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Abstract: As a kind of emerging contaminant, organoarsenic compounds have drawn wide concern
because of their considerable solubilities in water, and the highly toxic inorganic arsenic species
formed during their biotic and abiotic degradation in the natural environment. Thus, the effective
removal and studying of the adsorption mechanism of organoarsenic compounds are of significant
urgency. In this work, MnFe2O4 and MnFe2O4/graphene were prepared through a facile solvother-
mal method. From the results of the Transmission Electron Microscope (TEM) characterization, it
can be found that MnFe2O4 nanoparticles were uniformly distributed on the surface of the graphene.
And the specific surface area of the MnFe2O4/graphene was about 146.39 m2 g−1, much higher
than that of the MnFe2O4 (86.15 m2 g−1). The interactions between organoarsenic compounds and
adsorbents were conducted to study their adsorption behavior and mechanism. The maximum
adsorption capacities of MnFe2O4/graphene towards p-arsanilic acid (p-ASA) and roxarsone (ROX)
were calculated to be 22.75 and 30.59 mg g−1. Additionally, the ionic strength, negative ions, and
humus were introduced to investigate the adsorption performance of organoarsenic compounds.
Electrostatic adsorption and surface complexation are the primary adsorption mechanisms on account
of X-ray photoelectron spectroscopy (XPS) and the Fourier-transform infrared spectroscopy (FT-IR)
analysis. This research extends the knowledge into studying the interaction between organoarsenic
species and hybrid nanomaterials in the natural environment.

Keywords: MnFe2O4; graphene; adsorption; p-arsanilic acid; roxarsone

1. Introduction

Water contaminated with arsenic (As) presents a pressing and formidable challenge
due to its high toxicity, bioaccumulation potential, and carcinogenic properties [1]. Long-
term exposure to wastewater containing arsenic can lead to a range of diseases, including
neurological, dermatological, and endocrine disorders [2]. The detrimental effects of arsenic
contamination may take over a decade to become apparent, especially at low exposure
levels. Therefore, when arsenic contamination arises in water, it has the potential to enter
the human body via the food chain or biogeochemical cycle, posing a severe threat to
human health [3].

The existence of arsenic in nature displays two forms: organic arsenic and inorganic
arsenic. Organic arsenic compounds contain aromatic organoarsenicals and diverse methy-
lated arsenic. In contrast, inorganic arsenic comprises arsenate species (As(V)) and arsenite
species (As(III)). Notably, aromatic organoarsenicals, such as p-arsanilic acid (p-ASA) and
roxarsone (ROX), have been widely employed in agriculture for decades [4]. They serve the
purpose of promoting livestock growth and preventing the proliferation of parasites. These
organoarsenicals show limited adsorption and conversion within animals and are primarily
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excreted through metabolic processes [5]. However, it is crucial to note that organoarseni-
cals display minimal toxicity and undergo decomposition in soil. They can eventually
undergo biotransformation processes, leading to their conversion into various more mobile
and toxic inorganic arsenic compounds [6]. In the southern part of China’s Pearl River
Delta, p-ASA was detected at 12 µg/kg in the surface soil surrounding pig farms, indicating
increased arsenic levels compared to the local background [7]. Additionally, chicken and
pig manure in China contained total arsenic ranging from 8.10 × 105 to 5.7 × 106 and
from 0.9 × 105 to 2.5 × 107 kg per year [8]. Long-term exposure to arsenic-contaminated
drinking water may result in endemic arsenicosis and fatal cancers [9]. Therefore, it is
crucial and urgent to remove organic arsenic-contaminated water from the source before
its conversion to highly toxic inorganic arsenic in order to prevent arsenic migration and
control environmental risks.

Currently, the use of organoarsenicals in agriculture and livestock farming has had a
significant environmental impact. The removal of p-ASA and ROX from the environment
has become a focal point of research in the environmental field. Disappointingly, research
on the removal of organoarsenicals is relatively scarce compared to that on inorganic arsenic,
and the development of suitable removal methods is crucial for controlling organic arsenic
pollution in livestock [10]. At present, several removal techniques have been proposed,
including photodecomposition [5], biodegradation [11], and adsorption [11,12]. Among
these methods, adsorption shows the advantages of high efficiency and low cost [13].
Various natural and synthetic adsorbents have been studied for arsenic sorption from water
bodies [14]. As a consequence, the development of low-cost, high-efficiency adsorbents has
become a research hotspot.

