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Abstract: This publication describes the influence of residue monomers in synthesized pressure-
sensitive adhesives based on acrylics on their main properties—tack, peel adhesion, shear strength
and shrinkage—in the form of transfer tapes used for joining wooden elements in the furniture
industry. The discussed carrier-free adhesive tapes are synthesized via photo-crosslinking and
photopolymerization with UV radiation of the photoreactive prepolymers sandwiched between
two adhesive siliconized polyester films. The simultaneous crosslinking and polymerization processes
carried out under UV lamps placed simultaneously above and below the crosslinked photoreactive
polymer layer lead to the production of a carrier-free adhesive film. The preliminary target of these
studies was to investigate how the intensity of UV radiation and the time of its exposure affect
the viscosity of the photoreactive compositions and the content of unreacted monomers in them.
Next, the influence of the crosslinking agent concentration and UV irradiation time on the content of
unreacted monomers after the crosslinking process was tested. The last step of the studies was the
investigation of the influence of the residue monomer concentration on the application properties of
the obtained pressure-sensitive adhesive layers. The typical PSA application properties were tested
on the wood samples: tack, peel adhesion, shear strength (cohesion) and shrinkage.

Keywords: photopolymerization; photo-crosslinking; UV radiation; transfer tapes; photoreactive
prepolymers; residue monomers; tack; peel adhesion; shear strength; shrinkage

1. Introduction

Polymers characterized by a low Tg (glass transition temperature) below about −20 ◦C
and an amorphous structure are predisposed for the manufacturing of PSA (pressure-
sensitive adhesives) [1]. Since the introduction of pressure-sensitive acrylic adhesives
over half a century ago, they have been successfully applied in many fields of industry.
PSAs are used in self-adhesive tapes [2–10], labels [11–17], signs and markings, protective
films [12,14,15], assembly operations [4,11,12,18–22], as well as in dermal dosage systems
for pharmaceutical applications [2,6,7,10–12,17,23–27] and biomedical electrodes [28]. Over
the last 60 years or so, the development of acrylic pressure-sensitive adhesives has made
tremendous progress, so much so that both manufacturers of pressure-sensitive adhesive
articles and their adhesive suppliers now use sophisticated equipment and precise methods
to study pressure-sensitive adhesive performance: tack, adhesion and cohesion. [16,29–31].
In the case of protective films, very important is the shrinkage of pressure-sensitive adhe-
sives after the crosslinking process. Three properties which are useful in characterizing the
performance of pressure-sensitive adhesives are: tack (the initial adhesion), peel adhesion,
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measured at a 90◦ and 180◦ angle, and cohesion—shear strength (static or dynamic shear).
The first parameter shows the ability of a PSA to adhere quickly without any additional
pressure, the second is its ability to resist removal by peeling (important for removable
labels, etc.) and the third is its internal consistency when shearing forces are exerted on
the adhesive layer. The first two parameters are directly proportional to each other but
are inversely proportional to the third. The performance of PSAs, such as tack, peeling
and shear, are to a large extent determined by the method of polymerization, crosslinking
process and last but not least the type and quantity of the crosslinking agents added to
the acrylic PSA [4,7,12,17,27,32]. The common technologies for manufacturing pressure-
sensitive adhesives include the following kinds of acrylic pressure-sensitive adhesives
(PSAs): solvent-based acrylic PSAs—the adhesive compounds are polymerized in solvent
and cast onto the web and the solvents are dried off after coating, leaving behind the
functional adhesive [11,12,19,21,31,33]; water-borne acrylic dispersion PSAs—the adhe-
sive compounds are polymerized in water and then applied to the web, and, next, the
water is dried off, leaving behind the functional adhesive; solvent-free acrylic PSAs in
the form of typical hot melts, LVS (low viscosity systems) and photoreactive prepoly-
mers. Adhesives based on photoreactive prepolymers are coated at room temperature
and crosslinked via the application of UV technology using UV lamps emitting UV-A and
UV-C radiation [12,13,19,21,28,32–35]. The modern construction and furniture industry
often uses double-sided self-adhesive mounting tapes. These are most often universal
tapes for various surfaces. There are not many studies in the literature on self-adhesive
materials dedicated to joining construction wood with different surfaces [36]. The use
of structural self-adhesive joints in connecting wooden elements brings a few beneficial
improvements, primarily quick application and clean joints. In addition, no solvents are
used, which accelerates the achievement of the final strength of the joint and is beneficial
for safe working conditions. We found it necessary to expand the current knowledge about
the production of modern self-adhesive tapes for connecting wood.

