

+ − Λ(1)
+

)
[1 − exp(−Q//L1) exp(−εΛ) exp(Q//L2)]A

+
(

Λ(2)
+ + Λ(1)

−

)
[exp(−Q//L1)− exp(−εΛ) exp(Q//L2)]B = 0,

(155)

and
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(
Λ(1)

+ + Λ(2)
−

)
[exp(−Q//L1) exp(−εΛ)− exp(Q//L2)]A

+
(

Λ(2)
− − Λ(1)

−

)
[exp(−εΛ)− exp(Q//L2) exp(−Q//L1)]B = 0.

(156)

From Equations (155) and (156), the attenuation parameter ε is required to satisfy

2
[
Λ(2)

+ Λ(2)
− + Λ(1)

+ Λ(1)
−

]
sinh(Q//L2)sinh(Q//L1)

+
(

Λ(2)
+ Λ(1)

− + Λ(1)
+ Λ(2)

−

)
[cosh{Q//(L2 − L1)} − cosh(εΛ)]

+
(

Λ(1)
+ Λ(2)

+ + Λ(1)
− Λ(2)

−

)
[cosh{Q//(L2 + L1)} − cosh(εΛ)] = 0.

(157)

Finally, we must include the boundary conditions at the surface. By eliminating the
magnetic potential outside MSL, we obtain

α
[
Λ(1)

+ − 1
]

A −
[
Λ(1)

− + 1
]

B = 0 (158)

The dispersion relation of the MSL surface SWs is given as∣∣∣∣∣∣
(

Λ(2)
+ − Λ(1)

+

)(
1 − αβ−1κ

) (
Λ(1)

− + Λ(2)
+

)(
α − β−1κ

)
α
(

Λ(1)
+ − 1

)
−
(

Λ(1)
− + 1

) ∣∣∣∣∣∣ = 0. (159)

Here, we defined κ = exp(−εΛ). Equation (159) gives the dispersion relation of the
surface modes.(

Λ(1)
− + 1

)(
Λ(2)

+ − Λ(1)
+

)(
1 − αβ−1κ

)
+
(

Λ(1)
+ − 1

)(
Λ(1)

− + Λ(2)
+

)(
α2 − αβ−1κ

)
= 0 (160)

Now, we replace magnetic layer 2 by a nonmagnetic layer again and write Λ(1)
± as Λ±

for convenience’s sake. Equation (160) gives

(Λ− + 1)(1 − Λ+)
(
1 − αβ−1κ

)
+ (Λ+ − 1)(Λ− + 1)

(
α2 − αβ−1κ

)
= 0

(Λ+ − 1)(Λ− + 1)sinhQ//L1 = 0
(161)

Equation (161) gives us three solutions: Λ+ − 1 = 0, Λ− + 1 = 0, and sinhQ//L1 = 0.
However, all three of these solutions cannot be the eligible surface SWs. Readers should
note that Λ± in this review corresponds to Λ∓ in the original paper. For example, we ob‑
tainedA ̸=0 and B = 0 for the Λ+− 1 = 0 solution from Equation (158). Equation (155) is au‑
tomatically satisfied, and Equation (156) gives exp(−Q//L1) exp(−εΛ)− exp(Q//L2) = 0.
Because this equation gives a negative ε, the Λ+ − 1 = 0 solution cannot be an eligible sur‑
face mode. On the other hand, the Λ− + 1 = 0 solution gives a positive ε for L1 > L2 and
thus can be an eligible surface mode. In fact, Grimsditch et al. observed BLS from the
surface mode only for an MSL with a magnetic layer thicker than the nonmagnetic spacer
layer [91]. The surface mode frequency was found to be [39]

ω

γ
= H + 2πM (162)

This frequency is exactly the same as the DE mode frequency given by Equation (52)
for a semi‑infinite magnet. We can readily reject the sinhQ//L1 = 0 solution for SWs
propagating along the y direction because of the real quantity Q//L1 ̸=0. This mode can
exist within the bulk SW band given by Equation (41).

Because a large number of reports on BLS from MMLs and MSLs have been already
published, I have not enough space to mention them. I recommend that the reader refer
to the references in this review and the most recent publications.

We examined the SWs in [Fe (30 Å)/Cr(xÅ)] (x = 8–60 Å) MMLs prepared at IMR by rf‑
sputtering on quartz substrate [92]. The total thickness of each MML was fixed at ~1000 Å.
BLS spectra were excited by the 4880 Å line from an Ar+ laser with a power of ~80 mW
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with ϑ = 15◦ (Q// = 0.67 × 105 cm−1). Figure 25a shows the SW frequencies as a function
of the magnetic field for Fe (30 Å)/Cr(21 Å) MML. The Fe (30 Å)/Cr(21 Å) MML shows a
typical ferromagnetic loop.
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Figure 25. (a) SW frequencies as a function of the magnetic field for the [Fe(30 Å)/Cr(21 Å)] MML. The
solid lines show the calculated SW frequencies by using Equation (151) with Q// = 0.67 × 105 cm−1,
γ/2π = 2.88 GHz/kOe, and 4πM = 18.0 kG. The inset shows the SW frequencies as a function of the
Q//Λ parameter. (b) SW frequencies as a function of the magnetic field for [Fe(30 Å)/Cr(13 Å)] MML.
The solid lines were calculated by using Equations (162)–(164) below H = 1.15 kOe and by Equation
(151) above H = 1.15 kOe [92].

