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Abstract: The purpose of this study is to synthesize geopolymer binders as an environmentally
friendly alternative to conventional cement using available local raw materials. Waste materials
such as chalcedonite (Ch), amphibolite (A), fly ash from lignite combustion (PB), and diatomite
dust (D) calcined at 900 ◦C were used to produce geopolymer binders. Metakaolin (M) was used as
an additional modifier for binders based on waste materials. The base materials were subjected to
fluorescence X-ray fluorescence (XRF) analysis and X-ray diffractometry (XRD) to determine chemical
and phase composition. A laser particle size analysis was also performed. The various mixtures of raw
materials were activated with a 10 M solution of NaOH and sodium water glass and then annealed
for 24 h at 60 ◦C. The produced geopolymer binders were conditioned for 28 days under laboratory
conditions and then subjected to microstructural analysis (SEM) and flexural and compressive
strength tests. The best compressive strength results were obtained by the Ch + PB samples—more
than 57 MPa, while the lowest results were obtained by the Ch + D+A + M samples—more than
20 MPa. On the other hand, as a result of the flexural strength tests, the highest flexural results were
obtained by D + A + M + PB binders—more than 12 MPa, and the lowest values were obtained by
binders based on Ch + D+A + M—about 4.8 MPa.

Keywords: waste materials; alkali-activated binders; chalcedonite; diatomite; amphibolite; fly ash
from Bełchatów; metakaolin

1. Introduction

The primary binder used in the construction sector is cement. The Portland cement
production process requires very high energy and raw material use, emitting significant
amounts of CO2 [1]. According to a report by Statista, global cement production in 2030
could reach as much as 4.83 billion metric tonnes. Thus, it is estimated that there will be an
increase of more than 10% in global cement production in that period compared to 2020 [2].
This has caused an increasingly intensive search for alternatives to Portland cement. The
emergence of one possibility in the form of geopolymer materials will make it possible
to reduce CO2 emissions by using waste materials from industry (fly ash or blast furnace
slag) and turning them into a binder material [3–5]. Waste research is mainly driven by
the need to conserve scarce natural resources, reduce environmental pollution, and save
energy [6,7]. Geopolymer materials are obtained by polycondensation of aluminum silicates
and are characterized by an amorphous or semi-crystalline structure. The tetrahedral
combination of [SiO4]4− and [AlO4]5−-based aluminosilicates forms the spatial structure of
the geopolymer network, which is linked to each other by oxygen atoms. Bond formation
usually takes place in a strongly basic aqueous solution, but the process is also possible
in acids, in which the reactive aluminosilicates are dissolved [8–10]. The most common
alkaline activators are sodium hydroxide (NaOH) and sodium silicate (Na2SiO3, water
glass) [11]. Experiments have shown that the quality of a geopolymer binder depends on
several parameters, such as the activator concentration, the activator ratio, or the ratio of
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liquid to solid precursors [12–15]. According to the research papers, the optimal parameters
for the production of the geopolymer are a liquid-to-solid ratio of 0.6 and an alkaline
activator ratio of 2.5 [11].

Differences in the Na2SiO3 content affect the properties of geopolymers, such as
hardening time, compressive strength, and workability [16]. The appropriate ratio of
sodium hydroxide and sodium silicate in the alkaline activator improves the resistance of
geopolymer materials to the harmful effects of sulfates [17]. Bocullo et al. examined the
properties of the geopolymer depending on different SiO2/Na2O ratios (range 0.8–3.1). As
an alkaline activator ratio of 2.5 results, the best compressive strength results were obtained
for materials with a SiO2/Na2O ratio of 2.0 [18]. On the other hand, Wand et al.’s research
determined the relationship between the Si/Al ratio and the properties of geopolymers—a
geopolymer with a Si/Al ratio > 3 was characterized by worse stability in the air than the
geopolymer with the Si/Al ratio < 2.5 [19].

Geopolymers are typically produced from aluminosilicate-rich raw materials [20].
Currently, the most commonly used raw materials in geopolymers are fly ash [21–23], blast
furnace slags [24–26], or metakaolin [27,28]. Fly ash and slag are finished wastes from
energy processes for use in geopolymerization. The advantage of these raw materials is that
they do not require additional pretreatment before their alkaline activation. Unfortunately,
these are raw materials that do not have fixed properties or chemical compositions. These
properties depend on, among other things, the raw material used during the combustion
process or the incineration technology used [4,29]. There is also the possibility of alkaline
activation of other raw materials considered to be waste from mining, processing, and
other industries, i.e., the energy industry. Examples of alkaline-activated raw materials that
the researchers have used in their research include volcanic tuff [30,31], mine waste [32],
or plasma waste [33–35]. Hypo slime (waste cellulose material from the paper industry)
has proven to be a great alternative to replacing cement. In addition, it can be potentially
used as a material for structural elements [36,37]. Research conducted on geopolymer
materials has shown that they have excellent properties in terms of resistance to high tem-
peratures [38], high compressive (from 25 MPa to more than 100 MPa) and flexural strength
(from 5 MPa to 25 MPa) [39], high resistance to acids, sulfates, and chlorides [40], very high
frost resistance [41], or absence or occurrence of slight shrinkage during setting [42]. In
recent years, research has been conducted on the use of toxic and unfriendly waste as a
precursor for the geopolymerization process. Lach et al. investigated the possibility of using
municipal waste incineration plant waste as a precursor in a geopolymerization process to
immobilize waste. The results showed a high level of immobilization of compounds and
elements such as chlorides, sulfates, fluorides, barium, and zinc [43].