2. Materials and Methods
2.1. Materials

The following acrylate monomers, as shown in Table 1, were used in the tests per-
formed below.

Table 1. Raw materials used for the synthesis of studied solvent-free acrylic PSAs.

Kind of Monomers Abbreviation Chemical Formula Supplier

2-ethylhexyl acrylate 2-EHA BASF
(Ludwigshafen, Germany)

2-propylheptyl acrylate 2-PHA BASF
(Ludwigshafen, Germany)

butyl acrylate BA BASF
(Ludwigshafen, Germany)

ethyl acrylate EA BASF
(Ludwigshafen, Germany)

methyl acrylate MA BASF
(Ludwigshafen, Germany)

acrylic acid AA BASF
(Ludwigshafen, Germany)

The radical photoinitiator used during the studies was Omnirad 127 from IGM Resins B.V. (Waalwijk, The Netherlands),
CAS: 474510-57-1, with the chemical name 2-hydroxy-1-[4-[4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-
methylpropan-1-one. The photoreactive crosslinking agent used for PSA crosslinking was 1,6-hexanediol diacrylate
(1,6-HDDA) (Merck KGaA, Darmstadt, Germany). CAS: 13048-33-4.
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2.2. Synthesis of Investigated Solvent-Free Photoreactive Acrylic Pressure-Sensitive Adhesives

The solvent-free polyacrylate-based photoreactive pressure-sensitive adhesives (PSAs)
were synthesized in a 0.25-litre glass reactor with water cooling using UV radiation as
a source of free radicals resulting from the photolytic degradation of the photoinitia-
tor. The monomer mixture consisted of 35 wt.% 2-ethylhexyl acrylate (2-EHA), 25 wt.%
2-propylheptyl acrylate (2-PHA), 15 wt.% butyl acrylate (BA), 10 wt.% methyl acrylate
(MA), 10 wt.% ethyl acrylate (EA), and 5 wt.% acrylic acid (AA). A 0.1 wt.% Omnirad 127,
based on the weight of the monomer mixture, was used as the radical photoinitiator.

The photoreactive acrylic PSAs were synthesized using UV-initiated polymerization
in a stirred reactor under an inert atmosphere (N2) according to the bulk radical polymer-
ization method. A reactor of 0.25-litre capacity was equipped with a stirrer, nitrogen inlet,
temperature sensor and vent. UV radiation from a lamp mounted near the reactor was used
to initiate the reaction. A UV lamp was placed by the reactor wall at a distance of 50 mm.
A lamp with a power of 11 W (Osram Dulux S BL UVA 11 W/78, Munich, Germany)
equipped with a reflector provided the radiation intensity at a level of 2.5 mW/cm2 at
a given distance. The irradiation time was changed in the range of 1 min to 5 min. Af-
ter exposure to UV radiation, oxygen was added to the pre-polymerization product to
stabilize it.

2.3. Viscosity of Synthesized Solvent-Free Photoreactive Acrylic PSAs

The viscosity of the synthesized acrylic PSAs was measured using a Rheomat RM180
from TA Instruments (New Castle, DE, USA) (formerly Rheometric Scientific Inc., Seattle,
WA, USA), with spindle No. 3 at room temperature (23 ◦C). This is a type of rotational
viscometer device that uses the Brookfield method, where the spindle is immersed into the
liquid sample and rotated at a defined speed.