The solid line in Figure 25a was calculated by using Equations (151) and (152) with
g = 2.06 (γ/2π = 2.88 GHz/kOe), 4πM = 18.0 kG, L1 = 30 Å, and L2 = 21 Å. The calculated
line shows excellent agreement with the observed frequencies. The inset shows the SW
frequencies at H = 3.0 kOe as a function of the Q⊥Λ parameter in Equation (152). It is clear
that the SW band frequency became independent of theQ⊥Λ parameter aboveQ⊥Λ~π/10.
It means that BLS observed the lower bound of the bulk SW band. Because the mag‑
netic layer thickness of the tested MML was thicker than the nonmagnetic Cr spacer layer,
we expected to observe scattering from the surface SW peak at the frequency given by
Equation (162). The surface SW frequency was expected to be ~27 GHz at H = 0.5 kOe and
~35 GHz at H = 3.0 kOe. Because our FPI mirror spacing was set to 5 mm in this study, the
surface SW peak was unfortunately masked by the intense ghost peak from the adjacent
interference order. Figure 25b shows the SW frequencies as a function of the magnetic field
for Fe (30 Å)/Cr(13 Å) MML. I performed an additional measurement at H = 0.9 kOe and
added the result in Figure 25b. The in‑plane hysteresis loop from the Fe (30 Å)/Cr(13 Å)
MML indicates the antiferromagnetic structure of the magnetizations between adjacent Fe
layers under zero magnetic field. The loop indicates the in‑plane canted structure below
~1.2 kOe and the ferromagnetic aligned structure above ~1.2 kOe. We can define the transi‑
tion of the magnetic fieldHC from the canted state to the ferromagnetic state. We observed
an SW doublet on both frequency sides below H = 1.1 kOe. To the contrary, we observed
an SW singlet above 1.2 kOe. When we take account the hysteresis loop result, the SW
doublet is clearly related to the canted magnetization state. Generally speaking, the mag‑
netic unit cell in the canted state is essentially the same as in the antiferromagnetic state
and is double the unit cell in the ferromagnetic state. Therefore, we can expect a doublet of
SW peaks in the canted state and a singlet bulk SW peak in the ferromagnetic state. Nörte‑
mann et al. calculated SW frequencies of the dipole modes in an exchange‑coupled MML
with a canted ground state in terms of the effective‑medium theory [90]. The most striking
feature of their results is the mode crossing between the upper bulk SW band and the sur‑
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face mode around ~HC/2. For a semi‑infinite canted stack without the MAE and the SWs
propagating perpendicular to the net magnetization, the SW frequencies, except the mode
crossing region around ~HC/2, in the canted state are given as

ω1/γ = (H)1/2(H + 4πMSL cos α)1/2 (163)

and
ω2/γ = H + 2πMSL cos α (164)

The equilibrium canting angle α (note that 2α is the true canting angle between the
adjacent magnetizations) is given as

cos α =
H

2(HE/N)
=

H
HC

(165)

Here, HE is the interlayer exchange field and N is the number of atomic layers in the
MML. The solid lines in Figure 25b were calculated by Equations (163)–(165) belowHC and
by Equation (151) above HC with the magnetic constants g = 2.06 (γ/2π = 2.88 GHz/kOe),
4πM = 17.5 kG, HC =1.15 kOe, L1 = 30 Å, and L2 = 13 Å. Agreement in the canted state
below HC was not satisfactory. For a possible reason, we consider that our MML consists
of only 11~12 canted units, which is given by 2[Fe (30 Å)/Cr(13 Å)]. On the other hand, the
effective‑medium theory assumes a semi‑infinite or a large number of canted stacks with
ideal sharp interfaces.

So far, our discussion on IEC has been based on the assumption that the asymptotic
limit is applicable. The term “asymptotic limit” means that the coupling is independent of
the ferromagnetic layer thickness, and that the interlayer thickness is large as compared to
the Fermi wavelength λF = 2π/kF, which is typically either ~5 Å or a few monolayers (MLs)
in many metals [93]. For thicknesses below λF, IEC cannot be described by our previous
theoretical framework, and we should apply more a fundamental numerical method, for
example, ab initio, by the self‑consistent full‑potential linearized augmented‑plane‑wave
(FLAPW) method. Fine‑layered [Fe (n ML)/Au (n ML)]m SLs with n = 1 to 5, for which we
use the abbreviation (n)m, were prepared by means of the MBE on MgO(001) substrates
at IMR, Tohoku University. The total numbers of Fe and Au atomic planes were kept con‑
stant. We use the term “fine‑layered” SLs (FLSLs) for SLs with layer thicknesses compara‑
ble or smaller than the Fermi wavelength. The Fe(1 ML)/Au(1 ML) FLSL corresponds to
the ordered alloys with the tetragonal L10 structure, which exists in the equilibrium phase
diagram for Fe1Pt1 alloy but not for the Fe1Au1 alloy.

BLS spectra at 300 K were excited by the p‑polarized 5320 Å/150 mW line from a DPSS
laser, and a cross‑polarized analyzer was inserted in front of a tandem FPI to eliminate scat‑
tering from SAWs [94,95]. Magnetic fields of up to 7 kOe were applied along the crystal‑
lographic

(
110
)

direction, and the SWs propagating along the (110) direction were exam‑
ined. Typical spectrum accumulation time was around 2h. Figure 26 displays BLS spectra
observed from (n)m FLSLs in an external magnetic field of 3.0 kOe.

Here, the symbol of n = 2 ± δ indicates an average ML, and δ = 0.25 and 0.5. The total
thickness LSL of the (1.5)30 FLSL is 145 Å, and it is 269 Å for the (2.5)30 FLSL. The SSW struc‑
ture can be clearly seen, and the labels 1 to 4 on each spectrum stand for the corresponding
SSW mode number. Figure 27 shows a comparison of the BLS spectra observed from the
integer‑type FLSLs.
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The even integer‑type FLSLs exhibited clear SSW structures, but not the odd integer‑
type FLSLs. Furthermore, the noninteger‑type spectra shown in Figure 26 can be smoothly
connected between the (2)50 and (3)33 spectra. These observations indicate that the interac‑
tions leading to the occurrence of SSW systematically changed as a function of the ML num‑
ber n. In order to analyze these results, we regarded the FLSLs as diluted magnetic Fe/Au
alloy films with uniaxial MAEs perpendicular to the film plane and anisotropic exchange
couplings. The magnetization of the alloy was assumed to be given by M = MFedFe/(dFe +
dAu) = MFedFe/ΛSL. Here, d is the thickness of each layer (dFe = 3.00 Å and dAu = 4.27 Å) and
MFe = 2.65 ± 0.2 µB per Fe atom. The nth SSW frequency is given as

∆ν(n) =
γ

2π
(H + Hex(n))

1/2
(

H + Hex(n) + 4πMe f f

)1/2
(166)

and

Hex(n) = D//Q2
// + D⊥

(
nπ

LSL

)2
∼= D⊥

(
nπ

LSL

)2
(167)

Here, 4πMeff has been already given by Equation (93), and LSL is the total thickness
of the FLSL, which was found to be 364 Å with XRD measurement. Figure 28 shows the
SSW frequencies as a function of the external magnetic field for the (2)50 FLSL.
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Figure 27. A comparison of BLS spectra observed from the integer‑type FLSLs. The experimental
conditions were the same as the ones given in Figure 25. The labels 1 to 5 and DE stand for the SSW
modes and the DE mode, respectively [95].
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Figure 28. Magnetic field dependence of the SW frequencies for the (2)50 FLSL. The inset shows
the BLS spectrum from the (2)50 FLSL at H = 3.0 kOe. The solid lines were calculated for the
SSWs by using Equations (166) and (167) with the magnetic constants γ/2π = 2.8 GHz/kOe (g = 2.0),
4πMeff = 0.75 kG, and D⊥ = 2.4 × 10−10 Oe·cm2 [94].