Iron-based adsorbents can form exosphere and endosphere complexes with As(V)
owing to their abundant hydroxyl functional groups [15]. Additionally, iron oxides present
special characteristics of microporosity distribution and surface charging, facilitating the
adsorption of organoarsenicals, while preventing other ions or compounds in the sewage
water from interfering with the adsorbent [16]. Consequently, iron-based materials have
displayed a wide application in arsenic removal. Moreover, previous research has indi-
cated that binary metal oxides and bimetallic oxides display higher adsorption capabilities
compared to pure monometallic iron-based oxides [17]. MnFe2O4, for instance, not only
boasts strong magnetic properties, facilitating separation from solution and reducing the
risk of secondary environmental pollution, but also displays better biocompatibility and
lower biotoxicity [18]. The low manufacturing cost and simple preparation process of
MnFe2O4 have garnered significant attention. As a result, MnFe2O4 can be considered a
suitable alternative to iron-based materials. However, single MnFe2O4 suffers from limi-
tations, such as restricted adsorption capacity, slow adsorption rates due to small surface
areas, aggregation of active sites, and low overall adsorption efficiency, thus hindering
its practical applications [19]. Graphene, a novel two-dimensional carbon material, pos-
sesses numerous outstanding properties, including a large specific surface area, strong
antimicrobial characteristics, and excellent electrical and mechanical properties. While
graphene can serve as an effective adsorbent for pollutants, the challenge lies in efficiently
removing it from water after the treatment process [20]. To overcome this problem, an
innovative technique that has received much attention is the utilization of magnetic ma-
terials for phase separation in aqueous solutions by applying a magnetic field, providing
an attractive and cost-effective method for practical operation. Efforts have been made
to integrate graphene with magnetic nanoparticles, and these hybridized materials can
display enhanced adsorption capabilities [21].

Based on the aforementioned analysis, this research aimed to construct a MnFe2O4/
graphene (rGO) hybrid nanocomposite by employing a facile solvothermal method. And
p-ASA and ROX were selected as the typical organoarsenicals to study the adsorption
behavior. At the same time, the influence of natural environmental factors on its adsorption
efficiency was explored, including ion strength, anion, humus, etc. Finally, a possible
adsorption mechanism is proposed. MnFe2O4/graphene-hybridized nanocomposites show
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better adsorption properties for organic arsenic compared to the already reported iron-
based materials, MWCNT, ZIF-8, etc. (Supplementary Table S1). This research work
provides new insights for the preparation and application of new adsorbents.

2. Materials and Methods
2.1. Reagents and Materials

Graphite was purchased from the Institute of Guangfu Chemical (Tianjin, China),
and we also purchased p-arsanilic acid (Aladdin Scientific, Shanghai, China, 98%), roxar-
sone (Alfa Aesar, Haverhill, MA, USA, 99%), and humic acid (Sigma Aldrich, St. Louis,
MO, USA). Ferric chloride hexahydrate (FeCl3•6H2O), manganese dichloride tetrahydrate
(MnCl2•4H2O), ethylene glycol, sodium acetate anhydrous (NaAc), potassium perman-
ganate (KMnO4), hydrogen peroxide (H2O2, 30%), concentrated sulfuric acid (H2SO4, 98%),
and all other chemicals were analytical reagent grade and purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China), and used without further purification.

2.2. Preparation of MnFe2O4/rGO Hybrid Nanocomposite

The graphene (rGO) was synthesized from natural graphite powder by employing
a modified Hummers method. The synthesis of MnFe2O4/rGO was based on a facile
one-pot solvothermal method, using FeCl3•6H2O and MnCl2•4H2O as starting materials.
As depicted in Scheme 1, 0.2 g of GO, 1 g of FeCl3•6H2O, and 0.376 g of MnCl2•4H2O were
dispersed in 30 mL of ethylene glycol with ultrasonication for 3 h. Later, 3 g of NaAc was
added, followed by stirring for 30 min. The mixture was then transferred into a 50 mL
Teflon-lined stainless-steel autoclave and heated at 200 ◦C for 10 h. Solid black product
was obtained and washed several times with deionized water and ethanol and vacuum
freeze-dried. Bare MnFe2O4 nanoparticles were also synthesized via a similar approach
but in the absence of GO. Also, barely reduced grapheme oxide denoted G was prepared
under the same hydrothermal conditions but without MnFe2O4 nanoparticles.
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Scheme 1. Schematic illustration of the formation process for MnFe2O4/rGO hybrid nanocomposite.