This method is commonly used in the PSA industry due to its speed and simplicity.

2.4. Free Monomers Concentration in Synthesized Acrylic PSA

The residual of monomers was determined using the gas chromatograph Varian
CP-3800 (Palo Alto, CA, USA). A chromatographic column J&W DB-1 with a length of
30 m and an internal diameter of 0.25 mm was used. From the above PSAs, 0.1 µL of the
gaseous phase samples were injected into the chromatographic column for analysis using a
Hamilton 7001 syringe (Merck KGaA, Darmstadt, Germany).

2.5. The Coating Weight of Transfer Acrylic PSA and Type of Cover Material

The coating weight (basis weight) of a pressure-sensitive adhesive is defined as the
thickness of the adhesive layer. This parameter influences essentially the performance
of every PSA. During the study, the prepared adhesives were coated onto a 50 g/m2

siliconized polyester film, and after coating, covered with the same 50 g/m2 siliconized
polyester film. The basis weight (coating weight) of the pure adhesive layer between the
foils was maintained at 100 g/m2.

2.6. UV-Initiated Crosslinking

The coated layer of the photoreactive prepolymer is covered with a polyester adhesive
film in order to exclude the so-called oxygen inhibition, negatively affecting the polymer-
ization process. The “sandwich” obtained in this way is transferred from the coater to a
device that allows the prepolymer layer to be illuminated on both sides using low-power
UV-A lamps (Figure 1).

Photoreactive acrylic prepolymers are modified with the photoreactive crosslinking
agent 1,6-hexanediol diacrylate (1,6-HDDA) in a concentration between 0.3 and 0.7 wt.%,
are coated with a coat weight of 100 g/m2 directly onto the 50 µm thick siliconized
polyester film, covered with the same 50 µm thick siliconized polyester film and, after
that, crosslinked for 5 to 10 min under Philips low-Hg lamps with a UV dose of about
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3 mW/cm2 (Figure 1). The UV irradiation is determined using an integrating radiometer
Dynachem™ Model 500, available from Dynachem Corporation (Tustin, CA, USA).
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Figure 1. UV-initiated crosslinking of photoreactive transfer tape.

2.7. Conditioning

Before the testing procedures, the adhesive-coated strips were kept at room tempera-
ture and 50% relative humidity for 7 days. During each measurement, three samples were
used, and the given value of the tested property was the arithmetic mean of the achieved
results from the three samples.

2.8. Measurement of Tack, Peel Adhesion, Shear Strength and Shrinkage

The influence of the concentration of the acrylate monomer residues, crosslinking
agent (1,6-HDDA) amount and UV-crosslinking time on the PSA properties, such as tack,
peel adhesion, shear strength and shrinkage, were determined following the international
standards FINAT (FINAT—The Association For The European Self-Adhesive Labelling
And Adjacent Narrow Web Converting Industries; finat.com (accessed on 15 June 2023)).
The exact details can be found in FTM 9 (loop tack, measured at 23 ◦C), FTM 1 (peel
adhesion at a 180◦ angle, measured at 23 ◦C) and FTM 18 (dynamic shear, measured at
23 ◦C and 70 ◦C).

The loop tack method measures the instantaneous adhesion of a loop of an adhesive-
coated sample without external pressure in keeping contact (acc. FTM 9). According to
another definition, the quick stick tack value is the force required to separate at a specific
speed a loop of adhesive material brought into contact with a standard testing surface.
A sample of PSA-coated material 1 inch (about 2.5 cm) wide and 7 inch (about 17.5 cm)
long, in the form of a loop, is mounted into the jaws of the testing machine. A steel plate is
mounted into the lower jaws. Then, the loop is lowered, causing brief contact between the
adhesive and plate. The force reading in Newtons is recorded as the tape is peeled from the
steel surface at a constant rate of 300 mm per minute. The loop tack test has the possibility of
using various substrates, including wood substrates from Rocholl (Eschelbronn, Germany).