It can be readily seen that the magnetic moment was not fully saturated below
H < 4 kOe. Because we confirmed that the DE mode was superimposed on the n = 2 SSW
peak through the surface dispersion examination by changing the scattering angle ϑ in
Equation (1) from 15◦ (Q// = 0.61 × 105 cm−1) to 45◦ (Q// = 1.67 × 105 cm−1) and that the
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DE mode does not contribute to the information on the exchange, the DE mode was there‑
fore not included in the present analysis. We obtained a set of the magnetic constants given
by γ/2π = 2.8 GHz/kOe (g = 2.0), 4πMeff = 0.75 kG, and D⊥ = 2.4 × 10−10 Oe·cm2. Figure 29
shows the IEC constant Ji as a function of the atomic plane n.
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Figure 29. The IEC constant Ji as a function of n. The solid circles (•) are the BLS results, and the
open circles (#) are the ab initio results [95].

We observed a pair of DE peaks for a (1)30 FLSL but observed the SSW structure up
to n = 3 SSW for a (1)100 FLSL. The Ji constant was evaluated by using Ji = 2MD⊥/aFe, in
which aFe = 2.87 Å is the lattice constant of Fe. The open symbols stand for the ab initio
results. Overall agreement between the BLS and ab initio results was fairly good, except for
n = 3. The ab initio calculation predicted an antiferromagnetic ground state. We consider
the discrepancy between the BLS and ab initio results for n = 3 stemmed from interface
roughness. Because the IECs for n = 2 and 4 were ferromagnetic, the antiferromagnetic
IEC for the ideal n = 3 FLSL may have been smeared for long‑wavelength SWs detected
with the BLS technique. For pure Fe films in full contact, the Ji value was expected to
be 140 erg/cm2. Hence, the present value of Ji~44 erg/cm2 for the (1)100 FLSL seems to
be reasonable. According to the ab initio calculations, d electrons from the Fe atom were
almost isolated even by 1 ML of the Au layer. The IEC was transmitted by itinerant sp
electrons via second‑order processes.

Figure 30 shows the perpendicular anisotropy field and the g‑factor as a function of
the atomic layer.

The solid line represents the 1/n dependence given by HA(n) = 22/n − 1.8 (kOe). The
1/n dependence was expected from the interface out‑of‑plane anisotropy, as we have al‑
ready discussed for the Fe wedge sandwiched by the Au layers. The anisotropy fieldHA(n)
is defined as

HA(n) =
8π

4πMSL

(
K⊥ +

2k(s)⊥
ΛSLn

× 108

)
(168)

When we ignore the bulk term in Equation (168) and use 4πMSL = 10.7 kG, we obtain
a value of k(s)⊥ ≈ 0.34 erg/cm2. This value is in reasonable agreement with the values deter‑
mined from the Fe wedge (see Figure 20) [79]. It is also clear that 4πMeff = 4πMSL − HA(n)
changes its sign from positive to negative around n~2. As we have already discussed for
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the Fe wedge, it means the in‑plane magnetization state changes into the perpendicular
magnetization state under zero magnetic field. The present Fe/Au FLSL and the Fe wedge
sandwiched by the Au layers gave consistent results on the in‑plane and out‑of‑plane tran‑
sitions of the zero field magnetization state. Another interesting observation is the rather
rapid change of the g‑factor from the bulk value of 2.09 above n ≥ 4 to the free electron
value of 2.00 below n ≤ 2. We also found that the g‑factor of the Fe wedge at 2.6 Å was
very close to 2.00.
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5.5. Nanogranular Films
Transition metal (TM = Fe, Co)‑based granular films are higher‑potential materials

for various magnetic applications, for example, high‑density longitudinal magnetic record‑
ing media (CoPt‑SiO2), high‑frequency micromagnetic cores (CoFeB)‑(SiO2), GMR sensors
(Co‑Al‑O), and so on [55]. Among these granular materials, TM‑Al‑O granular films are
interesting materials for both basic magnetic research and for technological applications.
Over the last twenty years, we have performed systematic studies on the magnetic and
transport properties of TM‑Al‑O nanogranular films with the research groups of IMRAM
and IMR, Tohoku University, and RIEMM, Sendai [54,55,96–101]. Readers who are inter‑
ested in our results on transport and magnetization properties can refer to our references;
here, I concentrate on our BLS results. It is well‑known that the magnetic properties of
TM‑Al‑O (TM = Fe, Co) granular films strongly depend on the TM composition. For ex‑
ample, for the Co composition x(Co) above ~70 at. %, Co‑Al‑O films are in a ferromag‑
netic (FM) ground state with a lower coercive field of HC > 10 Oe. On the other hand,
for x(Co) = 60~70 at %, TM‑Al‑O films exhibit reasonable soft magnetic properties with
HC < 10 Oe, whereas Co‑Al‑O films with x(Co) = 40~60 at % are in a superparamagnetic
(SPM) state. I have already shown a BLS spectrum obtained from FM Co‑Al‑O films pre‑
pared at RIEMM in Figure 3 and the SW frequencies as a function of the magnetic field for
a FM Fe64‑Al19‑O17 film prepared at RIEMM in Figure 5 [54]. The TM‑Al‑O nanogranular
films consist of TM crystalline particles of up to several nm in diameter. The TM particles
are surrounded by a nonmagnetic Al‑O grain boundary of ~1 nm in thickness. In spite of
the granular structure, we could observe well‑defined SW spectra as shown in Figure 3,
and we found that the SW frequencies, as a function of the magnetic field, are fully de‑
scribed by using Equations (49) and (50) as developed for uniform FM films (see Figure 5).
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As already shown in Figure 5, the small exchange field term Hex = DQ2 = 0.32 kOe is im‑
portant to reproduce the observed bulk SW frequency. As I have already mentioned, we
cannot determine the SW stiffness constant D from the exchange field term. We found the
resistivity ρ of the FM TM‑Al‑O granular films obeys the T2 law in a wider temperature
range below 200 K. Although the T2 law can be expected from magnon scattering of con‑
duction electrons at low temperatures, it has not been fully confirmed yet for FM metals,
probably due to the much larger T5 term by phonon scattering. Because magnon resis‑
tivity also depends on the exchange stiffness constant D, and the magnon T2 term can be
replaced by (T/D)2, we can therefore expect the inverse‑square law ρ∝(Hex)−2. Figure 31
shows a log ρ vs log Hex plot. We obtained ρFe = 30.3(Hex)−2 µΩ·cm and ρCo = 22.1(Hex)−2

µΩ·cm, respectively. Here, Hex is in the kOe unit [54].
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Figure 31. A log–log plot between ρ and HE for Co‑Al‑O (#) and Fe‑Al‑O (□) granular films. The
solid lines give the power law given by ρ = a(Hex)−2. We obtained aFe = 30.3 µΩ·cm·(kOe)2 for the
Fe‑Al‑O films and aCo = 22.1 µΩ·cm·(kOe)2 for the Co‑Al‑O films [54].