2.3. Characterization

The X-ray diffractograms (XRDs) of the catalysts were analyzed using a Shimadzu
XRD-6100 X-ray diffractometer (Kyoto, MA, Japan) with Cu-Kα rays as the X-ray emission
source, and the scan range was 5–80◦, with a scan rate of 5◦ min−1. Nitrogen adsorption–
desorption experiments of the samples were performed on a TriStar II 3020 specific surface
and porosity analyzer (Atlanta, MA, USA), and the specific surface area of the samples
was calculated using Brunauer–Emmett–Teller (BET) simulations. Transmission electron
microscopy (TEM) was used to observe the microstructure of the materials. The samples
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were dispersed in anhydrous ethanol before testing, 1~2 drops of the suspension were
placed on the carbon film, and the carbon film was fixed after the ethanol evaporated and
was tested. The infrared spectra of the samples were obtained via an analysis with a Nicolet
iS50 infrared spectrometer (Madison, MA, USA) with KBr as the background, scanning
wavelengths of 4000–400 cm−1, and spectral resolution of 4 cm−1. X-ray photoelectron
spectroscopy (XPS) analysis was performed by using an ESCALAB 250Xi from Thermo
Scientific (Waltham, MA, USA), using XPSPEAK version 41 software for background
deduction and peak splitting.

2.4. Adsorption Study

In this adsorption experiment, 20 mL of p-ASA and ROX, each with concentrations of
50 mg/L, were individually prepared. Subsequently, 20 mg of MnFe2O4/rGO adsorbent
was added to each solution. The two solutions were subjected to agitation in a shaker
at 160 revolutions per minute for varying durations: 1, 3, 5, 10, 30, 60, 180, 240, 720, and
1440 min. Samples were collected, allowed to stand, passed through a membrane, and
analyzed. On an Agilent 1200 HPLC (Santa Clara, MA, USA) equipped with a C18 reversed-
phase column with a detection wavelength of 264 nm, the mobile phases were water and
acetonitrile, the flow rate was 1 mL min−1, and the injection volume was 10 L; the concen-
trations of p-ASA and ROX were determined. When analyzing the concentration of p-ASA,
the water: acetonitrile ratio was 90:10; however, when analyzing the concentration of ROX,
the ratio was 80:20. Experiments on the thermodynamics of adsorption were conducted at
concentrations of 10, 25, 50, 75, and 100, 150, and 200 mg/L, with the temperature of the
shaker set at 15, 25, and 35 ◦C, respectively. The adsorption equilibrium may be determined
using Formula (1):

qe = (C0 − Ce)
V
m

(1)

where C0 is the initial concentration of p-ASA or ROX (mg L−1), Ce is the concentration
of p-ASA or ROX when it reaches adsorption equilibrium (mg L−1), V is the volume of
solution added (L), and m is the mass of catalyst (g).

Different ionic intensities were adjusted to 0.01 M, 0.005 M, and 0.001 M with NaNO3
concentrations, and 0.1 M HNO3 or 0.1 M NaOH solution was adjusted to 3, 4, 5, 6, 7, 8,
9, and 10; different anion interference experiments were added to 0.01 M NaNO3, NaCl,
Na2SO4, and Na3PO4, respectively; and the pH value of the solution was adjusted to 3, 4,
5, 6, and 7 with 0.1 M HNO3 or 0.1 M NaOH solution. A certain concentration of HA (0,
5, 20, and 100 mg/L) was added to the humic acid interference experiment; the pH value
of the solution was adjusted to 3, 4, 5, 6, 7, 8, 9, and 10 with 0.1 M HNO3 or 0.1 M NaOH
solution; and the shaker was shaken for 1440 min at a shaker speed of 160 r/min, sampled,
left standing, passed through the membrane, and left standing for analysis.