Peel adhesion at a 180◦ angle (acc. FTM 1) is the force required to remove a coated
flexible pressure-sensitive adhesive sheet sample from a test panel measured at 180◦ on a
wood surface as the rate of removal. More precisely, it is the force measured per width of
the sample. A strip of PSA-coated material 25 mm wide and at least 175 mm long is bonded
firmly to the surface of a clean steel test plate at least 12.7 cm. A 2 kg standard FINAT test
roller is used to apply the strip to the plate. The free end of the coated strip is doubled back,
nearly touching itself, so the angle of removal for the test is 180◦. The free end is attached
to the upper jaws of a tensile testing machine. The steel test plate is clamped into the lower
jaws. The jaw separation rate is set at a constant rate of 300 mm per minute. Peel adhesion
is measured after a specified contact time of 20 min, but for our studies, we set this time for
only 2 min of contact between the PSA sample and substrate.



Materials 2023, 16, 7563 5 of 12

Shear strength is a measure of the cohesiveness (internal strength) of the pressure-
sensitive adhesive according to the FTM 18 standard, at 23 ◦C and 70 ◦C. It is called also
dynamic shear and describes the resistance of an adhesive sample joined to a test panel to
shearing at a constant speed. It is measured as the maximum force required to remove the
sample from a specified area in a direction parallel to the surface and at a constant rate of
5 mm per minute.

Shrinkage presents the percentage or millimeter change in the dimensions of the PVC
foil covered with the PSA after PSA crosslinking. The PVC foil is attached to the glass and
conditioned for 3 weeks at a temperature of 60 ◦C. Self-adhesive products with a shrinkage
greater than 0.3% or 0.3 mm are not or only partially acceptable in the adhesive industry.

3. Results
3.1. Viscosity of Synthesized Solvent-Free Photoreactive Acrylic PSA

The exposure time is one of the parameters that allows for the adjustment of the
viscosity of the prepolymer. Too low a viscosity leads to difficulties in coating since the
prepolymer spills too quickly during the coating process. Too high a lightness, in turn,
requires slower coating, which has a negative impact on the economics of production. In
general, prepolymers with low viscosities of 1000 to 4000 mPa·s are used in the production
of removable self-adhesive materials. Photoreactive prepolymers with viscosities of 8000 to
16,000 mPa·s are used in the production of classic self-adhesive materials, such as transfer
adhesive tapes. As shown in Figure 2, the viscosity of the synthesized prepolymer increases
with an increasing exposure time of the photoreactive mixture under the UV lamp.
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Figure 2. The viscosity of prepared photoreactive prepolymers as a function of irradiation time.

During the first two minutes of irradiation, the viscosity increase is insignificant. After
the next minute, faster change in this parameter can be observed. Particularly, between
the third and fourth minute of reaction, viscosity increases almost three times (from 3100
to 8000 mPa·s). From the third minute of the reaction, an almost linear and fast increase
in viscosity can be observed. This is a critical range within the reaction time to control
the final viscosity of the prepolymer, due to the requirements of the coating process—as
mentioned above.

3.2. Free Monomer Concentration in Synthesized Acrylic PSA

The concentration of all unreacted monomers in the synthesized solvent-free pre-
polymer acrylic PSA was 13.5 wt.% and can be rated as relatively high (Figure 3). The
exact concentrations of the used acrylate monomers corresponded with their reactivity,
understood as the ability to radically polymerize with other monomers. And so, as can
be seen in Figure 3, 2-ethylhexyl acrylate (2-EHA) and 2-propylheptyl acrylate (2-PHA)
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are characterized by the lowest reactivity. As the alkyl substituent decreases, the reactivity
of the acryl alkylates increases. Thus, methyl acrylate is more reactive than ethyl acrylate,
which in turn is more reactive than butyl acrylate. The most reactive monomer is acrylic
acid, the concentration of which, as an unreacted monomer, is 0 wt.%. Acrylic acid with an
extremely high reactivity was not found in the synthesized PSAs.
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As can be observed in Figure 3 and also in Figure 2, an acceptable reaction time is
above 4 min for the tested composition of monomers. After this reaction time, the viscosity
is acceptable, as well as the residue monomer concentration. However, it is preferred
to conduct the reaction for longer—up to 5 min—because a significant decrease in the
concentration of residues can be observed (ca.2.5 times). Moreover, the viscosity is still
acceptable for PSA coating.