The motivation for the research work is to use waste streams from the mining and
processing industry, as well as other industries such as the energy industry, as raw materials
for the synthesis of modern geopolymer binders. This will not only represent a positive
environmental aspect but will also contribute to the development of a circular economy.
Furthermore, the use of post-production industrial waste will reduce the amount of waste
in landfills and contribute to recycling. In this study, an attempt was made to use industrial
waste to produce geopolymer binders. The work included structural and strength studies
conducted to analyze and select potential precursors that could form the basis of alkali-
activated binders.

The work aims to synthesize new geopolymer composites for use as construction
binders using locally occurring waste material. The produced binders are based on waste
materials and could potentially find application in conventional construction as replace-
ment products for traditional Portland cement-based construction binders.

2. Materials and Methods
2.1. Materials and Samples Preparation

This paper presents the results of work related to the production of geopolymer
binders based on waste materials such as chalcedonite (Ch), fly ash from lignite combustion
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(PB), diatomite dust calcined at 900 ◦C (D), and amphibolite (A). Metakaolin (M) was used
as an additional modifier for binders based on waste materials. Chalcedonite (CRUSIL,
Inowłódz, Poland) in the form of dust was obtained by milling to obtain a grain size of
approximately 10 µm. Fly ash was obtained from the combustion of lignite at the Bełchatów
Power Plant (Bełchatów, Poland). These ashes are characterized by a relatively high calcium
content [24,25]. Another base material used for the production of alkali-activated binders
is diatomite dust, obtained from the open-pit diatomite mine in Jawornik Ruski (Zohatin,
Poland). Based on previous studies on diatomite material [26], it was decided to carry
out a calcination process at 900 ◦C, and then the precursor thus prepared was used to
synthesize binders. Amphibolite (Ogorzelec, Kamienna Góra, Poland) was subjected to a
grinding process to obtain the appropriate grain gradation. The last material used to modify
alkali-activated binder mixtures was metakaolin (Keramost, Kadaň, Czech Republic).

Geopolymer binders were prepared using a sodium activator and five types of base
precursors, mixed in different weight ratios. The activation process was carried out with a
10-mol sodium hydroxide solution, NaOH, combined with a solution of sodium silicate
(water glass, in a weight ratio of 1:1.5), which is the most commonly used hydroxide
activator in geopolymer synthesis and is also the cheapest and most widely available of the
alkali hydroxides. For the production of geopolymer masses, technical sodium hydroxide
in the form of flakes (PCC Rokita SA, Brzeg Dolny, Poland) and an aqueous solution of
sodium silicate R-145 (STANLAB, Gliwice, Poland) with a 2.5-mol modulus and a density
of approximately 1.45 g/cm3 were used. Distilled water was used to prepare the sodium
base. The alkaline solution was prepared by mixing an aqueous solution of sodium silicate
with a 10 M sodium hydroxide solution. The solution was mixed and allowed to stabilize
in temperature and equilibrate concentrations for 24 h. The prepared solution was then
mixed with the precursors in a preset amount by weight (Table 1). After obtaining a
homogeneous mass with a thick, plastic consistency, the mixtures were transferred to a
set of 10 mm × 10 mm × 60 mm molds, which were then placed on a vibrating table to
remove air bubbles. The molded geopolymer binders were cured in a laboratory dryer
(SLW 750 STD, POL-EKO-APARATURA) for 24 h at 60 ◦C under atmospheric pressure.
After 24 h, the samples were removed from the molds. Table 1 shows the composition of
the prepared alkali-activated binders.

Table 1. Composition of alkali-activated samples based on fly ash from Bełchatów (PB), chalcedonite
(Ch), calcined diatomite dust (D), amphibolite (A), and metakaolin (M).

Index

Base Materials (S)
[Weight Ratio] Alkaline Activator (L)

Liquid/Solid
[Weight Ratio]

Ch PB D A M

R.Ch 1 - - - -

10 M NaOH +
sodium water glass
(weight ratio: 1: 1.5)

0.62/1
R.PB - 1 - - - 1.22/1
R.D - - 1 - - 1.01/1
R.A - - - 1 - 0.31/1
R.M - - - - 1 0.75/1

Ch + D 1 - 1 - - 0.82/1
Ch + A 1 - - 1 - 0.34/1
Ch + M 1 - - - 1 0.61/1
Ch + PB 1 1 - - - 0.54/1
D + A - - 1 1 - 0.68/1
D + M - - 1 - 1 0.68/1
D + PB - 1 1 - - 0.82/1
A + M - - - 1 1 0.48/1
A + PB - 1 - 1 - 0.48/1

Ch + D+A + M 1 - 1 1 1 0.54/1
Ch + A + M + PB 1 1 - 1 1 0.61/1
Ch + D + A + PB 1 1 1 1 - 0.51/1
D + A + M + PB - 1 1 1 1 0.48/1

Ch + D + M + PB 1 1 1 - 1 0.54/1
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The metakaolin used in the mixtures was only a modifier of the individual waste-based
binders. It can be seen that the content of the alkali solution varied depending on the type
of mix. In some cases, a higher amount of alkali solution was necessary to achieve the
right workability and consistency of the binder mixtures [23,44]. Figure 1 shows images of
prepared alkali-activated materials.
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Figure 1. Obtained geopolymer binders based on waste materials: (a) R.Ch; (b), R.PB; (c) R.D; (d) R.A;
(e) R.M; (f) Ch + D; (g) Ch + A; (h) Ch + M; (i) Ch + PB; (j) D + A; (k) D + M; (l) D + PB; (m) A + M;
(n) A + PB; (o) Ch + D+A + M; (p) Ch + A + M + PB; (q) Ch + D + A + PB; (r) D + A + M + PB
(s) Ch + D + M + PB.