3. Results and Discussion
3.1. Properties of MnFe2O4/rGO Hybrid Nanocomposite

Figure 1a,b reveal that monomeric MnFe2O4 nanoparticles exhibit a circular appear-
ance and form an aggregated microsphere distribution. Additionally, the MnFe2O4 micro-
spheres are densely packed, creating porous microspheres composed of relatively large
nanoparticles with average cluster size diameters ranging from 200 to 400 nm. In con-
trast, Figure 1d depicts a transmission electron microscopy image of the synthesized
MnFe2O4/rGO, where it is evident that the MnFe2O4 microspheres are uniformly immobi-
lized on transparent folded graphene sheets without significant clustering. Importantly, a
large number of MnFe2O4 particles remain tightly bound to rGO despite ultrasonication
during the preparation of TEM samples, indicating the mechanical stability of the mate-
rial, which implied that the graphene structure facilitates the prevention of microsphere
agglomeration and the formation of strong forces between rGO and MnFe2O4 [22]. These
findings were consistent with those reported in the literature (Figure 1b) [23]. Furthermore,
high-resolution transmission electron microscopy (HRTEM) images of both the MnFe2O4
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and MnFe2O4/rGO composites reveal that the stripes with an interfacial distance of 0.3 nm
correspond well to MnFe2O4 (220) (Figure 1c,f), confirming the successful synthesis of our
composite materials.
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The composed MnFe2O4 nanoparticles were characterized by XRD, as shown in
Figure 2. The XRD patterns of MnFe2O4 nanoparticles could well match the diffrac-
tion peaks of cubic spinel-type MnFe2O4 (JCPDS card No. 10-0319, space group: Fd3m,
a = 8.50 Å) [24]. In comparison with the existing literature, rGO shows the absence of the
9.7◦ peak associated with the GO (001) crystal plane. This absence is attributed to the
removal of oxygen-containing functional groups situated between the GO layers during
the solvothermal treatment, triggering a reduction reaction that narrows the D spacing
according to Bragg’s law. As a result, the interlayer spacing undergoes a significant reduc-
tion, closely resembling that of rGO [25]. The characteristic diffraction peak at 2θ = 24.5◦

(002) typically observed in rGO is conspicuously absent in the as-prepared adsorbent. This
absence may be attributed to the infiltration of MnFe2O4 nanoparticles into the reduced GO
layer, causing their separation [26]. Furthermore, the diffraction peaks of MnFe2O4 crystals
closely match those of MnFe2O4/rGO, indicating that the material is adequately loaded,
and the diffraction peak is well-defined and sharpened. The emergence of the strongest
diffraction peak of MnFe2O4 particles at 2θ = 35.86◦ further validates the formation of
nanoparticles and their robust crystallization and growth along the crystal plane (311) [27].
The average grain size, calculated using the Scherrer formula based on the strongest peak
(311), is approximately 29.7 nm.

A nitrogen adsorption–desorption analysis was employed to evaluate the specific
surface area and pore size distribution of both monomeric MnFe2O4 and MnFe2O4/rGO
composites (Figure 3a,b). Utilizing the BET method for nitrogen adsorption and desorption
data, the specific surface areas of MnFe2O4 and MnFe2O4/rGO nanocomposites were
determined to be 86.15 and 146.39 m2 g−1, respectively. This improvement can be attributed
to the uniform distribution of MnFe2O4 nanoparticles on the rGO sheet. According to the
IUPAC classification, the nitrogen adsorption–desorption isotherms and textural properties
of MnFe2O4 nanoparticles exhibit a type IV hysteresis loop, which is characteristic of typical
mesoporous materials [28]. In contrast, MnFe2O4/rGO displays a type IV H3 hysteresis
loop [27], indicating the prevalence of mesoporosity and the interconnection between
disordered mesoporosity and interparticle mesoporosity. It is well established that the large
specific surface area and abundant mesoporous structure of the adsorbent are essential
factors contributing to the improved adsorption capacity of the material for reactants [29].
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Figure 3. Nitrogen adsorption−desorption isotherms and pore diameter distribution of MnFe2O4 (a)
and MnFe2O4/rGO (b).