3.3. UV-Initiated Crosslinking of Photoreactive Prepolymers

Figure 4 shows the effect of the concentration of the difunctional monomer
1,6-hexanediol diacrylate used as a crosslinking agent in a concentration between 0.3 and
0.7 wt.% on the residue of the unreacted monomers in the photo-crosslinking process of
acrylic adhesive films with a thickness of 100 g/m2 (ca. 100 µm), in this particular case,
photo-crosslinking transfer adhesive films under a UV lamp for 5 min.
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The use of photoreactive crosslinking compounds in the form of multifunctional
acrylates, in this case, 1,6-hexanediol diacrylate (1,6-HDDA), is intended to obtain the
appropriate internal strength (cohesion) of self-adhesive layers crosslinked under a UV
lamp. During the increase in the cohesion of the UV-crosslinked adhesive films, there is
also an increase in the conversion of the acrylate monomers used, and thus a decrease in
the content of unreacted monomers. As shown in Figure 4, the increase in the concentration
of the difunctional monomer 1,6-HDDA positively affects the reduction in the residue
monomers used in the polymerization process of the photoreactive prepolymer. A further
increase in the concentration of 1,6-HDDA, due to the increased degree of crosslinking of
the adhesive film, leads to a decrease in its flexibility, which in turn leads to the deterioration
of its self-adhesive properties, such as tack and peel adhesion.

3.4. UV-Initiated Crosslinking According to Crosslinking Time

The duration of the UV curing of the photoreactive prepolymer used for the production
of transfer adhesive films is an important parameter influencing their final applicable
properties. Too short a crosslinking time under the UV lamp causes the non-reaction of
all, or almost all, of the monomers used for the production of transfer adhesive films.
The remains of the unreacted monomers, apart from causing an unpleasant odor, may
negatively affect the properties of the adhesives, such as tack, peel adhesion, shear strength
and shrinkage.

As shown in Figure 5, the crosslinking time of the adhesive films is important for reduc-
ing the concentration of classic monomers and, as in the case of more reactive monomers,
for their complete conversion. The more reactive ones include acrylic acid (AA) and methyl
acrylate (MA), where after 5 min of UV crosslinking time, the adhesive layer does not con-
tain them. After 6 min of exposure to the UV lamp, no ethyl acrylate (EA) is observed, and
after 8 min, no butyl acrylate (BA). After 9 min, the unreacted 2-ethylhexyl acrylate (2-EHA)
and 2-propylheptyl acrylate (2-PHA) disappear. A crosslinking time of 10 min under a
UV lamp allows us to obtain, free of unreacted monomers, a high-quality self-adhesive
transfer tape.
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3.5. Effect of Residue Monomers on Tack, Peel Adhesion, Shear Strength and Shrinkage