In binders based on 100% chalcedonite (R.Ch), 100% amphibolite (R.A), a mixture of
50% amphibolite and 50% calcined diatomite (D + A) and a mixture of 50% chalcedonite and
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50% amphibolite (Ch + A), despite using the same heating parameters as in the other binder
mixtures, complete hardening of the material did not occur. Due to this fact, mechanical
testing was not possible for this type of binder. Furthermore, in the case of a binder based
on 100% calcined diatomite (R.D) and a mixture of 50% chalcedonite and 50% diatomite
(Ch + D), despite the binders curing, the samples cracked during the demoulding process
(Figure 1). As in the case of the R.Ch., R.A, D + A, and Ch + A materials, this resulted in
the inability to carry out strength tests.

2.2. Research Methods
2.2.1. Particle Size Analysis

Particle size analysis was carried out using an Anton-Paar PSA 1190LD laser particle
size analyzer (AntonPaar GmbH, Graz, Austria). The measuring range of the apparatus
is from 0.04 µm to 2500 µm. The test was conducted using the wet method with distilled
water as the dispersing agent. Five measurements were carried out for each material, and
then the average of the results was calculated using Kalliope Professional software (version
2.22.1, AntonPaar GmbH, Graz, Austria) and presented in the form of a plot of the average
particle size distribution and the average cumulative curve. The precursors that formed
the basis of the alkali-activated binders—chalcedonite, calcined diatomite, amphibolite,
metakaolin, and fly ash from Bełchatów—were analyzed.

2.2.2. Chemical and Mineralogical Composition of Precursors

The PANalytical Aeris instrument (Malvern PANalytical, Lelyweg 1, Almelo, Holan-
dia) was used to investigate the phase composition of the base materials. Quantitative
analysis was performed using the Rietveld method [29], which was implemented in the
HighScore Plus software (version: 4.8, Malvern PANalytical B.V., Almelo, The Netherlands).
The PDF-4+ database of the International Centre for Diffraction Data (ICDD) was used
during the analysis. Measurements were recorded in the range 10–100◦ with a step of
0.003◦ (2θ) and a time per step of 340 s, using Cu Kα radiation.

The base materials were analyzed by fluorescence X-ray analysis (EDX) to deter-
mine the oxide composition. The analysis was performed on a SHIMADZU EDX-7200
(SHIMADZU Europa GmbH, Duisburg, Germany). The test was carried out in an air
atmosphere with holders dedicated to bulk materials and with Mylar film.

2.2.3. Strength Tests

Flexural strength tests were carried out according to EN 1015-11:2020-04 (Determination
of flexural and compressive strength of hardened mortar) [45] on an MTS Criterion Model
43 universal testing machine (MTS System Corp., Eden Prairie, MN, USA) within a measuring
range of up to 30 kN using an MTS axial extensometer. The speed was set at 10 mm/min.
The flexural strength test specimens were made as 10 mm × 10 mm × 60 mm cuboids.

Compressive strength testing was carried out in accordance with the provisions of
PN-EN 1015-11:2020-04 (Determination of flexural and compressive strength of hardened
mortar) [45]. The test was carried out on an MTS Criterion Model 43 strength machine
(MTS System Corp., Eden Prairie, MN, USA), with a measurement range of up to 30 kN.
The speed was set at 10 mm/min. The specimens for compressive strength testing came
from a bending test (half beams), which were placed between metal plates measuring
10 mm × 10 mm. A similar procedure for conducting compressive strength testing is also
practiced by other researchers [46,47].

2.2.4. Microstructure

The base materials and alkali-activated binders were subjected to microscopic obser-
vation to characterize the structure formed. The study was carried out using a JEOL IT200
scanning electron microscope (JEOL Ltd., Peabody, MA, USA). Samples after mechanical
property tests were used for analysis. Before testing, the surface of the samples was coated
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with a conductive gold layer using a DII-29030SCTR Smart Coater vacuum sputtering
machine (JEOL Ltd., Peabody, MA, USA).

3. Results and Discussion
3.1. Particle Size Analysis

Figure 2 and Table 2 show the particle size distribution histogram and cumulative
particle size distribution curves as a function of particle percentage for the selected base
materials. The results are presented as a plot of the mean particle size distribution and the
mean cumulative curve (Figure 2).
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Table 2. Particle size average of base materials.

Index D10 D50 D90 Mean Size [µm] Standard Deviation [µm]

Ch 1.52 6.92 14.98 7.99 0.143
PB 4.63 26.76 63.12 32.43 1.05
D 4.49 22.26 52.56 27.24 0.03
A 3.09 33.84 327.49 116.12 1.87
M 1.86 8.36 23.68 11.41 0.39

The particle size distribution of the individual precursors has the character of a
Gaussian diagram [48]—except for amphibolite analysis. This is most evident in the
case of metakaolin and fly ash from Bełchatów. The curve characteristics for chalcedonite
and calcined diatomite are similar.