3.2. Adsorption Kinetic and Isotherms

Kinetic experiments were conducted to analyze the adsorption properties of the
prepared materials for arsenic in water. Figure 4a,c illustrate the examination of adsorption
kinetics for various organic arsenic species on MnFe2O4 particles. Active adsorption was
observed for both p-ASA and ROX within the initial 100 min of the experiment. Specifically,
the MnFe2O4/rGO complex achieved the removal of 58% of the maximum adsorption
capacity for p-ASA and 87% of the maximum adsorption capacity for ROX. Subsequently,
between 180 and 300 min, the process continued at a relatively slow rate until equilibrium
was reached around 1400 min. In addition, the adsorption rate of the MnFe2O4/rGO
complex was positively correlated with the adsorption rate of rGO and MnFe2O4. This
is due to the fact that MnFe2O4 loading onto rGO does not agglomerate, and it is also
due to the intrinsic adsorption capacity of graphene itself; the combination of the two
does not impair their properties, thus elucidating the enhanced adsorption capacity of the
complex [30]. Notably, the adsorption of ROX by rGO was more significant. This was
perhaps attributed to the presence of more nitroarsenic adsorption sites than aminoarsenic
in the adsorption of contaminants by rGO. The presence of vacancies and small pores on the
surface of rGO, which can provide additional adsorption sites for nitroaromatic compounds,
also resulted in a substantially larger adsorption of ROX by MnFe2O4/rGO [31].
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To confirm the evolving behavior of the adsorbent over the course of the adsorption
process, we utilized a pseudo-second-order equation (Equation (2)) to characterize the
adsorption of organic arsine on both the monomer MnFe2O4 and the composite adsorbent.

t
qt

=
1

kq2
e
+

1
qe

t (2)

where k (g mg−1 min−1) is the rate constant of adsorption, and qt (mg g−1) and qe (mg g−1)
are the adsorption capacity at any time and at equilibrium. The initial sorption rate, h, can
be classified as shown in Equation (3):

h = kq2
e(t → 0) (3)

The h (mg g−1 min−1) and k (g mg−1 min−1) values can be obtained from the slope
and intercept of the t/qt curve. The h and k were calculated for the adsorption of arsenic by
MnFe2O4 in accordance with the fitted secondary kinetic model (R2 > 0.99). Based on the h
and k values, it was shown that the order of the initial adsorption rates of both adsorbed
p-ASA and ROX obeyed rGO < MnFe2O4 < MnFe2O4/rGO.

The adsorption isotherm model elucidates the interaction between adsorbate and
adsorbent under equilibrium conditions with a constant pH value. In an equilibrium state
characterized by a constant pH value, the adsorption isotherm model is employed to charac-
terize the interaction between the adsorbate and the adsorbent. The analysis of adsorption
isotherm data aimed to evaluate the impact of temperature on the adsorption of diverse or-
ganic arsenic loads onto MnFe2O4/rGO and to estimate the maximum adsorption capacity
of the adsorbent. The depicted adsorption isotherms of ROX and p-ASA on MnFe2O4/rGO
at three different temperatures are shown in Figure 5a,d. Under the same adsorption
conditions, the adsorption capacities of ROX and p-ASA are in the following order: 308K >
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298K > 288K. With the rising temperature, the equilibrium absorption increases, suggesting
the endothermic character of the adsorption process. At the highest temperature (308K),
the maximum adsorption capacities for ROX and p-ASA were 22.4 mg/g and 29.3 mg/g,
respectively, indicating a relative advantage in the adsorption of ROX.
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The equilibrium adsorption isotherm data were analyzed using the Langmuir and
Freundlich isotherm models, and the following are the respective Equations (4) and (5).

Langmuir equation : qe =
KadqmaxCe

1+KadCe
(4)

Freundlich equation : qe = kFC1/n
e (5)
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In the presented equations, KL (mg g−1) represents the Langmuir adsorption equilib-
rium constant, qm stands for the maximum adsorption capacity at monolayer coverage (mg
g−1), and qe represents the amount of p-ASA and ROX adsorbed at equilibrium (mg g−1).
Additionally, KF ((mg g−1) (L mg−1)1/n) and n are the Freundlich characteristic constants.
To assess the goodness of fit and the degree of error for the validation of the isotherm
model, the regression coefficient (R2) is employed.

The Langmuir isotherm model assumes that the adsorbate forms a monolayer on the
adsorbent surface, and the resulting equation describes the equilibrium between the two
phases. The Freundlich isotherm model is employed based on the multilayer adsorption of
adsorbates on heterogeneous surfaces. Parameters pertinent to the calculated isotherms are
provided in Table S2, and the fitting curves for the expected isotherm models at the three
temperatures are depicted in Figure 5b,c,e,f. Both the Langmuir and Freundlich adsorption
isotherm models effectively explain the adsorption behavior of organic arsenic during the
production of magnetic adsorbents, as indicated by the R2, all of which exceed 0.97.