The aim of this part of the publication was to investigate the influence of residue
unreacted acrylic monomers in transfer self-adhesive tapes based on photoreactive acrylic
PSAs on their important properties, such as tack, peel adhesion, shear strength and shrink-
age. The details of the tests and the obtained results on tack, peel adhesion, cohesion
and shrinkage on a wooden substrate obtained from the German company Rocholl are
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presented in Figures 6–9: tack in Figure 6, peel adhesion in Figure 7, shear strength in
Figure 8 and shrinkage in Figure 9, respectively.
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Predictably, the presence of free unreacted acrylate monomers adversely affects the
transfer tack of adhesive tapes to the wooden surface. Of course, this unfavorable tendency
depends on the concentration of the residue monomers and is intensified by an increase in
the concentration of unreacted monomers. The more unreacted monomers there are, the
smaller the tack, also called initial adhesion. The increased content of unreacted monomers
migrates faster than the smaller content of unreacted monomers to the surface of the wood,
which logically justifies the reduction in tack. As shown in Figure 6, the highest tack value
of 20 N was achieved with transfer adhesive tapes containing approximately 1 wt.% of
residue monomers. A content of residue monomers above 2–3 wt.% has a very negative
effect on tack and is unacceptable in the technology of joining wooden elements.

As in the case of tack, the presence of residue monomers in transfer adhesive tapes
adversely affects adhesion, which is referred to as peel adhesion (Figure 7). As in the case
of tack, the presence of residue monomers in transfer adhesive tapes adversely affects the
adhesion, which is referred to as peel adhesion. Adhesion, measured as peel adhesion,
depends on the contact time of the adhesive with the wooden substrate. In application
conditions, the contact time of the transfer adhesive tape with the substrate to be glued very
often does not exceed a few minutes. For this reason, the peel adhesion test was performed
after 2 min.

As in tack testing, the measured values of peel adhesion decrease due to the presence
of unreacted free residues. Although the measured values of adhesion are generally higher
than the tack values, we also observe the negative impact of residue monomers on these
values here. The remains of the unreacted acrylate monomers migrate from the inside of
the adhesive film, thus worsening the adhesion of the transfer adhesive tape to the wooden
substrate. As in the case of tack, peel adhesion on a wood substrate requires the use of
adhesive tapes with less than 2 wt.% of residue monomers (Figure 7).

Standard shear strength resistance testing is carried out with a specified area of
adhesive tape applied to a standard test surface, in this case, a wooden surface. The shear
failure is the inability of the PSA layer to resist opposing stress. Any kind of task that is
a measure of stress relaxation within the adhesives gives important data. A highly shear-
resistant adhesive layer will resist tension, while an adhesive with poor shear resistance
will shear quite rapidly. Figure 8 presents the shear strength of acrylic self-adhesive layers
dependent on the free monomer concentration in the polymer layers.

The content of free unreacted acrylate monomers in self-adhesive tapes reduces the
internal strength of the adhesive joint (cohesion), measured both at 23 ◦C and 70 ◦C. The
cohesion values measured at 23 ◦C are obviously higher than at 70 ◦C. At 70 ◦C, the
migration of residue monomers from the adhesive layer of the adhesive tape to the surface
of the joined wooden elements is higher than at room temperature; therefore, the cohesion
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at 70 ◦C is lower than at 23 ◦C. Here, as in the case of tack and peel adhesion, the content of
residue monomers in the range of 2–3 wt.% ensures an even higher strength of the bonded
adhesive joint (Figure 8).

The shrinkage of transfer adhesive tapes is an extremely important parameter when
bonding substrates with different coefficients of thermal expansion and different surface
energies. It depends on many factors, in this particular case, on the amount of double bonds
in the non-crosslinked and then in the crosslinked polymer in the form of an adhesive
tape. Shrinkage is also affected by the unreacted monomer residues in the polymer after
UV crosslinking.

Acrylic polymers have been successfully used as pressure-sensitive adhesives in
various industries, and a property common to all acrylic PSAs, which negatively impacts
their performance, is the shrinkage onto different surfaces (wood, steel, glass, etc.) after
crosslinking. The shrinkage characteristics of solvent-free acrylic PSAs depending on the
content of free monomers are shown in Figure 9. The best results for shrinkage under
0.05–0.2% were achieved for PSA layers containing no more than about 2–3 wt.% of free
unreacted monomers. A shrinkage for PSAs greater than 0.3% is completely unacceptable.

