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Abstract: Biomaterial-centered infections of orthopedic implants remain a significant burden in the
healthcare system due to sedentary lifestyles and an aging population. One approach to combat
infections and improve implant osteointegration is functionalizing the implant surface with anti-
infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface
of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for
the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker.
Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm,
which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The
conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-
scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing
a link between the solid-state dewetting process and surface functionalization, we demonstrate a
novel, simple, and versatile method for functionalization of implant surfaces.

Keywords: biomaterials; titanium alloys; thin films; wetting; surface functionalization

1. Introduction

Solid-state dewetting (DW) of thin metallic films is a spontaneous agglomeration of
as-deposited thin films into separate islands or particles during heat treatments well below
the melting point of metal [1]. This process is undesirable in microelectronics because
spontaneous agglomeration of metallic contacts at elevated temperatures leads to device
failure. However, the DW process might be beneficial when spontaneous agglomeration of
metallic films into particles is desired, and the term “dewetting engineering” was coined to
describe the fabrication of metal nanoparticles (NPs) for functional applications employing
the DW process [2].

Recently, several groups have proposed the use of solid-state DW to obtain nanoparti-
cle (NP)-decorated surfaces for biomedical applications such as biomedical diagnostics [3],
biosensing [4–6], and implant surface functionalization [7,8]. Specifically, cellulose paper
decorated with silver (Ag) NPs was suggested for rapid separation and label-free detection
of diverse biomolecules in body fluids [3]. Au-Ag alloy nanoislands produced by solid-state
DW showed outstanding localized surface plasmon resonance sensitivity and improved
anti-degradation performance for label-free biochemical detection [4]. Au NPs on the
epoxy pillars were successfully used for label-free plasmonic detection of deoxyribonucleic
acid [5]. Highly sensitive surface-enhanced Raman scattering sensors based on Ag-silicon
nanospheres were suggested for the potential detection of pharmaceutical intermediates,
e.g., p-thiocresol [6]. Titanium (Ti)-based medical alloys such as Ti-6Al-4V decorated with
titanium oxide (TiO2) nanopimples produced by alkalinity-activated DW showed strength-
ening of in vivo bone–implant interfacial bonding [7]. Finally, TiO2 films decorated by
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DW-produced Au NPs showed antibacterial activity against Veillonella parvula and Neisseria
sicca species associated with oral diseases [9]. However, to the best of our knowledge, no
reports on the application of solid-state DW processes to functionalize implant surfaces
with drugs are available in the literature.

Implant surface functionalization with drugs is one of the strategies to combat bac-
terial biomaterial-centered infections of orthopedic implants, which remains a significant
burden in the healthcare system and has shown an increasing trend over the last decades
due to sedentary lifestyles and an aging population [10,11]. Functionalization of Ti-6Al-4V
surfaces with the antibiotic vancomycin (VH) using plasma deposition effectively inhibits
bacterial adhesion and reduces the inflammatory response in bacterially challenged host
tissues [12]. Similarly, the modification of Ti-6Al-4V surfaces with TiO2 nanotubes and
loading them with a gentamicin-VH mixture provides local bactericidal properties against
Gram-positive Staphylococcus aureus accompanied with good in vivo cytocompatibility and
osteointegration [13]. Modification of Ti-6Al-4V surface by a calcium titanate layer enables
conjugation and steady in vitro release of bisphosphonate drug that prevents osteoporo-
sis [14,15]. An alternative approach to implant functionalization involves the conjugation of
anti-infective and/or osteoinductive agents to chemically activated Au NPs [16]. However,
Au NP deposition onto an implant surface by conventional methods lacks control over NP
distribution and adhesion. Some methods suffer from poor reproducibility, while others are
implant material-specific [17,18]. In particular, the electrochemical deposition is restricted
to conductive materials [19,20]. Chemical reduction methods are simple but employ toxic
and expensive reagents [21,22]. Hydrothermal methods lack control over the process pa-
rameters, which adversely affects the reproducibility of the final nanostructures [23,24]. In
this respect, employing the solid-state DW process to fabricate NPs on the implant surface
resolves several problems: this method is insensitive to the composition of the implant
material, does not require complex reagents, and enables control over the size of NPs by
varying the thickness of the deposited Au film [1,2]. Recently, Sharipova et al. described
the mechanisms of solid-state DW of thin Au films on the rough surface of the oxidized
Ti-6Al-4V alloy [25], and suggested that Au NPs fabricated by DW can be used for implant
surface functionalization with drugs.