By employing the Langmuir dimensionless constant separation factor (RL) [23], we can
theoretically demonstrate the favorable nature of the adsorption process for organic arsenic
and MnFe2O4/rGO. RL values greater than 1 suggest an unfavorable type of isotherm,
while values between 0 and 1 indicate a favorable type, as expressed in Equation (6) below.

RL =
1

1+KLCe
(6)

where Ce is the equilibrium concentration of adsorbate (mg L−1), and KL is the Langmuir
constant. The calculated values are shown in Table S3.

The adsorption of organic arsenic onto the MnFe2O4/rGO composite was shown to
be temperature-independently advantageous, with RL values ranging from 0.686 to 0.767
(0 < RL < 1).

According to the calculation of Langmuir adsorption isotherm, the maximum adsorp-
tion capacity of p-ASA and ROX on MnFe2O4/rGO was 24.6 mg g−1 and 31.62 mg g−1,
respectively, and the maximum adsorption capacity of p-ASA and ROX at 298 K was
22.75 mg g−1 and 30.59 mg g−1, respectively.

3.3. Effect of pH and Ionic Strength

Natural aqueous environmental media typically contain a variety of different com-
pounds, which can potentially interfere with the adsorption process of target ions. These
ions may either enhance or hinder the adsorption of organic arsenicals. Therefore, investi-
gating the impact of ionic strength and other ions on the adsorption process can provide
valuable insights into the mechanisms of adsorption. Initially, the effect of varying the
concentration of NO−3 (0.01 M, 0.005 M, and 0.001 M) was investigated, and it is observed
from Figure 6a,b that the ionic strength variation has limited and almost no effect on the
adsorption of p-ASA and ROX, thus suggesting that the organic arsenicals form an inner
sphere complex on the MnFe2O4/rGO surface, thereby avoiding competition with other
ions [32].

3.4. Effect of Background Anions

Competition with naturally occurring anions in aquatic environments can affect the
adsorption of arsenic. Therefore, four common anions (Cl−, NO−3 , SO2−

4 , and PO3−
4 )

were chosen to investigate their influence on the MnFe2O4/rGO adsorption process [32].
Intriguingly, 0.01 M concentrations of Cl−, NO−3 , and SO2−

4 ions at different pH levels had
minimal effects on p-ASA and ROX adsorption. The removal efficiency of the two organic
arsenic compounds remained at approximately 90% of their initial rates. The PO3−

4 anions
had a significant impact on the adsorption of p-ASA and ROX, leading to a reduction in
the removal of organic arsenic by 50–75%. Phosphorus and arsenic are both nonmetals
belonging to the VA group and share similar chemical characteristics. It has been reported
that both phosphate and arsenate are tetrahedral anions, and phosphate can potentially



Materials 2023, 16, 7636 10 of 16

form inner-sphere complexes with hydroxyl groups on the adsorbent surface, unlike other
ions [33,34]. Similar results have been reported in numerous studies, indicating that the
presence of phosphate effectively reduces the adsorption of arsenic compounds by metal
oxides [35,36]. Regarding Cl−, NO−3 , and SO2−

4 , which have a minor inhibitory effect on
adsorption, this is attributed to diffusion-based outer-sphere complexation adsorption.
This suggests that the absence of electrostatic interactions has a minimal effect on the
adsorption capacity.
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3.5. Effect of HA

Groundwater systems with elevated arsenic levels are distinguished by a substantial
concentration of dissolved organic matter. This organic matter governs the transport and
transformation of contaminants within these systems, playing a pivotal role in the release
of pollutants. In this context, we employed ROX and p-ASA as representative models of
organic arsenicals. These compounds were subjected to adsorption studies in the presence
of HA at varying concentrations of 0, 5, 20, and 100 mg·L−1. As illustrated in Figure 6e,f,
the adsorption of organic arsenic was impeded under the presence of p-ASA, particularly
at pH values below 6, in a manner proportionate to the concentration of HA. However,
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a more comparable adsorption pattern emerged at pH levels exceeding 6. In contrast,
the adsorption of ROX was progressively suppressed across the entire pH range with
the increasing humic acid concentration. Distinct concentrations of humic acid similarly
imposed inhibitory effects on the adsorption of organic arsenic, particularly at a lower
pH level.