4. Conclusions

Summing up, from the performed evaluation of the experiments referring to tack, peel
adhesion, shear strength and shrinkage of the photoreactive solvent-free acrylic pressure-
sensitive adhesives, by testing the self-adhesive acrylic layers containing various concen-
trations of residue unreacted free acrylate monomers discussed in this article, it can be
concluded that the best results regarding the investigated properties were obtained for
carrier-free films characterized by a coating weight of 100 g/m2 (100 µ), containing no
more than 2–3 wt.% of residue monomers. When carrying out the synthesis of solvent-free
photoreactive self-adhesive adhesives based on acrylates, it is not possible to obtain transfer
(carrier-free) self-adhesive tapes free of unreacted monomers in the final product. The
amount of unreacted monomer residues in the amount of about 13.5 wt.% corresponds to
their reactivity, which is also dependent on the other monomers present in the mixture.
In general, the reactivity of acrylate monomers decreases with an increase in their alkyl
part, and thus increases with a decrease in their alkyl part. This is confirmed via GC
analyses of mixtures of unreacted monomers, where 2-ethylhexyl acrylate, 2-propylheptyl
acrylate and butyl acrylate predominate. As for the other acrylates used in research, such
as ethyl acrylate and methyl acrylate, their concentration is relatively low. The lack of
acrylic acid in the mixture of unreacted monomers indicates its high reactivity and thus
complete conversion. The relatively high concentration of unreacted monomers in the
self-adhesive photoreactive prepolymer results from the method of conducting bulk poly-
merization without the participation of a solvent. A few minutes are enough to obtain a
photoreactive prepolymer with a specific viscosity that allows it to be coated. During this
time, a prepolymer with a viscosity of about 2000 to 14,000 mPa·s is formed, which, due to
the very short polymerization time, contains a relatively large concentration of unreacted
monomers, often exceeding 10% in weight. Classic acrylic polymer pressure-sensitive
adhesives synthesized in a solvent within 2–6 h contain up to 2–4 wt.% of unreacted
monomers. The content of residue acrylic monomers can be reduced by increasing the
time of irradiation of the monomer mixture using UV radiation, but only up to a certain
point, when the increase in the viscosity of the obtained prepolymers makes it possible
to coat it and obtain self-adhesive tapes. Residual monomers are also reduced during
the crosslinking of the prepolymer into the polymer using a multifunctional acrylate, in
this particular case, difunctional 1,6-hexanediol diacrylate (1,6-HDDA). Increasing the
concentration of the photoreactive crosslinking compound increases the conversion of the
polymers used in the polymerization, and thus reduces the content of unreacted acrylate
monomers. An additional possibility in reducing the concentration of residue monomers is
an increase in the crosslinking time under the UV lamp. After 6 min of crosslinking of the
photoreactive prepolymer containing the photoreactive crosslinker, transfer adhesive tapes
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containing unreacted acrylate monomers with a maximum concentration of about 0.4 wt.%
are obtained. Further crosslinking within 7–8 min allows for the reduction of the residue
monomers to 0.1–0.2 wt.%. And after 10 min, transfer adhesive tapes are obtained with
a concentration of unreacted monomers below 0.1 wt.%. When examining the influence
of residue monomers within 1–3 wt.% on tack (Figure 6), peel adhesion (Figure 7), shear
strength at 23 ◦C and 70 ◦C (Figure 8) and on shrinkage (Figure 9), it can be noticed that the
limitation of residue monomers to about 1 wt.% does not have any significant effect on the
application properties of transfer adhesive tapes used in the furniture industry. From the
experimental results in the application of prepared carrier-free PSA tapes, the conclusion
can be inferred that the use of acrylic PSAs with more than 2–3 wt.% of free monomers
negatively influences all the evaluated properties of solvent-based acrylic PSAs, especially
the cohesion tested at 23 ◦C and 70 ◦C. Synthesis of acrylic PSAs containing less than 1 wt.%
of free monomers allows for an excellent tack, peel adhesion, shear strength and shrinkage
performance to be reached.
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