Hereafter, I would like to concentrate on the Co‑Al‑O granular films prepared at
RIEMM. Figure 32 shows a series of cross‑polarized BLS spectra observed at room temper‑
ature from the FM and SPM Co‑Al‑O granular films in a magnetic field ofH = 2.0 kOe [101].

These spectra were excited by the p‑polarized 4730 Å line from a DPSS laser with an
output power of 30 mW and accumulated over 5 h to improve the S/N ratio. The peak
intensity of each spectrum was normalized by the total spectrum accumulation times. By
virtue of the p → s polarization selection, the SAW scattering was completely suppressed.
The solid squares in Figure 33 show the integrated intensity of the Stokes peak. The inte‑
grated intensity of the bulk SW in the FM state suddenly jumped in the FIM state. In order
to determine the FM–SPM boundary, the exchange field Hex proved a good guide. The
inverse‑square relation between the exchange fieldHex (kOe) and the resistivity ρ (µΩ·cm)
gives us Hex = (22.1/ρ)1/2 kOe for FM Co‑Al‑O films [54]. We calculated the exchange field
Hex using our resistivity data ρ, and we show the calculated exchange fields by the open
circles in Figure 33.
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Figure 32. BLS spectrum from the SPM and FM Co‑Al‑O films at room temperature under an external
magnetic field of 2.0 kOe. Here, (a) x(Co) = 72.4, (b) x(Co) = 67.5, (c) x(Co) = 63.1, (d) x(Co) = 50.3,
and (e) x(Co) = 49.9, respectively. The baseline for each spectrum was properly shifted for clarity’s
sake. The solid lines give the numerical fits by the CM theory. The vertical broken lines indicate
the frequency area in which the AOMs were activated to protect the PMT. An intensity‑attenuated
elastic Rayleigh peak around zero frequency is also displayed. This peak gives the instrumental
function [101].
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peak structure on the positive frequency anti-Stokes (SW annihilation process) side and a 
single peak on the negative frequency Stokes (SW creation process) side under the pre-
sent experimental conditions. These spectral features are typical for a SW spectrum from 
a thick FM film. An opaque magnetic film with a thickness of ∼λ/2 can be treated as a 
semi-infinite magnet in the BLS experiment, as I have already mentioned. Here, the labels 
DE and B refer to the DE and bulk SW peaks, and the subscript S and AS refer to the 
Stokes and anti-Stokes processes. Note that the DE peak height is higher than that of the 
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Figure 33. Integrated intensity (solid square) of the Stokes peak of BLS spectra shown in Figure 32
and the exchange field Hex (#) calculated from the inverse‑square law for the FM films as a function
of x(Co). The green solid line givesHex = 23.9× 10−3 (x(Co)− 59.3) kOe obtained from a least‑squares
fitting [101]. The broken line indicates the FM/SPM boundary given by Hex = 0.
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We also expected a linear relation Hex∝ x− xC, in which xC is the FM–SPM boundary
concentration. The solid line in Figure 33 displays Hex = 23.9 × 10−3(x(Co) − 59.3) (kOe)
determined using the least‑squares method. With this result, we determined the SPM‑
FM boundary in the Co‑Al‑O nanogranular system was located at xC(Co) = 59.3 ± 1.3.
The SPM–FM boundary can be characterized as a Co atomic concentration at which the
exchange stiffness constant D vanishes. Therefore, we should take into account both the
exchange and dipole coupling for the FM films. On the other hand, we can ignore the
exchange coupling in the BLS spectrum calculation for the FIM state of the SPM films.

There is a distinct difference between the bottom three FM spectra, (a) through (c),
and the top two SPM spectra, (d) and (e). The FM spectrum exhibited a characteristic
dual peak structure on the positive frequency anti‑Stokes (SW annihilation process) side
and a single peak on the negative frequency Stokes (SW creation process) side under the
present experimental conditions. These spectral features are typical for a SW spectrum
from a thick FM film. An opaque magnetic film with a thickness of ~λ/2 can be treated
as a semi‑infinite magnet in the BLS experiment, as I have already mentioned. Here, the
labels DE and B refer to the DE and bulk SW peaks, and the subscript S and AS refer to
the Stokes and anti‑Stokes processes. Note that the DE peak height is higher than that of
the FM bulk peaks in (a) through (c). On the other hand, it is quite interesting to note
that only a broad but intense peak appears on both frequency sides in the SPM spectra.
It seems to be a general feature of BLS spectra from the SPM state. In fact, broad BLS
peaks have been also observed in CoPt‑SiO2 granular films [102] and (SiO2)100−xCox gran‑
ular films [103]. Hereafter, for convenience’s sake, let us define the magnetization‑induced
state under an external magnetic field in an SPM film as the field‑induced magnetization
(FIM) state. These FIM peak frequencies were quite sensitive to the external magnetic field
H. The peak frequencies increased with the increasing magnetic field. It is also an interest‑
ing observation that the peak frequency in the anti‑Stokes side was about 1 GHz higher at
most than the peak frequency in the Stokes side. Damon and Eshbach discussed a dipole‑
coupled ferromagnetic slab and obtained a nonreciprocal DE mode in addition to the bulk
SW band [24]. This means that we can expect a singlet‑doublet SW structure for a BLS spec‑
trum from an FIM slab. The peak frequency difference of ~1 GHz between the Stokes and
anti‑Stokes sides is probably due to the DE mode, which only appears in the anti‑Stokes
side in our scattering geometry (see Figure 32a–c). In order to separate the bulk and DE
peaks and determine the peak frequency, peak width, and intensity from the observed
broad peak, numerical spectrum analysis is strongly required. For quantitative analyses
of BLS spectra beyond the peak frequency discussions we have performed so far, we em‑
ployed the CM theory, which has been developed for semi‑infinite magnets, by taking into
account both the dipole and exchange couplings [29]. The CM theory can fully reproduce
the singlet‑doublet SW structure for a BLS spectrum from a ferromagnetic slab, as shown
in Figure 32a–c. According to the CM theory, the SW response function S(Q//, ω) is given
by rather complicated formulae:

S(Q//, ω) ∝ n(ω, T) cosϑ |γs(ϑ)|2
(ω0

c
)4Im

∞∫
0

dz
∞∫
0

dz′ exp
[
i∆k⊥z − i∆k∗⊥z′

]
×{Rzzχzz(z, z′|ω) + Rxxχxx(z, z′|ω) + Rxzχxz(z, z′|ω) + Rzxχzx(z, z′|ω)}.