The average particle sizes of all base materials oscillate between 7 and 117 µm. The
particle size analysis for chalcedonite (Table 2) showed that the average value of all the
material’s particles oscillates around 7.99 µm. Particles with an average size of 1.52 µm
represent 10% of the total volume of the sample tested. The particle size analysis for ash
from Bełchatów (Table 2) showed that the average value of all ash particles oscillates within
32.43 µm. Particles with an average size of approximately 4.63 µm constitute 10% of the
total volume of the sample tested. Particle size analysis for diatomite calcined at 900 ◦C
(Table 2) showed that the average value of all particles oscillates around 27.24 µm. Particles
with an average size of 4.49 µm represent 10% of the total volume of the sample tested.
The particle size analysis for ground amphibolite (Table 2) shows that the mean value of
all particles oscillates within 27.24 µm. Particles with an average size of 3.09 µm make up
10% of the total volume of the test sample. The analysis of the particle size of metakaolin
(Table 2) showed that the mean value of all particles oscillates around 11.41 µm. Particles
with an average size of 1.86 µm make up 10% of the total volume of the test sample. Figure 3
shows the morphology of the selected base materials.
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Figure 3. SEM images of base materials: (a) chalcedonite; (b) fly ash from Bełchatów; (c) calcined
diatomite; (d) amphibolite; (e) metakaolin.

Analysis of the base materials by scanning electron microscopy confirms the average
results of laser particle size analysis. The microphotographs show that the chalcedonite
(Figure 3a) particles oscillate around an average size of 8 µm. They are quite irregular,
with sharp edges. Figure 3b shows fly ash particles from Bełchatów. Fly ash particles
are spherical, with an average size of around 30 um. In addition, some particles are
characterized by a porous structure. Compared to silica ash, limestone fly ash grains are
characterized by very large particles of unburned carbon, which are porous and poorly
sintered [49]. Figure 3c shows diatomite particles calcined at 900 ◦C. The average particle
size oscillates around 50 µm. Similar structures have been analyzed by other researchers in
their work [50,51]. Figure 3d shows amphibolite particles with diameters of over 100 µm.
These particles are characterized by an irregular surface and sharp edges. This may be
due to the grinding process of the amphibolite grains in the rotary mill. Figure 3e shows
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metakaolin particles that oscillate around 20 µm in diameter. The particles are irregular in
surface and have sharp edges.

3.2. Chemical and Phase Compositions

The chemical composition of the tested precursors was determined by XRF. The results
are shown in Table 3. All the alkali-activated binder base materials tested were mainly
contained in their composition: SiO2, Al2O3, Fe2O3, SO3, K2O, TiO2, or CaO.

Table 3. Oxide composition of analyzed base materials.

Ch PB D A M

Compound
Formula Conc, % Compound

Formula Conc, % Compound
Formula Conc, % Compound

Formula Conc, % Compound
Formula Conc, %

SiO2 98.292 CaO 32.297 SiO2 79.297 SiO2 60.802 SiO2 54.504
Al2O3 0.923 Al2O3 26.251 Al2O3 12.033 Fe2O3 15.889 Al2O3 41.716
SO3 0.473 SiO2 16.761 Fe2O3 4.627 Al2O3 13.504 K2O 1.557
K2O 0.097 Fe2O3 12.843 K2O 2.491 CaO 7.155 Fe2O3 1.150

Fe2O3 0.095 SO3 10.781 TiO2 0.594 TiO2 1.234 TiO2 0.651
CaO 0.056 TiO2 0.569 CaO 0.441 SO3 0.688 CaO 0.168
TiO2 0.028 SrO 0.093 SO3 0.331 MnO 0.323 SO3 0.132
MnO 0.008 V2O5 0.088 MnO 0.064 K2O 0.243 V2O5 0.033
PtO2 0.007 MnO 0.087 V2O5 0.031 V2O5 0.064 MnO 0.016
Au2O 0.004 K2O 0.085 ZrO2 0.023 ZnO 0.026 ZrO2 0.016
HgO 0.004 ZnO 0.051 Cr2O3 0.015 SrO 0.020 Rb2O 0.011
V2O5 0.003 ZrO2 0.021 ZnO 0.012 Ag2O 0.014 SrO 0.009
CuO 0.002 Cr2O3 0.021 SrO 0.010 Cr2O3 0.014 Ga2O3 0.007
SeO2 0.002 Y2O3 0.016 CuO 0.009 CuO 0.010 Cr2O3 0.006
NiO 0.002 Ir2O3 0.013 Y2O3 0.006 Ir2O3 0.009 ZnO 0.005
ZrO2 0.002 CuO 0.011 Ir2O3 0.006 Y2O3 0.006 PbO 0.005
Y2O3 0.001 Bi2O3 0.009 NiO 0.004 CuO 0.003
SrO 0.001 SeO2 0.003 Ag2O 0.003 Y2O3 0.003