Here, we report on the functionalization of a Ti-6Al-4V surface with the broad-
spectrum antibiotic VH via novel chemically activated Au NPs prepared by solid-state DW
(Figure 1). We hypothesized that the DW process will produce homogeneously distributed
Au NPs on the Ti-6Al-4V surface, and the following conjugation of antibiotic molecules
would create a bactericidal layer on the alloy surface, which could inhibit bacterial prolifer-
ation and prevent biofilm formation. In this framework, Au NPs prepared by the solid-state
DW would provide novel functional properties to the Ti-6Al-4V implant surface.
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Figure 1. Schematic of the Ti-6Al-4V surface functionalization with antibiotic vancomycin via Au 
NPs fabricated by solid-state dewetting of thin Au film. 
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2.1. Preparation of Ti-6Al-4V Decorated with Au NPs by Solid-State DW Process 

High-purity Ti alloy with an extra low concentration of interstitial elements (Ti-6Al-
4V; Ti90/Al6/V4 ELI Grade 23) was purchased in rod shape (Ø 10 mm) from Advent Re-
search Materials Ltd. (Eynsham, Oxford, UK, OX29 4JA), cut into ~1 mm thick disks, and 
handled for Au film deposition. Prior to the deposition, Ti-6Al-4V samples were cleaned 
in subsequent ultrasound baths of acetone, methanol, and isopropanol. Electron-beam 
deposition (Temescal BJD 1800, Edwards Vacuum GmbH (currently Ferrotec)/Ferrotec Eu-
rope GmbH, Unterensingen, Germany) of 5 nm thick Au film was performed in a vacuum 
chamber with a base pressure of 4.7 × 10−7 Torr at room temperature (RT) at a rate ~0.1 
nm/s. Such film thickness was chosen to decrease the following DW temperature [1]. Sam-
ples with deposited Au films were annealed in a rapid thermal annealing furnace (RTA; 
ULVAC-RIKO MILA-5000-P-N, Methuen, MA, USA) at 200 °C for 3 h to cause full 
dewetting of the deposited film. The annealing was performed in forming gas flow (Ar + 
10 vol. % H2) to avoid simultaneous Ti-6Al-4V oxidation with solid-state DW. The selected 
annealing regime prevents grain coarsening and/or phase changes of Ti-6Al-4V, which 
typically occur above 550 C [26,27]. The combination of relatively low annealing temper-
ature with ultralow film thickness resulted in fully DW-ed Au NPs with no structural 
changes of Ti-6Al-4V. A low annealing temperature also preserves the Ti-6Al-4V surface 
topography, which is critical for bone cell attachment and proliferation [28,29]. 

2.2. Functionalization of Ti-6Al-4V Surface Decorated with Au NPs 
Chemically functionalized poly(ethylene glycol) (PEG) linker was conjugated to Au 

NPs using a heterobifunctional thiol-polyethylene-acid (HS-PEG-COOH; Laysan Bio Inc. 
Arab, AL, USA). For this, Ti-6Al-4V decorated with Au NPs were immersed in an HS-PEG-
COOH aqueous solution (0.5 mM) at RT for 2 h and washed 3 times with double distilled 
water (DDW; Milli-Q Barnstead Smart2Pure 3 L UV/UF water purification system; 
Thermo Fisher Scientific Inc., Waltham, MA, USA). Chemical activation of the carboxyl-
PEG groups with the following coupling to amine groups of VH hydrochloride (VH; 

Figure 1. Schematic of the Ti-6Al-4V surface functionalization with antibiotic vancomycin via Au
NPs fabricated by solid-state dewetting of thin Au film.