(169)

Here, n(ω, T) is the Bose–Einstein (BE) factor,Rzz,Rxx,Rzx, andRxz are the SW‑photon
coupling constants, and χzz, χxx, χzx, and χxz are the dynamical susceptibilities defined in
Equations (79) and (80). The observed BLS spectrum should be compared with a convo‑
luted spectrum between the SW response function S(Q//, ω) and an instrumental function.
We employed the intensity‑attenuated Rayleigh peak as the instrumental function (see
Figure 32). The solid lines in Figures 32 and 34 display a comparison between the observed
spectra and the calculated spectra in the FM state and in the FIM state.
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Figure 34. Comparison of BLS spectra observed from the x(Co) = 50.3 SPM film at H = 2.0 and 4.6 
kOe. The solid lines on the observed spectra (○) give the numerical fits obtained via the CM theory. 
Figure 34. Comparison of BLS spectra observed from the x(Co) = 50.3 SPM film atH = 2.0 and 4.6 kOe.
The solid lines on the observed spectra (#) give the numerical fits obtained via the CM theory. To
show the singlet‑doublet structures, the calculated response function S(Q//,ω) with small damping
of 0.1 ≤ Γ/2π ≤ 0.15 GHz is indicated by the solid lines [101].

As shown in Figures 32 and 34, we could fully reproduce the observed BLS spectrum
by taking into account only the dipole coupling for SPM spectra with the damping con‑
stant of Γ/2π = 2.66 GHz for the H = 2.0 kOe spectrum and 2.26 GHz for the 4.6 kOe
spectrum. In order to clarify the singlet‑doublet structure, we recalculated the response
function S(Q//,Ω) with a small damping constant of 0.07 ≤ Γ/2π ≤ 0.15 GHz. We adjusted
the peak height of the Stokes peak of each spectrum in Figure 34. We found the doublet
peaks located at 16.5 GHz and 13.4 GHz at H = 2.0 kOe, and at 25.0 GHz and 22.8 GHz at
H = 4.6 kOe. Because the frequency splitting of 2~3 GHz between the doublet peaks and
the peak width were comparable, the FIM doublet actually appears as a single peak in a
BLS spectrum. The present numerical analysis reasonably explains why the anti‑Stokes
peak frequency is higher than the Stokes peak frequency.

Figure 35a is the magnetic field dependence of the bulk‑type and DE‑type peak fre‑
quencies in the FIM state determined by the numerical spectrum fitting with small damp‑
ing constants.

Because we have confirmed no remanent magnetization at zero magnetic field, the
FIM modes should be forbidden atH = 0. This means that the FIM mode frequencies should
approach zero as the magnetic field approaches zero. On the other hand, the peak frequen‑
cies displayed in Figure 35a seem to stay finite even at zero magnetic field. As an attempt
to solve this difficulty, we replaced the gyromagnetic ratio γ with a field‑dependent gyro‑
magnetic ratio γ(H), and the magnetization M with a field‑induced magnetization M//(H),
which is given by a sum of the Langevin functions. We thus rewrote Equations (51) and
(52) as follows:

2π∆νB(H)

γ(H)
= H1/2[H + 4πM//(H)]1/2 (170)

and
2π∆νDE(H)

γ(H)
= H + 2πM//(H) (171)

The corrected results are shown as a function of the magnetic field in Figure 35b by
filled circles for the bulk‑type mode and squares for the DE‑type mode. The solid lines
show the right‑hand side of Equations (170) and (171) with the calculated 4πM//(H) val‑
ues. Although agreement looks excellent as shown in Figure 35b, it should be recognized
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that Equations (170) and (171) are for the small‑amplitude precession motion around field‑
induced magnetization M//(H).
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Figure 35. (a) FIM peak frequencies obtained from the response function S(Q//,ω) with a small 
damping constant of 0.1 ≤ Γ/2π ≤ 0.15 GHz as a function of the magnetic field. (b) Field dependence 
of the FIM excitation frequencies divided by γ(H)/2π as a function of the magnetic field: (●) 
bulk-type mode and (■) DE-type mode. The solid lines show the frequencies calculated by using 
the right side of Equations (170) and (171) incorporating the 4πM//(H) result [101]. 

Because we have confirmed no remanent magnetization at zero magnetic field, the 
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Figure 35. (a) FIM peak frequencies obtained from the response function S(Q//,ω) with a small damp‑
ing constant of 0.1 ≤ Γ/2π ≤ 0.15 GHz as a function of the magnetic field. (b) Field dependence of
the FIM excitation frequencies divided by γ(H)/2π as a function of the magnetic field: (•) bulk‑type
mode and (■) DE‑type mode. The solid lines show the frequencies calculated by using the right side
of Equations (170) and (171) incorporating the 4πM//(H) result [101].

So far, I have shown that BLS is a unique technique for investigation of the magnetiza‑
tion dynamics of various opaque magnetic structures in the GHz frequency range. How‑
ever, most of the BLS studies of opaque magnetic structures have been performed at room
temperature, and few BLS studies have been performed at low temperature [12,104–107].
BLS studies of magnetization dynamics as a function of temperature is quite an interest‑
ing subject. As I have already pointed out, BLS intensity from opaque surfaces is much
weaker compared to the phonon scattering in transparent materials, even at room temper‑
ature. Another inevitable difficulty for scattering experiments stems from the BE factor,
which appears in the response function given by Equation (169). For conventional BLS
studies performed above 15 K and with a narrow frequency range below 30 GHz, we can
reasonably approximate the BE factor as follows:

n(ω, T) =
1

exp(ω/kBT)− 1
≈ kBT

ω
(172)

This approximation is known as the high‑temperature approximation (HTA). Now,
BLS intensity is directly proportional to the absolute temperature T. It is obvious that weak
BLS intensity from opaque surfaces, even at room temperature, gets weaker at lower tem‑
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peratures. Of course, we can apply an intense laser beam to increase BLS signals. However,
the intense laser beam results in a local‑heating effect at the beam spot. The local heating ef‑
fect will be critical for phase transition studies. We must overcome these difficulties to step
forward into new frontiers of BLS studies on spin dynamics or magnetization dynamics at
low temperatures.

Figure 36 shows a comparison of the spectra observed under field‑cooling (FC) (+)
and zero‑field‑cooling (ZFC) (#) conditions with an external magnetic field of 4.0 kOe at
20 K [108].
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rameters, it plays an essential role, as we will discuss later. The inclusion of the HK term is 
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Figure 36. A comparison of the ZFC and FC BLS spectra observed at 20 K and H = 4.0 kOe. The
solid line shows numerical fits by the CM theory with the ZFC fitting parameters given in the text.
The broken line shows the numerical fit with the same ZFC parameters, except HK = 0. To show the
peak positions, the calculated response function S(Q//, ω) with a small damping of Γ/2π = 0.1 GHz
is included with a solid line [108].