Au2O 0.002
NbO 0.002
NiO 0.002

GeO2 0.001

Chalcedonite, in its composition, contains more than 98% SiO2, just under 1% Al2O3,
and SO3 at less than 0.5%. Similar material has also been studied by other researchers,
who have shown similar chemical composition results in their work [52,53]. Fly ash from
the combustion of lignite at the Bełchatów heat and power plant is classified as calcium
ash. Calcium ash in the glassy phase is characterized by a high content of silica and
aluminum. [54]. Examination of the chemical composition confirmed this assumption—the
CaO content of the fly ash tested was over 32% and Al2O3 over 26%. In addition, the fly
ash from Bełchatów also contained SiO2 in its composition, with a content of over 16%,
Fe2O3 with over 12%, SO3 with over 10%, and TiO2 with about 0.5%. Diatomite calcined
at 900 ◦C in its composition contained over 79% SiO2, over 12% Al2O3, over 4% Fe2O3,
and over 2% K2O. Marczyk et al. studied calcined diatomite in their work. They obtained
similar results in chemical composition [50]. In the amphibolite, which was subjected to
chemical composition studies, the highest values were obtained for such compounds as
SiO2—over 60%, Fe2O3—over 15%, Al2O3—over 13%, and CaO—over 7%. Maliszewski
et al. analyzed amphibolite fossils from various deposits, including Ogorzelec. The results
indicated that the highest values were represented by such compounds as SiO2, Fe2O3,
Al2O3, and CaO [55]. The chemical composition of metakaolin indicated that it has its own
composition: SiO2—over 54%, Al2O3—over 41%, K2O—over 1%, and Fe2O3—over 1%.
The same metakaolin has also been studied by other researchers, who obtained similar
chemical composition results for metakaolin [56].
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The phase composition of the tested precursors was determined by XRD. The results
are shown in Table 4.

Table 4. Identified phases in base precursors.

Identified Phase
Chemical Formula Amount of Phase [%]

PB A Ch M D

Gehlenite Ca2Al2SiO7 34.1 - - - -
Anhydrite Ca(SO4) 19.3 - - - -

Albite NaAlSi3O8 17.3 - - - 20.1
Hematite, syn Fe2O3 18.9 - - - 1.0
Silicon Oxide SiO2 5.5 26.3 100 26.3 40.0

Lime, syn CaO 4.9 - - - -

Magnesio-ferri-hornblende (Na0.28K0.13)(Ca1.81Mn0.02Fe0.17)
(Mg3.14Fe1.46Ti0.15Al0.25)(Si6.92Al1.08O22)(OH)2

- 12.5 - - -

Anthophyllite Mg7(Si8O22(OH2)) - 42.8 - - -
Pargasite, syn NaCa2Mg4Al3Si6O22(OH)2 - 18.5 - - -

Kaolinite Al2(Si2 O5(OH)4) - - - 45.6 26.8
Illite-2R (NR) (K,H3O)Al2Si3AlO10(OH)2 - - - 13.3 12.1

Muscovite KAl2(Si3Al)O10(OH,F)2 - - - 14.8 -

The X-ray diffraction method for chalcedonite showed that it contains 100% silicon
oxide (SiO2) in its phase composition. In this case, no other phases were identified. Chal-
cedonite, studied by Vyšvařil in its phase composition, showed almost 99% SiO2 and about
1% Al2O3 [53]. Differences in the analysis may be due to the study of chalcedonite from
different deposits (Poland, Czech Republic) or the reference sample analyzed. Phase compo-
sition analysis for fly ash from Belchatow showed the presence of such phases as Gehlenite
(Ca2Al2SiO7)—more than 34%, Anhydrite (Ca(SO4)—more than 19%, Albite (NaAlSi3O8)—
more than 17%, Hematite (Fe2O3)—almost 19%, Silicon Oxide (SiO2)—almost more than
5%, and Lime (CaO)—almost 5%. Fluid fly ash from Belchatow contains a great deal of
calcium compounds in its composition [57], which was confirmed by phase analysis. The
X-ray diffraction method for calcined diatomite at 900 ◦C showed that the phase com-
position was as follows: Silicon Oxide (SiO2)—40%, Kaolinite (Al2(Si2O5(OH)4))—more
than 26%, Albite (NaAlSi3O8)—more than 20%, Illite-2R ((K, H3O)Al2Si3AlO10(OH)2)—
more than 12%, and Hematite (Fe2O3)—1%. Phase analysis by Zheng et al. for calcined
diatomite at 900 ◦C also showed the highest phase percentage for SiO2 [58]. Amphibolite
is a metamorphic rock that mainly contains hornblende and plagioclase in its mineral
composition, with variable amounts of anthophyllite, quartz, garnet, mica, and epidote [59].
Mineralogical analysis of the amphibolite sample showed the presence of such phases
as anthophyllite (Mg7(Si8O22(OH2)))—over 43%, silicon oxide (SiO2)—over 26%, parga-
site (NaCa2Mg4Al3Si6O22(OH)2)—over 18%, and magnesio-ferri-hornblende (formula in
Table 4)—over 12%. The last precursor tested was metakaolin. In its phase composition,
it contained, respectively: Kaolinite (Al2(Si2O5(OH)4))—more than 45%, Silicon Oxide
(SiO2)—more than 26%, Illite-2R ((K, H3O)Al2Si3AlO10(OH)2)—more than 13%, and Mus-
covite (KAl2(Si3Al)O10(OH, F)2)—more than 14%. In their work, Morsy et al. analyzed
metakaolin, which contained Kaolinite (highest content), Quarz, Illite, and Hematite [60].