2. Material and Methods
2.1. Preparation of Ti-6Al-4V Decorated with Au NPs by Solid-State DW Process

High-purity Ti alloy with an extra low concentration of interstitial elements (Ti-6Al-
4V; Ti90/Al6/V4 ELI Grade 23) was purchased in rod shape (Ø 10 mm) from Advent
Research Materials Ltd. (Eynsham, Oxford, UK, OX29 4JA), cut into ~1 mm thick disks, and
handled for Au film deposition. Prior to the deposition, Ti-6Al-4V samples were cleaned
in subsequent ultrasound baths of acetone, methanol, and isopropanol. Electron-beam
deposition (Temescal BJD 1800, Edwards Vacuum GmbH (currently Ferrotec)/Ferrotec
Europe GmbH, Unterensingen, Germany) of 5 nm thick Au film was performed in a
vacuum chamber with a base pressure of 4.7 × 10−7 Torr at room temperature (RT) at a rate
~0.1 nm/s. Such film thickness was chosen to decrease the following DW temperature [1].
Samples with deposited Au films were annealed in a rapid thermal annealing furnace
(RTA; ULVAC-RIKO MILA-5000-P-N, Methuen, MA, USA) at 200 ◦C for 3 h to cause
full dewetting of the deposited film. The annealing was performed in forming gas flow
(Ar + 10 vol. % H2) to avoid simultaneous Ti-6Al-4V oxidation with solid-state DW. The
selected annealing regime prevents grain coarsening and/or phase changes of Ti-6Al-4V,
which typically occur above 550 ◦C [26,27]. The combination of relatively low annealing
temperature with ultralow film thickness resulted in fully DW-ed Au NPs with no structural
changes of Ti-6Al-4V. A low annealing temperature also preserves the Ti-6Al-4V surface
topography, which is critical for bone cell attachment and proliferation [28,29].

2.2. Functionalization of Ti-6Al-4V Surface Decorated with Au NPs

Chemically functionalized poly(ethylene glycol) (PEG) linker was conjugated to Au
NPs using a heterobifunctional thiol-polyethylene-acid (HS-PEG-COOH; Laysan Bio Inc.
Arab, AL, USA). For this, Ti-6Al-4V decorated with Au NPs were immersed in an HS-
PEG-COOH aqueous solution (0.5 mM) at RT for 2 h and washed 3 times with double
distilled water (DDW; Milli-Q Barnstead Smart2Pure 3 L UV/UF water purification system;
Thermo Fisher Scientific Inc., Waltham, MA, USA). Chemical activation of the carboxyl-
PEG groups with the following coupling to amine groups of VH hydrochloride (VH;
C66H75Cl2N9O24·HCl, STREM Chemicals, Newburyport, MA, USA) was performed using
the N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS,
Glentham Life Science Ltd., Wilshire, UK, and Chem-Impex International, Wood Dale, IL,
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USA, respectively) condensation reaction in water. EDC and NHS were dissolved and
covered the PEGylated Au NPs on Ti-6Al-4V for 30 min at RT, providing active sites on
PEG moieties that undergo an amidation reaction with VH. Samples were washed three
times in DDW to remove reagent residues. Then, the samples were immersed in DDW
with the drug dissolved in ten-fold molar excess with respect to the PEG moieties to ensure
conjugation in all the reactive sites. The samples were incubated overnight, washed three
times to remove the unbound drug, and kept in a dry environment (desiccator with silica
gel) at RT.

2.3. Characterization of Microstructure, Roughness, and Chemical Composition

The microstructure, roughness, and chemical composition of the samples were char-
acterized using high-resolution scanning electron microscopy (HR-SEM; Ultra+, Zeiss,
Oberkochen, Germany), atomic force microscopy (AFM; XE-70, Park Systems, Suwon,
Republic of Korea), X-ray photoelectron spectroscopy (XPS, Sigma Probe, Thermo VG
Scientific, East Grinstead, UK), and scanning transmission electron microscopy (STEM;
Titan Themis G2 60-300, Thermo Fisher Scientific Inc.). Samples for STEM analysis were
prepared using a focused ion beam scanning electron microscope (FIB, Helios NanoLab,
FEI, Thermo Scientific, Waltham, MA, USA). To protect the area of interest during ion
beam milling, only platinum (Pt) coating was used. STEM micrographs were recorded in
high-angular annular dark field (HAADF) mode and analyzed using energy dispersive
spectroscopy (EDS) and electron energy loss spectroscopy (EELS) detectors.