After spectrum accumulation times over 6 h, we observed FC and ZFC spectra with
reasonable signal to noise ratios at 20 K. We found no substantial difference between these
spectra, as shown in Figure 36. For more detailed comparisons of these spectra, we prop‑
erly adjusted the peak heights of the singlet Stokes peak. The vertical broken lines indicate
a frequency range in which the AOMs were activated to protect the PMT from optical
damage by an intense Rayleigh peak. From our ZFC and FC magnetization measurements
at IMR, we estimated the blocking temperature TB of our sample to be ~110 K. The FIM
changed the temperature dependence from the SPM Langevin type above TB to the FM
power‑law type below TB. An effective magnetic anisotropy with an easy axis along the
applied magnetic field appeared in SPM granular systems below TB. For convenience’s
sake, we assumed a uniaxial‑type anisotropy field HK (=0.27 kOe). The solid lines in
Figure 36 show the calculated ZFC spectrum with the anisotropy field, and the broken
lines are the calculated ZFC spectrum without the anisotropy field term. It is obvious that
the anisotropy field term improves agreement between the observed and calculated spec‑
tra. Although the HK term was much smaller than the other fitting parameters, it plays
an essential role, as we will discuss later. The inclusion of the HK term is equivalent to re‑
placing the external magnetic fieldH with the effective fieldH +HK in Equations (170) and
(171). In order to display the SPM peak frequencies, we included a calculated spectrum for
a small peak‑width of Γ/2π = 0.1 GHz in Figure 36.

Figure 37 shows the temperature development of the BLS spectrum at 300, 100, and
15 K at H = 4.5 kOe.
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lations, we used a common peak width of Γ/2π for both the bulk and DE-type modes. In 
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Figure 37. Temperature development of the BLS spectrum in a temperature range between 300 and
15 K under a magnetic field of 4.5 kOe. The baseline of each spectrum, indicated by the broken line,
was properly shifted for clarity. The solid lines give the numerical fits obtained by the CM theory,
and the horizontal bars show the damping constant of the calculated spectra [108].

I included in Figure 32 an intensity‑attenuated (×1/5000) Rayleigh peak for the 300 K
spectrum. The solid lines on each spectrum give the calculated BLS spectra. In the calcu‑
lations, we used a common peak width of Γ/2π for both the bulk and DE‑type modes. In
spite of this simplification, agreements between the observed and calculated spectra were
reasonable. The horizontal bar on each spectrum shows the peak width for each calcu‑
lated spectrum. We found that the peak width at 100 K was wider than the peak widths
at 300 and 15 K. Figure 38 shows the SPM excitation frequencies and the peak width for a
magnetic field H = 4.5 kOe as a function of temperature.

The labels B and DE refer to the bulk and DE‑type peak frequencies, respectively.
These peak frequencies were nearly insensitive to temperature but slightly increased below
50 K. The HK term in Equations (170) and (171) gives the increasing frequencies at lower
temperatures. To the contrary, the peak width Γ/2π exhibited a broad peak centered at
~200 K, as shown in Figure 39. Figure 39 displays the peak width for the external fields of
H = 3.0 kOe (∆), 4.0 kOe (□), and 4.5 kOe (#) as a function of temperature.

The peak width clearly depends on both temperature T and the magnetic field H. We
observed a narrower width for a higher magnetic field. We performed an additional BLS
measurement under H = 2.0 kOe at 15 K. The inset shows a summary of the magnetic field
development of the peak width at 15 K. From the results shown in the inset, we can estimate
a limiting value of Γ(0, 15K)/2π~4 GHz for the peak width at 15 K and with zero magnetic
field. With these observations, it seems to be reasonable to decompose the peak width into
the following terms:

Γ(H, T)/2π = φ/2π + ς(H)/2π + ξ(T)/2π (173)

Here, the ϕ/2π term describes the peak width due to the scattering of the FIM excita‑
tions by the nonuniformity of granule sizes (or granule moments) within a film, and it is
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expected to be temperature‑ and magnetic field‑independent. The ζ(H)/2π term describes
the suppression of the incoherent motion of granule moments by the external magnetic
field. This term is responsible for our observation of the narrower widths for higher mag‑
netic fields. Finally, the ξ(T)/2π term describes the damping due to couplings between the
FIM excitations and another freedom of thermally‑excited magnetization dynamics. We
will concentrate on this term in our following discussions.
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Figure 38. Temperature development of the SPM peak frequencies (Bulk‑type (#) and DE‑type (■)
modes) and the damping constant (•) at 4.5 kOe. The SPM peak frequencies are determined from
the calculated response function S(Q//, ω) with Γ/2π = 0.1 GHz as shown in Figure 36. The solid
lines show the calculated SPM peak frequency and peak width when taking into account the magne‑
tization relaxation dynamics [108].

Materials 2023, 16, 1038 61 of 70 
 

 

the calculated response function ( )ω,QS //  with Γ/2π = 0.1 GHz as shown in Figure 36. The solid 
lines show the calculated SPM peak frequency and peak width when taking into account the 
magnetization relaxation dynamics [108]. 

The labels B and DE refer to the bulk and DE-type peak frequencies, respectively. 
These peak frequencies were nearly insensitive to temperature but slightly increased 
below 50 K. The HK term in Equations (170) and (171) gives the increasing frequencies at 
lower temperatures. To the contrary, the peak width Γ/2π exhibited a broad peak cen-
tered at ∼200 K, as shown in Figure 39. Figure 39 displays the peak width for the external 
fields of H = 3.0 kOe (Δ), 4.0 kOe (□), and 4.5 kOe (○) as a function of temperature.  

4

3

2

1

0

Pe
ak

 w
id

th
 (G

H
z)

300250200150100500
Temperature (K)

5

4

3

2

1

0

Pe
ak

 w
id

th
 (G

H
z)

543210
Magnetic field (kOe)

 
Figure 39. The peak width Γ/2π as a function of temperature at H = 3.0 kOe (Δ), 4.0 kOe (□), and 4.5 
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Figure 39. The peak width Γ/2π as a function of temperature at H = 3.0 kOe (∆), 4.0 kOe (□), and
4.5 kOe (#). The inset shows a magnetic field dependence of the peak widths at 15 K [108].