3.3. Mechanical Properties and Structure Observation

Mechanical investigations, i.e., compressive or flexural strength, are one of the basic
criteria for assessing the correctness of the geopolymerization process and for evaluating
the potential suitability of the synthesized binder for construction applications [61]. The
compressive strength of alkali-activated materials depends on several different variables,
such as the structure of the material or the presence of a crystalline phase. In addition, the
distribution and strength of the insoluble Al-Si particles and the reaction occurring at the
surface between the gel phase and the insoluble Al-Si particles also influence the strength
values of the geopolymer mortar [4,62]. The strength values are also influenced by the
additives used and the base raw materials for geopolymers [63].
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Figure 4 shows the average flexural strength results for the alkali-activated
binders produced.
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The highest flexural strength values were achieved by a binder based on calcined di-
atomite, amphibolite, metakaolin, and fly ash from Bełchatów (D + A + M + PB)—12.58 MPa.
Slightly lower flexural strength values were obtained for binders based on chalcedonite, am-
phibolite, metakaolin, and fly ash from Bełchatów (Ch + A + M + PB) and those based on
amphibolite and metakaolin (A + M)—12.14 MPa and 12.11 MPa, respectively. The lowest
compressive strength values were obtained for binders based on chalcedonite, calcined di-
atomite, amphibolite, and metakaolin (Ch + D+A + M) and calcined diatomite and fly ash from
Belchatow (D + PB)—4.86 MPa and 5.06 MPa, respectively. Other flexural strength results for in-
dividual types of alkaline-activated binders were as follows: R.M—10.51 MPa, R.PB.—5.56 MPa,
Ch + M—7.23 MPa, Ch + PB—10.62 MPa, D + M—5.92 MPa, A + PB—8.01 MPa,
Ch + D + M + PB—6.93 MPa, and Ch + D + A + PB—8.07 MPa.

Figure 5 shows the average compressive strength results for the alkali-activated ma-
terial mixtures. Researchers’ results have shown that high-calcium fly ash is suitable as a
base material for geopolymer binders [28,64].

Materials 2023, 16, x FOR PEER REVIEW 11 of 20 
 

 

Figure 5 shows the average compressive strength results for the alkali-activated ma-
terial mixtures. Researchers’ results have shown that high-calcium fly ash is suitable as a 
base material for geopolymer binders [28,64]. 

 

Figure 5. Compressive strengths for different binders based on alkali-activated waste materials. 

Most of the alkali-activated binders achieved average compressive strengths of over 
30 MPa. The highest compressive strength results were obtained with a binder based on 
chalcedonite and fly ash from Belchatow (Ch + PB)—57.74 MPa. Slightly lower compres-
sive strength values were achieved by a binder based on chalcedonite, amphibolite, me-
takaolin, and fly ash from Bełchatów (Ch + A + M + PB)—53.61 MPa. The lowest values of 
compressive strength were obtained by a binder based on chalcedonite, calcined diatomite, 
amphibolite, and metakaolin—20.02 MPa and a binder based on calcined diatomite and me-
takaolin—20.70 MPa. Other compressive strength results for individual types of alkaline-
activated binders were as follows: R.M—37.59, MPa, R.PB.—31.39 MPa, Ch + M—31.17 
MPa, D + PB—22.50 MPa, A + M—42.42 MPa, A + PB—47.14 MPa, Ch + D + M + PB—43.77 
MPa, D + A + M + PB—49.70 MPa, Ch + D + A + PB—40.04 MPa. To better present the results 
of the mechanical tests, they have been summarized in the form of a table (Table 5). 

Table 5. Summary of average compressive and flexural strength test results of geopolymer binders. 

Sample Compressive Strengths [MPa] Flexural Strengths [MPa] 

R.M 37.59 10.51 
R.PB 31.39 5.56 

Ch + M 31.17 7.23 
Ch + PB 57.74 10.62 
D + M 20.70 5.92 
D + PB 22.50 5.06 
A + M 42.42 12.11 
A + PB 47.14 8.01 

Ch + D+A + M 20.02 4.86 
Ch + A + M + PB 53.61 12.14 
Ch + D + M + PB 43.77 6.93 
D + A + M + PB 49.70 12.58 
Ch + D + A + PB 40.04 8.07 

Figure 5. Compressive strengths for different binders based on alkali-activated waste materials.



Materials 2023, 16, 7651 11 of 19

Most of the alkali-activated binders achieved average compressive strengths of over
30 MPa. The highest compressive strength results were obtained with a binder based
on chalcedonite and fly ash from Belchatow (Ch + PB)—57.74 MPa. Slightly lower com-
pressive strength values were achieved by a binder based on chalcedonite, amphibolite,
metakaolin, and fly ash from Bełchatów (Ch + A + M + PB)—53.61 MPa. The lowest
values of compressive strength were obtained by a binder based on chalcedonite, calcined
diatomite, amphibolite, and metakaolin—20.02 MPa and a binder based on calcined di-
atomite and metakaolin—20.70 MPa. Other compressive strength results for individual
types of alkaline-activated binders were as follows: R.M—37.59, MPa, R.PB.—31.39 MPa,
Ch + M—31.17 MPa, D + PB—22.50 MPa, A + M—42.42 MPa, A + PB—47.14 MPa,
Ch + D + M + PB—43.77 MPa, D + A + M + PB—49.70 MPa, Ch + D + A + PB—40.04 MPa.
To better present the results of the mechanical tests, they have been summarized in the
form of a table (Table 5).

Table 5. Summary of average compressive and flexural strength test results of geopolymer binders.