2.4. Toxicity of the Functionalized Ti-6Al-4V Surfaces

The biocompatibility studies of Ti-6Al-4V samples functionalized with Au-PEG-VH
on a murine NIH/3T3 fibroblasts cell line (ATCC® CRL-1658™, kindly supplied by Prof. B.
Mizrahi, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Tech-
nology) were conducted using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium
bromide (MTT, 200 µL, 5 mg/mL, Sigma-Aldrich, St. Louis, MO, USA) metabolic assay.
NIH/3T3 cells were seeded at a density of 0.5 × 106 cells per well in 6-well plates with
1.5 mL RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO, USA) and incubated with
samples of different coating types for 24 h and 72 h. Untreated cells were considered 100%
viable and used as a control. MTT (5 mg/mL in RPMI 1640 medium) was added for 2 h
at 37 ◦C. Dimethyl sulfoxide (2 mL, Carlo Erba Reagents, Val de Reuil, France) was subse-
quently added to dissolve the formazan crystals. Cell viability was defined as absorbance
values at a wavelength of 530 nm measured by a microplate UV−vis spectrophotometer
(Multiskan GO, Thermo Fisher Scientific Oy, Vantaa, Finland) of samples compared to
negative controls. The results are expressed as the mean ± standard deviation (S.D.) of
four samples (n = 4).

3. Results and Discussion
3.1. Fabrication of Au NPs on Ti-6Al-4V Surface by Solid-State DW

The micrographs in Figure 2 show the surface of the Ti-6Al-4V alloy with the deposited
Au film before (Figure 2a) and after solid-state DW (Figure 2b). An Au film of 5 nm in
thickness was deposited to obtain fine NPs. The as-deposited Au film did not reach the
“percolation threshold” (i.e., the minimum thickness required for the formation of a contin-
uous film) and exhibited the morphology of densely packed clusters of complex shapes
(Figure 2a). The Au clusters homogeneously covered the Ti-6Al-4V surface independently
of the rough features underneath because the Au film thickness (5 nm) was significantly
smaller than the typical size of the surface features (~5 µm).
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DW was achieved at a relatively low temperature of 200 °C. The reason for this is the 
discontinuous nature of the as-deposited film, limiting the diffusion distance on the sur-
face of Au by the cluster size. Much thicker (20 nm) continuous Au films on amorphous 
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Figure 2. HR SEM micrographs of 5 nm-thick Au film on Ti-6Al-4V: (a) as-deposited, and (b) after
annealing at 200 ◦C for 3 h. Arrows point to the NPs with a high aspect ratio.

After the annealing, we observed isolated Au NPs (Figure 2b)—a typical picture
of fully dewetted thin film on flat surfaces [1]. Deposited Au clusters transformed into
equiaxed NPs with a mean diameter of 19.8± 7.2 nm (Figure 2b). Similar to the as-deposited
film, dewetted NPs homogeneously covered the Ti-6Al-4V surface. Occasional elongated
NPs were present (Figure 2b, arrows); however, their lateral dimensions were close to
the mean size of the equiaxed NPs. Moreover, closer observation of their shape unveiled
that elongated NPs were composed of multiple grains, meaning that the selected DW
conditions were insufficient for their full transformation into single-crystalline particles.
Longer thermal treatments or higher temperatures will likely lead to a higher degree of
equilibration of the elongated NPs. Interestingly, in the present work, the final stage of
solid-state DW was achieved at a relatively low temperature of 200 ◦C. The reason for this
is the discontinuous nature of the as-deposited film, limiting the diffusion distance on the
surface of Au by the cluster size. Much thicker (20 nm) continuous Au films on amorphous
and crystalline TiO2 did not reach the final solid-state DW stage, even after annealing at
the temperature of 500 ◦C for 2 h [30].

We observed no correlation between the surface topography of the Ti-6Al-4V alloy
and the shape or distribution of formed NPs (Figure 2b). Full DW was attributed to the
discontinuity of the as-deposited film (Figure 2a) and nearly three orders of magnitude
difference between film thickness and the typical size of the rough surface features. These
observations are in good agreement with previously reported results on thin film DW on
oxidized Ti-6Al-4V surfaces with natural roughness, where films thinner than the size of
typical surface features undergo the usual steps of thin film DW on flat surfaces [25]. The
present work confirms that surface roughness does not affect thin film DW when the film
thickness is much smaller than the characteristic size of rough surface features.