Since the pioneer work by Néel [109], the magnetization reversal dynamics in SPM
nanoparticles have been intensively investigated in a wide time scale between 102 s and
10−13 s by employing various experimental techniques: magnetization and dynamical sus‑
ceptibility measurements (with a time scale of 102 to 10−4 s), Mössbauer spectroscopy (with
a time scale of 10−8–10−9 s), neutron spectroscopy (with a time scale of 10−10–10−13 s), and
so on [110]. According to the Néel–Brown model, the thermally activated relaxation time
is given by [111]:

τ(T) = τ0 exp(∆E/kBT) (174)

Here, τ0 is the attempt relaxation time, ∆E =KV is the activation energy (or anisotropy
barrier), K is the magnetic anisotropy constant per particle volume, and V is the volume
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of the individual particles. For convenience sake, let us introduce the Debye relaxation
model [112] and replace the static FIM 4πM in Equation (170) with the dynamical FIM
4πM(ω) as follows:

4πM(ω) = 4πM(∞) +
4πM(0)− 4πM(∞)

1 + iωτ
= 4πM(∞) +

4π∆M
1 + iωτ

(175)

Here, 4πM(∞) and 4πM(0) are the limiting high‑frequency and low‑frequency FIMs,
and τ is the relaxation time already defined by Equation (174). Then, the bulk‑type SPM
excitation frequency ∆νB given by Equation (170) becomes a complex frequency. For the
weak relaxation case (H + HK + 4πM(∞) > >2π∆ M), the real and imaginary parts of the
SPM excitation frequency can be readily obtained as follows:

Re(∆νB) = fB = γ
2π (H + HK)

1/2(H + HK + 4πM(∞))1/2

+ γ
2π (2π∆M)

(
H+HK

H+HK+4πM(∞)

)1/2 1
1+ω2τ2

(176)

and

Im(∆νB) =
ξ

2π
=

γ

2π
(2π∆M)

(
H + HK

H + HK + 4πM(∞)

)1/2 ωτ

1 + ω2τ2 (177)

The peak width ξ/2π exhibits a maximum at a temperature for which the condition
ωB·τ(T) = 2πf B·τ(T) = 1 is satisfied. In order to determine the parameters τ0 and ∆E/kB
in Equation (174), we should perform at least two BLS measurements with different fre‑
quencies, f 1 and f 2, by simply changing the magnetic field. In the following discussions,
we will use the GHz unit for these frequencies. When we observe the peak‑maximum at
temperatures T1 and T2, then we can readily calculate the relaxation parameters τ0 and
KV/kB as follows:

KV
kBT1

=
T2

T2 − T1
ln
(

f2

f1

)
=

1
1 − β

ln
(

f2

f1

)
= ln

(
f2

f1

) 1
1−β

(178)

and

τ0 =
1

2π f1
exp

(
− KV

kBT1

)
=

1
2π f1

(
f1

f2

) 1
1−β

=
1

2π

[
f1

β

f2

] 1
1−β

× 10−9 s (179)

Here, we have defined β = T1/T2. Because our BLS measurements have been per‑
formed at limited temperatures, we adapted the least‑squares fourth‑order polynomial fit‑
ting to determine the peak‑maximum temperature. Therefore, our following discussions
are limited to qualitative ones. We obtained two sets of the parameters: (f 2 = 22.1 GHz,
T2 = 178 K) from the 4.5 kOe results and (f 1 = 16.5 GHz, T1 = 143 K) from the 3.0 kOe re‑
sults. In fact, we also have the excitation frequencies: f 2 = 22.4 GHz and f 1 = 16.9 GHz.
Because these frequencies involve the relaxation contribution given by Equation (176), we
corrected the contributions. Utilizing Equations (178) and (179), we obtained a set of re‑
laxation parameters: τ0 = 2.2 × 10−12 s and KV/kB = 213 K. It is interesting to compare the
present relaxation parameters with the ones for other nanogranular systems and also phys‑
ically different structural relaxation systems. Neutron scattering from ~15 nm hematite
particles detected a quasielastic peak due to SPM relaxation and propagative precession
peaks [113]. From temperature development of the quasielastic peak, the attempt relax‑
ation time of τ0 = 7 × 10−12 s and the anisotropy barrier KV/kB = 500 ± 200 K were deter‑
mined. Linderoth et al. obtained τ0 = 2 × 10−12 s and KV/kB = 428 ± 29 K for Fe‑C particles
by combining the magnetization with the Mössbauer techniques [114]. These values are in
the same order with the present values of τ0 = 2.2 × 10−12 s and KV/kB = 213 K. Much
longer attempt relaxation times of ~10−10 s have been reported on α‑Fe, α‑Fe2O3, and
γ‑Fe2O3 nanoparticle systems [110]. For comparison, we obtained τ0~4.0 × 10−18 s and
∆E = 0.55 eV (=6380 K in the temperature scale) for P[VDF‑TrFE] copolymer films [115],
and τ0~1.3 × 10−15 s and ∆E = 0.28 eV (=3250 K) for glass‑former propylene glycol [116].
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It is very interesting to note that the attempt time of τ0~10−12 s for magnetic relaxation is
three orders or more long, and that the activation energy (height of the potential barrier
to jump) is one order or more lower than the barrier height for the structural relaxation.
The characteristic features of SPM magnetization relaxation can be summarized as slow
motion within a shallow potential minimum.

Here, we return to Equation (173). At 15 K, the magnetization relaxation time τ in
Equation (174) is calculated as τ = 3.23 × 10−6 s. At the BLS frequency of f B~20 GHz,
the condition 2πf Bτ >> 1 is fully satisfied. This condition means that the SPM excitation
frequency is too fast to couple with the magnetization relaxation process. Therefore, we
can set ξ(15 K)/2π = 0 in Equation (173). Now, assuming that the φ/2π + ς(H)/2π term
in Equation (173) is independent of temperature at H = 4.5 kOe, the relaxation amplitude
is given by

γ

2π
(2π∆M)

(
H + HK

H + HK + 4πM(∞)

)1/2
= 2

∆ΓR
2π

= 2
(

Γ(178 K)

2π
− Γ(15 K)

2π

)
= 2

ξ(178 K)

2π
(180)

When we put the available constants ∆ΓR/2π = 0.35 GHz, γ/2π = 3.11 GHz/kOe, HK =
0 kOe, H = 4.5 kOe, and 4πM(∞) = 6.76 kG into Equation (180), we obtain 2π∆M = 0.36 kG
and the relaxation amplitude of 0.70 GHz. Finally, we obtain the SPM frequency and the
peak width ξ(T)/2π for the bulk‑type mode as follows:

fB = 22.1 + 0.70
1

1 + ω2τ2 (181)

and
ξ

2π
= 2.52 + 0.70

ωτ

1 + ω2τ2 (182)