Sample Compressive Strengths [MPa] Flexural Strengths [MPa]

R.M 37.59 10.51

R.PB 31.39 5.56

Ch + M 31.17 7.23

Ch + PB 57.74 10.62

D + M 20.70 5.92

D + PB 22.50 5.06

A + M 42.42 12.11

A + PB 47.14 8.01

Ch + D+A + M 20.02 4.86

Ch + A + M + PB 53.61 12.14

Ch + D + M + PB 43.77 6.93

D + A + M + PB 49.70 12.58

Ch + D + A + PB 40.04 8.07

Fiertak and Stryszewska’s work investigated the compressive strength of Portland
cement-based binders. The compressive strength of a sample based on cement alone
was 30.3 MPa after 28 days. The 10% addition of silica fume increased the compressive
strength to 35.5 MPa [65]. Özsoy et al. investigated the effect of diatomite dust on the
strength properties of fly ash-based geopolymer mortars. The addition of 2% diatomite dust
increased the compressive strength and flexural strength [66]. In another study, researchers
investigated the effect of using chalcedonite powder as a partial substitute for cement
in mortars. The best strength results were obtained when the cement was replaced with
chalcedonite dust in amounts of 5% and 20% [67]. Cruz et al. investigated the effect of the
addition of recycled gypsum in tricomponent binders (lime + metakaolin + gypsum). The
addition of recycled gypsum increased the compressive strength and flexural strength of
three-component binders [68].

Scanning electron microscopy (SEM) provides detailed topographic data and allows
the evaluation of structures that cannot be revealed by other methods [69].

Figure 6 shows the microstructure of alkali-activated binders based on 100% waste
materials—Figure 6a—binder based on metakaolin (R.M), Figure 6b—binder based on fly
ash from Bełchatów (R.PB) at 2000× magnification.
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Figure 6. SEM images of alkali-activated binders based on 100%: (a) metakaolin—R.M; (b) fly ash
from Bełchatów—R.PB, at 2000× magnification.

The microstructure of the 100% metakaolin-based binder (Figure 6a) is characterized
by a compact and amorphous structure. There are also no discernible pores in the formed
material, but individual particles of undissolved metakaolin can be seen, with dimensions
of approximately 20–30 µm. A similar microstructure of a metakaolin-based geopolymer
was obtained in their work by Yang et al. [70]. Figure 6b shows the microstructure of the
binder based on 100% calcium fly ash from Bełchatów (R.PB). Similar to the R.M. material,
the microstructure of the material is compact. However, individual pores with a diameter of
approximately 2–3 µm can be observed. The numerous cracks that occur in the topography
of the material are the result of the strength tests carried out. In addition, unreacted fly
ash particles from Bełchatów with a diameter of approximately 30–40 µm are present in
the R.PB material, which is characterized by a porous structure. In comparison to silica
ash, limestone fly ash grains are characterized by very large unburned carbon particles
and a porous and poorly sintered structure [71]. Bąk et al. studied geopolymers based on
fly ash from Bełchatów and sand. They obtained a geopolymer structure, which was also
characterized by undissolved ash particles and a compact and amorphous structure [72].

Microstructure studies provide complementary knowledge about the mechanical
properties of the tested materials [73–75].

Figure 7 shows the microstructure of alkali-activated binder blends based on various
waste materials—fly ash from Belchatów, chalcedonite, diatomite calcined at 900 ◦C, amphi-
bolite, and metakaolin. The activated materials were mixed in a 50–50% weight proportion
in different variations.