Figure 3 shows AFM topography micrographs of the Ti-6Al-4V surface with dewet-
ted Au NPs acquired at different magnifications. Similar to the HR-SEM analysis results
(Figure 2), these micrographs confirm full film agglomeration and its transformation into
an array of separate NPs. No correlation between surface topography and shape or distri-
bution of dewetted NPs was observed (Figure 3a). Minor differences in particle distribution
(comparing Figure 3b to Figure 2b) most likely originate from local variations in deposited
film thickness, a consequence of roughness irregularities. However, these variations were
present at the submicron scale and did not influence the overall picture of the homoge-
neously distributed NPs (Figure 3a). The NPs exhibited some surface faceting showing that
the particles evolve towards the equilibrium crystal shape (Figure 3b). However, the lack of
prominent facets indicates that the time and temperature of DW treatment were insufficient
to reach the full equilibration [31–34]. Given that thin film DW depends on film thickness,
surface roughness, and heat treatment parameters [25,35–38], a thorough investigation of
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the dependence of size, shape, and distribution of the NPs on the above parameters should
yield optimal processing conditions for a specific functional application.
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Figure 3. AFM topography micrographs of 5 nm-thick Au film on Ti-6Al-4V after annealing at 200 ◦C
for 3 h at: (a) low, and (b) high magnification. Color code is linked to surface topography.

3.2. Functionalization of the Ti-6Al-4V Surface with PEG-VH via Au NPs

The conjugation of VH to the Ti-6Al-4V surface via DW-ed Au NPs with PEG linker
was confirmed by STEM (Figure 4) and XPS (Figure 5) analyses. Drug conjugation was
traced by chlorine (Cl) intrinsic to VH composition (Figures 4c,f and 5). The Cl peak
observed in the EELS data (Figure 4c) exhibited higher intensity in comparison to the peak
observed in the XPS data (Figure 5). This disparity in peak intensity can be ascribed, in part,
to the detection range of the two analytical methods. In the XPS technique, the detected
electrons are derived from the uppermost few atomic layers near the surface, typically
within a range of 5–10 nm [39]. Conversely, in the EELS technique, the spectrum is collected
from a selected area, as depicted in Figure 4f. The selected thickness (depth) of the EELS
area was set at about 10 nm, which can be up to twice the depth attainable by the XPS
technique, resulting in the observed disparity in peak intensities. STEM images and an
elemental map of the sample cross-section showed a continuous PEG layer covering Au
NPs (Figure 4a,e,f). Continuous PEG film led to the formation of a continuous VH layer on
the alloy surface (Figure 4a). The thickness of the VH layer measured from the elemental
map was 18.8 ± 1.3 nm (Figure 4f).

An additional, albeit indirect, confirmation of the VH layer formation was extracted
from AFM scans of the surfaces before (Figure 3) and after (Figure 6) functionalization.
Overall, the surface of Ti-6Al-4V and DW-ed Au NPs smoothened after functionalization
(Figure 6): AFM scans of the initial sample show Au NPs and Ti-6Al-4V surface with sharp
features (Figure 7a), which were visibly smoothened after the functionalization (Figure 7b).
Ti-6Al-4V surface roughness Rpv—a sum of maximum peak height (Rp) and maximum
valley depth (Rv) of the scanned profiles—decreased from 8.21 nm to 4.92 nm after the VH
film formation (line profiles, Figure 7). The decrease in surface roughness, coupled with
the smoother topography line scans acquired between the particles, indirectly confirms
the formation of a continuous functional layer between Au NPs. While STEM elemental
mapping provides evidence of continuous film formation at the nanoscale (Figure 4), AFM
scans and roughness measurements (Figure 7) illustrate the continuity of the film at the
micrometer scale.



Materials 2023, 16, 7524 7 of 12Materials 2023, 16, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. STEM cross-sectional micrograph of Ti-6Al-4V surface functionalized with Au-PEG-VH: 
(a,b) STEM HAADF micrograph and (c) EELS spectra of the selected area from (f), which highlights 
elemental Cl from VH drug; selected image area in (d) HAADF mode with elemental maps of (e) 
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Figure 4. STEM cross-sectional micrograph of Ti-6Al-4V surface functionalized with Au-PEG-VH:
(a,b) STEM HAADF micrograph and (c) EELS spectra of the selected area from (f), which highlights
elemental Cl from VH drug; selected image area in (d) HAADF mode with elemental maps of (e) Au,
(f) Cl. Pt coating—protective platinum coating.
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Figure 5. XPS spectrum of Ti-6Al-4V surface functionalized with Au-PEG-VH.