The solid lines in Figure 38 are the calculated SPM excitation frequency f B and the
peak width ξ/2π at H = 4.5 kOe as a function of temperature by using Equations (181)
and (182). The magnetic relaxation model qualitatively reproduces the observed tempera‑
ture development of the peak width, except for the higher temperatures above 250 K. The
calculated frequency below 100 K was lower than the observed frequencies. Because we
have not included the temperature dependence of the γ/2π constant and the HK term in
Equation (181), it is possible to improve agreement between the observed and calculated
frequencies. We can also qualitatively reproduce the results for H = 3.0 and 4.0 kOe with
the above relaxation parameters by changing the relaxation amplitude. As we have already
discussed, we can ignore the ξ/2π term at 15 K in Equation (173) because of the condition
ωBτ >> 1. Then, we can rewrite Equation (173) as follows:

Γ(H, 15 K)/2π ∼= ϕ/2π + ς(H, 15 K)/2π (183)

The inset in Figure 39 shows the magnetic field dependence of the peak width Γ(H,
15 K)/2π. As the magnetic field increased, the peak width decreased. This behavior can
be attributed to the magnetic field dependence of the ζ(H, 15 K)/2π term. Unfortunately,
the highest magnetic field available in our BLS system with the closed‑cycle refrigerator is
not enough to fully separate these ϕ/2π and ζ/2π terms in Equation (183). However, as a
rough estimation, we obtained ϕ/2π ≈ 2 GHz and ζ(0 kOe, 15 K)/2π ≈ 2 GHz, respectively.

So far, I have demonstrated in this granular section that the BLS technique involves
higher potential for investigation of fast magnetization dynamics. In the Co‑Al‑O system,
we investigated the dynamics in the frequency range of around 20 GHz. However, it is easy
to extend the frequency range below several GHz and over a few hundred GHz for the BLS
technique by utilizing a tandem FPI. Furthermore, we can adjust the SPM excitation fre‑
quencies by applying an appropriate external magnetic field according to Equations (170)
and (171). I would like to emphasize these advantages of the BLS technique in the magne‑
tization dynamics study of SPM materials.
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Figure 40 shows the peak intensities at H = 4.5 kOe obtained from the fittings and
normalized by the total spectrum accumulation time as a function of temperature.
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fits to the linear function I(T) = A + B·T below 150 K [108].

Although all peak intensities monotonously decreased as temperature decreased, the
peak intensities at 15 K kept about 50% of the highest intensities observed at 250 K. It
is important to note that the BE factor in Equation (169) is an inevitable sequence of the
quantum‑mechanical fluctuation‑dissipation theorem [117] and independent of the details
of the real physical systems. The solid lines in Figure 40 show the least‑squares fits below
150 K to a linear function of temperature given by I(T) = A + BT. The linear function well
describes the observed temperature dependence of the peak intensities. Now, we rewrite
the linear function in the following form.

I(T)/T = A/T + B (184)

Here, I(T)/T is proportional to Equation (169) divided by the BE factor. Because the
optical properties and the dynamical susceptibilities appearing in Equation (169) are essen‑
tially independent of temperature, we can explain the B term. However, we cannot explain
the existence of the A/T term within the framework of the single‑site magneto‑optic cou‑
pling mechanism already discussed. Nevertheless, the A/T term in Equation (184) is the
most crucial in our present results. When we use the least‑squares parameters A = 45.0
and B = 0.246 for the Stokes peak (■), it is obvious that the A/T term dominates the BLS
scattering intensity below 100 K. At 15 K, the A/T term is more than ten times larger than
the B term. This can be the reason why we could observe relatively intense scattering even
at 15 K.

Non‑T‑proportional behaviors of SW BLS intensity have already been reported in
several conductive FM materials, for example, semiconductor EuS and EuO single crys‑
tals [104], a FM/AFM Co (2.8 nm)/CoO (0.7 nm) bilayer thin film [106], and so on. These
materials are magnetically quite different from the present SPM Co‑Al‑O granular sys‑
tem. Because we cannot explain the A/T term in Equation (184) within the phenomenolog‑
ical description of the conventional single‑site magneto‑optical coupling theory given by
Equations (14)–(18), some collective motion of electrons might contribute to the SW light
scattering in conductive FM materials. In order to elucidate the light scattering mecha‑
nism, more extensive BLS studies for various conductive magnetic materials are strongly
recommended.
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5.6. SWs in Confined Structures and Devices
Unfortunately, I had no chance to perform BLS measurement in this research area.

This area is closely related to the rapidly growing magnonics and spintronics fields, and
is a promising area for the next generation of SW BLS study. For readers interested in this
field, I give a few of recent references [118–120].

6. Summary
Since my SW BLS reports on CoZr and FeSi films published in 1989, I spent more

than 30 years in the field of SW BLS. BLS as an optical technique to determine a set of the
basic magnetic constants of a magnetic thin film was fully established during the period,
as I have presented in this review. Now, the BLS technique is recognized as one of the
best techniques not only to investigate the SWs and the magnetization dynamics in the
GHz frequency range, but also to characterize magnetic interactions induced in various
artificial magnetic structures. There is no doubt that developments both in the sample
preparation techniques and the BLS technique will go hand in hand to open new frontiers
of functional devices as well as basic material sciences. When I started my SW BLS research
in the middle of the 1980s, quasi‑two‑dimensional magnetism was just a textbook subject,
and I never imagined that I could measure SWs in such a thin film of a few monolayers in
thickness. However, the MBE technique made it possible.

Because of the sensitivity and flexibility of the light scattering technique, the impor‑
tance and usefulness of the BLS technique in materials science and engineering is still grow‑
ing and growing. The downsizing of magnetic devices will result in magnetic instability
due to direct or indirect interactions between magnetic elements. The microfocused BLS
technique and micromagnetic simulation can be applied to characterize interactions be‑
tween the magnetic elements. BLS detection of the spin current and the spin accumulation
in spintronics devices will be another interesting challenge.

Through my research career in the BLS field spans over 45 years, including structural
and ferroelectric phase transitions, low temperature liquids, glass formers, and SAWs and
SWs from opaque surfaces, I learned many new physics, ideas, and the importance of the
challenges when going into a new research field. The BLS study from opaque surface was
exactly a challenge for me. When I was asked to examine BLS from SPM granular samples,
to speak frankly, I had no assurance that I could observe BLS signals because of my pre‑
conception that short range interactions such as the exchange coupling were necessary to
generate magnetic excitations. Fortunately, my idea was completely wrong as I have pre‑
sented in this review, and BLS can be a new tool to investigate the magnetization dynamics
of SPM granular materials.
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