Figure 7a shows the microstructure of a binder based on a mixture of chalcedonite and
metakaolin—Ch + M. The microstructure of the binder is compact, with a few undissolved
chalcedonite particles of about 7 µm in size. No distinct pores are seen in the investigated
microstructure. Figure 7b shows the microstructure of a binder based on chalcedonite
and fly ash from Bełchatów—Ch + PB. The microstructure of the material is compact and
amorphous. However, individual pores with a diameter of approximately 3–4 µm can be
observed. The noticeable cracks present in the topography of the material are the result
of the strength tests carried out. In addition, unreacted fly ash particles from Bełchatów
with a diameter of approximately 40–60 µm are present in the Ch + PB material, which is
characterized by a porous structure. Figure 7c shows the microstructure of a binder based
on calcine diatomite and metakaolin. In this case, the surface morphology is quite irregular,
with porous structures appearing on the surface (diatomite particles) with a size of about
10 µm. In addition, we can also see numerous needle-like structures of about 10µm in
length. Figure 7d shows the microstructure of the binder based on calcite diatomite and fly
ash from Bełchatów. The microstructure of the material is compact and amorphous, with
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numerous undissolved diatomite particles present, embedded in the binder matrix, whose
size oscillates in the 10–15 µm range. In addition, we can detect cracks in the material,
which are the result of strength testing, and a small number of pores with a diameter of
approximately 1 µm. Figure 7e shows the microstructure of the binder based on a mixture
of amphibolite and metakaolin—A + M. The microstructure of the binder is compact and
amorphous. No clear pores can be seen in the investigated microstructure. The noticeable
cracks present in the topography of the material are the result of the strength tests carried
out. Figure 7f shows the microstructure of the binder based on amphibolite and fly ash from
Bełchatów. The structure of the material is rather compact, with numerous undissolved
particles of fly ash from Bełchatów, with a size oscillating around 10 µm. Pores with a
diameter of 1–3 µm can also be seen in the microstructure of the binder. The material also
shows numerous cracks, following mechanical testing.
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Figure 7. SEM images of alkali-activated binders based on 50–50% mixtures: (a) chalcedonite +
metakaolin—Ch + M; (b) chalcedonite + fly ash from Belchatów—Ch + PB; (c) calcined diatomite
+ metakaolin—D + M; (d) calcined diatomite + fly ash from Belchatów—D + PB; (e) amphibolite +
metakaolin—A + M; (f) amphibolite + fly ash from Belchatów—A + PB, magnified by 2000×.
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Figure 8 shows the microstructure of alkali-activated binders based on mixtures of
waste raw materials, with the weight proportions of the various precursors in the ratio:
25%–25%–25%–25%.
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Figure 8. SEM images of alkali-activated based on 25%–25%–25%–25% mixtures: (a) chalcedonite
+ calcined diatomite + amphibolite + metakaolin—Ch + D+A + M; (b) chalcedonite + amphibolite
+ metakaolin + fly ash from Bełchatów—Ch + A + M + PB; (c) chalcedonite + calcined diatomite
+ amphibolite + fly ash from Bełchatów—Ch + D + A + PB; (d) calcined diatomite + amphibolite
+ metakaolin + fly ash from Bełchatów—D + A + M + PB; (e) chalcedonite + calcined diatomite +
metakaolin + fly ash from Bełchatów- Ch + D + M + PB, magnification 3000×.
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Figure 8a shows the microstructure of a binder based on chalcedonite, calcined di-
atomite, amphibolite, and metakaolin (Ch + D + A + M). The microstructure investigated
is compact and amorphous, with no obvious pores in its structure. Figure 8b shows the
microstructure of a binder based on chalcedonite, amphibolite, metakaolin, and fly ash from
Belchatów (Ch + A + M + PB). The microstructure studied is compact, with a lack of distinct
pores in its structure. Particles of undissolved fly ash oscillating around 5–7 µm in size can
be observed. Figure 8c shows the microstructure of a binder based on chalcedonite, calcined
diatomite, amphibolite, and fly ash from Bełchatów (Ch + D + A + PB). The microstructure
studied is compact, with a lack of distinct pores in its structure. Particles of undissolved
calcined diatomite with a size oscillating around 5 µm can be observed. Figure 8d shows
the microstructure of a binder based on calcined diatomite, amphibolite, metakaolin, and
fly ash from Bełchatów (D + A + M + PB). The microstructure studied is compact, in which
several distinct pores in the range of 1–2 µm can be observed. In the binder matrix, particles
of undissolved calcined diatomite with a size oscillating in the range of 10–15 µm can be
observed. Figure 8e shows the microstructure of a binder based on chalcedonite, calcined
diatomite, metakaolin, and fly ash from Bełchatów (Ch + D + M + PB). The investigated
microstructure is compact, in which several distinct pores oscillating around 5 µm can
be observed. In addition, particles of undissolved fly ash from Belchatów are present
in the microstructure—structures around 20–30 µm in size, with porous characteristics.
Alehyen et al. investigated and described the microstructure of fly ash-based mortars.
They described it as a heterogeneous, porous mixture in which not all fly ash particles
were dissolved or partially dissolved [76]. The microstructure of geopolymers with the
addition of metakaolin was studied in another paper by Yang et al. They found that after
the addition of metakaolin, the content and pore diameter of the geopolymer decreased,
which could be the reason for the improved mechanical properties [70]. Vyšvařil et al.
on the partial replacement of lime binder with chalcedonite powder as a 0% to 40% lime
replacement additive. With increasing chalcedonite content in the lime mortars, a decrease
in the total porosity of the samples was observed, associated with a decrease in water
absorption [53].

4. Conclusions

The aim of the above research was to explore the possibility of using waste raw
materials found locally for use as alkali-activated binders. Binders based on such raw
materials as chalcedonite, diatomite calcined at 900 ◦C, calcium fly ash from Bełchatów,
amphibolite, and metakaolin were synthesized. This work included structural and strength
studies conducted to analyze and select potential precursors that could form the basis of
advanced alkali-activated binders. The results of the study show that:

1. The highest compressive strength values were achieved by a binder based on chal-
cedonite and fly ash from Bełchatów (Ch + PB)—567.74 MPa. Slightly lower compres-
sive strength values were achieved by a binder based on chalcedonite, amphibolite,
metakaolin, and fly ash from Belchatów (Ch + A + M + PB)—53.61 MPa.

2. The lowest values of compressive strength were obtained by a binder based on chal-
cedonite, calcined diatomite, amphibolite, and metakaolin (Ch + D+A + M)—20.02 MPa
and a binder based on calcined diatomite and metakaolin (D + M)—20.70 MPa.

3. The highest flexural strength values were achieved by a binder based on calcined
diatomite, amphibolite, metakaolin, and fly ash from Bełchatów (D + A + M + PB)—
12.58 MPa.

4. Average flexural strength values were obtained at similarly high levels for binders
based on chalcedonite, amphibolite, metakaolin, and fly ash from Belchatow (Ch +
A + M + PB) and binders based on amphibolite and metakaolin (A + M)—12.14 MPa
and 12.11 MPa, respectively.

5. The lowest flexural strength values were achieved by a binder based on chalcedonite,
calcined diatomite, amphibolite, and metakaolin and (Ch + D+A + M)—4.86 MPa.
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6. Raw materials such as chalcedonite, calcined diatomite, or amphibolite are not suitable
for alkaline activation alone. However, the use of them in appropriate weight propor-
tions as an addition to mixtures of other waste materials promotes the formation of a
geopolymer binder with very good mechanical properties.
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