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. XPS spectrum of Ti-6Al-4V surface functionalized with Au-PEG-VH. 

An additional, albeit indirect, confirmation of the VH layer formation was extracted 
from AFM scans of the surfaces before (Figure 3) and after (Figure 6) functionalization. 
Overall, the surface of Ti-Al-V and DW-ed Au NPs smoothened after functionalization 
(Figure 6): AFM scans of the initial sample show Au NPs and Ti-Al-V surface with sharp 
features (Figure 7a), which were visibly smoothened after the functionalization (Figure 
7b). Ti-Al-V surface roughness Rpv—a sum of maximum peak height (Rp) and maximum 
valley depth (Rv) of the scanned profiles—decreased from 8.21 nm to 4.92 nm after the VH 
film formation (line profiles, Figure 7). The decrease in surface roughness, coupled with 
the smoother topography line scans acquired between the particles, indirectly confirms 
the formation of a continuous functional layer between Au NPs. While STEM elemental 
mapping provides evidence of continuous film formation at the nanoscale (Figure 4), AFM 
scans and roughness measurements (Figure 7) illustrate the continuity of the film at the 
micrometer scale. 

 
Figure 6. AFM topography micrographs (at different magnifications) of Ti-6Al-4V surface with DW-
ed Au NPs after functionalization with VH at: (a) low, and (b) high magnification. Color code is 
linked to surface topography. 

Figure 6. AFM topography micrographs (at different magnifications) of Ti-6Al-4V surface with
DW-ed Au NPs after functionalization with VH at: (a) low, and (b) high magnification. Color code is
linked to surface topography.

The developed approach to surface functionalization vial solid-state DW is simpler
and more versatile compared to previously reported methods of Ti-based surface function-
alization with VH by drop casting [40,41], cathodic electrophoretic deposition [42], and
electrochemical deposition [43]. Moreover, it enables the fabrication of other metallic NPs,
e.g., Ag, magnesium (Mg), iron (Fe), and zinc (Zn) employed in biomedical applications.
Furthermore, the metal NPs produced by solid-state DW are exceptionally strong [44–46],
which is required for mechanical stability during implant–bone interaction. Further investi-
gations pertaining to mechanical stability, as well as chemical stability within physiological
solutions, must be undertaken to elucidate the potential of the developed functional layer
in the context of implantable applications.
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3.3. Toxicity of Ti-6Al-4V Functionalized with Au-PEG-VH

The murine NIH/3T3 fibroblast cell line was used to evaluate the possible acute
toxicity of Ti-6Al-4V samples functionalized with Au-PEG-VH. As shown in Figure 8, cell
viability was above 70% for all samples tested. The decrease in cell viability is probably
caused by cellular asphyxiation in the area below the samples, which can be clearly seen by
comparing control of uncoated samples to their counterparts functionalized with Au-PEG-
VH (Figure 8). Antibacterial activity of VH covalently bonded to the Ti-6Al-4V surface [47]
and Ti beads [48] proved to reduce Staphylococcus aureus colony-forming in vitro. Based
on that, we expect that the reported Ti-6Al-4V functionalized with Au-PEG-VH film will
exhibit antibacterial activity.
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4. Conclusions

In this work, we demonstrated a novel method for implant surface functionalization
using Au NPs prepared by solid-state DW. We confirm the conjugation of antibiotic film
of 18.8 ± 1.3 nm to Ti-6Al-4V surface via Au NPs by STEM and XPS analyses. Ti-6Al-4V
surfaces coated with VH displayed relatively low musculoskeletal toxicity combined with
a broad spectrum of activity against Gram-positive bacteria. The proposed approach of
producing Au NPs for surface functionalization is simple, versatile, and can be adapted to
the fabrication of other metallic NPs, e.g., Ag, Mg, Fe, and Zn, which can pave the way for
the design of implant surfaces with novel functional properties.
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