The elemental composition and valence states of MnFe2O4/rGO were analyzed both
before and after adsorption, using XPS. In Figure 7a, the full spectrum of arsenic species
is depicted before and after adsorption, with the presence of elements C, O, N, Fe, and
Mn observed in all samples. Figure 7b displays the characteristic peaks of C1s. This high-
resolution C1s spectrum can be deconvoluted into four peaks situated at 283.16 eV, 283.6 eV,
284.67 eV, and 287 eV, corresponding to the binding energies of C-C/C=C, C-O, C=O, and
O-C=O bonds [37]. It is worth noting that the percentage content of oxygen-containing
functional groups is lower compared to that reported in the literature [38]. Additionally,
this finding reinforces the conclusion regarding the rGO during XRD analysis. It suggests
that the conjugated π-orbital structure of graphite is disrupted, and oxygen-containing
functional groups are interspersed within the graphene structure during the fabrication
process [39].
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Figure 7. XPS spectra of MnFe2O4/rGO hybrid nanocomposite before and after organoarsenic
adsorption: (a) survey, (b) C 1s, (c) O 1s, and (d) N 1s.

A multi-peak Gaussian fit of MnFe2O4/rGO before the adsorption of organic ar-
senic was performed to deconvolve the O 1s (Figure 7c) spectrum into three peaks cen-
tered at 528.9 eV, 530.1 eV, and 534.5 eV. The main contributions are the lattice oxygen
in MnFe2O4 [40], the surface metal hydroxyl group (M-OH) from the oxygen-containing
functional group of rGO [41], and the surface adsorbed water molecules. Significantly, the
MnFe2O4/rGO surface had a high percentage of M-OH (37.01%), which is considered to be
an important component for the removal of contaminants [42]. Our experimental obser-
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vations are also as expected. After adsorption of p-ASA and ROX, the oxygen-containing
functional groups on the surface are less than 34.05% and 32.52%, while the O2− on the
surface increases from 28.40% to 30.61% and 31.50%, respectively, which may be attributed
to the specific adsorption of the lattice oxygen by various arsenic species. There was a slight
magnitude in the variation in the surface adsorption percentage of H2O in MnFe2O4/rGO
prior to and following adsorption, omitting the contribution of H2O to removal. In addition,
the fact that the percentage content of M-OH is lower in the ROX-loaded MnFe2O4/rGO
in comparison to the adsorbed p-ASA indirectly means that the adsorbent facilitates the
removal of ROX contaminants. In addition to electrostatic mutual interaction and surface
complexation for adsorption, hydrogen bonding serves as another important principle
used to explain the removal of ROX in liquid-phase adsorption. Moreover, MnFe2O4/rGO,
p-ASA, and ROX in this study all have sufficient hydroxyl (-OH), amino (-NH2), and nitro
(-NO2) to provide H-donors or H-acceptors. As shown in Figure 7d, the observation of
N1s revealed the presence of hydrogen bonding after the adsorption of organic matter [43].
Crucially, bonding in hydrogen is also influenced by hydroxyl groups, and the increase in
hydroxyl (-OH) groups leads to a monotonic increase in the amount of adsorbed arsenic
contaminants [44], and this, combined with the above factors, is more advantageous for the
removal of ROX from water.

Supplementary Figure S2 demonstrates the adsorption of p-ASA and ROX onto
MnFe2O4/rGO, with peaks at 46.7 eV and 44.06 eV that are both assigned to ASV-O [45].
This is consistent with the analysis from ATR-FTIR measurements, indicating that different
forms of arsenic are adsorbed onto MnFe2O4 by forming As-O-M (M = Fe or Mn) bonds
to create surface complexes [46]. Supplementary Figure S3 illustrates the adsorption of
organic arsenic on this composite material, showing that the binding energy of Fe2p and
Mn2p remains nearly unchanged in the chemical state before and after adsorption. This
not only confirms the presence of both Fe and Mn elements in the MnFe2O4/rGO hybrid
material but also suggests that the adsorption process occurs on the surface without involv-
ing redox reactions. A slight shift in two of the peaks can be attributed to the interaction
with organo-arsenic in MnFe2O4/rGO.

3.6. Adsorption Mechanism

As is well known, the zeta potential of a species is measured as a function of the pH to
assess the surface’s acidity or alkalinity and determine the isoelectric point (IEP). This exper-
iment was conducted under the working conditions at pH = 3 (Supplementary Figure S4).
Observations suggest that the isoelectric point (IEP) of MnFe2O4/rGO is approximately
pH = 5. Our experimental pH is lower than the protonated surface IEP of MnFe2O4/rGO,
which is positively charged [47]. p-ASA and ROX can form charged species (due to the
presence of acidic (nitro) and basic (amino) groups), and their pKa1 values are listed in
Supplementary Figure S5. At pH = 3, both p-ASA and ROX exist in the form of molecules
and mononegative ions. p-ASA has a lower pKa (1.9), indicating lower solubility, resulting
in C6H7AsNO−3 and making up approximately 30% of the ions in solution. In contrast,
ROX has a relatively higher pKa1 (3.43), with C6H5AsNO−6 constituting approximately 83%
of the ions, and monovalent ions dominate the solution. Consequently, the adsorbent can
bind organic pollutants to its surface through electrostatic attraction, thereby facilitating
their removal. Additionally, the greater the hydrolysis of ROX in an aqueous solution, the
higher the corresponding adsorption capacity. Moreover, considering the O fraction peak
in XPS and the adsorbent’s behavior in the presence of interference from other ions, we
suggest the occurrence of surface complexation. Notably, post-adsorption, iron experiences
a substantial shift (Supplementary Figure S3), indicating iron’s involvement in the com-
plexation reaction with organic arsenic within MnFe2O4/rGO. This leads us to speculate
that a monodentate surface complexation reaction occurs with organic arsenic, resulting in
a reduction in the surface hydroxyl content of MnFe2O4/rGO. This observation aligns with
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the previously described FTIR analysis results regarding the formation of Fe-O-As bonds,
as in Equation (7) [31,36]:

Fe−OHsuf + AsO3R3− + H+ = FeAsO+
3R2− + H2O (7)

Another significant mechanism for elucidating liquid-phase adsorption is through the
formation of hydrogen bonds. Since both the adsorbent and the adsorbate have hydrogen
donor or hydrogen acceptor groups. The abundance of hydroxyl groups in the MnFe2O4-
reduced graphene oxide complex enables the formation of hydrogen bonds with the
amino (-NH2) or hydroxyl (-OH) groups present in the p-ASA molecule (O-H···N, O-
H···O) [43]. However, in comparison with the prior literature, it was noted that the
adsorption of metal oxides on organic arsenic typically results in a higher adsorption
capacity for p-ASA than for ROX [19,44,48]. This difference can be attributed to the
inclusion of oxygen-containing groups in the reduced graphene oxide composite prepared
in this study. Nitroaromatic compounds serve as π-electron acceptors known as π-deficient
aromatic molecules (NAC). The presence of oxygen-containing groups/defects/edges
on the rGO surface provides electron-donating capabilities, resulting in π-π interactions
beyond EDA (electron–donor–acceptor) interactions. The nitro functional groups of NAC
not only enhance π-π EDA interactions but also facilitate electrostatic interactions with the
oxygen-containing groups/edges/defects present in graphene materials [31] (Figure 8).
MnFe2O4/rGO retains the characteristics of reduced graphene oxide (rGO) and exhibits a
heightened affinity for ROX.
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4. Conclusions

In this work, a MnFe2O4/rGO hybrid nanocomposite was successfully synthesized via
a facile solvothermal method and employed to adsorb two kinds of aromatic organoarsenic.
The synergism between MnFe2O4 and graphene in the MnFe2O4/rGO nanocomposite
enables its high affinity towards p-ASA and ROX. The maximum adsorption capacities of p-
ASA and ROX onto MnFe2O4/rGO were 24.6 and 31.62 mg g−1 on account of the Langmuir
adsorption isotherm. Additionally, the chemical structure of organoarsenic displays a
significant impact on the adsorption capacities. Surface complexation and electrostatic
interaction are the primary adsorption mechanisms on the basis of the XPS and FTIR
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analysis. In general, this research shows the potential value of the MnFe2O4/rGO hybrid
nanocomposite as a recyclable adsorbent in the purification of natural water contaminated
with arsenic.

Supplementary Materials: The following supporting information can be downloaded at https:
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on adsorbents. Table S2: Calculated equilibrium constants for p-ASA and ROX adsorption onto
MnFe2O4/rGO; Table S3: RL values calculated for all temperatures and concentrations; Figure S2: As
3d XPS spectra of MnFe2O4/rGO after p-ASA and ROX adsorption; Figure S3: Fe 2p XPS spectra and
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