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Abstract: The stress–plastic dilatancy relationship was investigated for crushed concrete during
drained and undrained triaxial compression tests in the light of the frictional state concept. The slope
of the dilatant failure state line is greater than that of quartz sand for drained triaxial compression
due to the crushing effect. The crushing effect parameters for drained and undrained conditions
are very similar. Due to the very angular shape of crushed concrete grains, the crushing effect is
observed at low stress levels. Some characteristic behaviors of geomaterials during shear are visible
only in the stress ratio–plastic dilatancy plane and are very rarely presented in the literature. The
stress ratio–plastic dilatancy relationship, which is basic in elastic–plastic modeling of geomaterials,
can be described using the frictional state concept.
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1. Introduction

Industrial and human activities generate rapidly increasing amounts of waste, such as
crushed concrete, broken glass, plastics, used tires, and others. With rapid urbanization,
new structures are replacing old ones, and renovations and demolitions of existing build-
ings produce large amounts of concrete waste [1]. The growing demand for aggregates for
the construction of engineering structures has begun to pose a threat to available natural
resources. Natural aggregates are gradually being exhausted around the world. The use of
recycled materials in construction is very beneficial from an economic and ecological point
of view [2–4]. Over the last 15 years, there has been extensive research into the recycling of
demolition waste to replace natural aggregates (NAs). As a result, recycled materials have
emerged as an alternative to NAs [5,6]. Recycled aggregate (RA) was first used in road
construction during the Second World War in England [7]. For decades, scientists have
been working intensively on using various types of waste in various engineering projects.

The subject of this study is recycled concrete aggregate (RCA). This concept includes
aggregates obtained by recycling clean concrete waste where the content of other building
waste must be very low—below a few percent [8,9]. The RCA characterization indicates a
lower density and unit weight, as well as a higher crushing value and water absorption,
compared with natural aggregate [10]. Recycled concrete aggregates (RCAs) are often
used to produce new concrete. Concrete with the addition of RCA has a higher mortar
content than the initial concrete and a greater water absorption capacity [11]. Increasing
the amount of RCA in the concrete mix reduces the compressive strength and elasticity
modulus of the concrete [10]. RCA is more reliable if the properties are homogeneous
and meet the required standards [12]. RCA has recently gained popularity as a valuable
raw material and is widely used in pavement construction [13] and embankments, and
as a ground improvement material [14]. The addition of RCA, glass aggregates, and tire-
derived aggregates to the soil can significantly improve its resistance to liquefaction [15].
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The increasing demands on modern geotechnical structures require knowledge of many
mechanical parameters of waste materials and soil mixtures subjected to monotonic, cyclical,
and dynamic loads [16–21].

In elastoplastic modeling, the stress–plastic dilatancy relationship plays a key role [22,23].
In many geomaterial models, a critical state is taken as the basis. Recently, a new frictional
state concept (FSC) was presented for geomaterials under triaxial compression [24] as
an extension of the critical state concept [25]. In this work, the stress–plastic dilatancy
relationships for drained and undrained triaxial compression tests were investigated in the
light of the FSC.

2. Stress–Plastic Dilatancy Relationship for Soils

The general stress ratio–plastic dilatancy relationship using the frictional state concept
(FSC) is as follows [24]:

η = Q− ADp, (1)

where
η = q/p′, (2)

Q = Mo − αAo, (3)

A = βAo, (4)

Dp = δε
p
υ/δε

p
q , (5)

Ao = 1−Mo(δq/δp′
)
, (6)

q = σ′1 − σ′3, (7)

p′ =
(
σ′1 + 2σ′3

)
/3, (8)

σ′1 = σ′a, σ′3 = σc = p0 are the confining pressure constant during shear; α and β are
the new soil parameters of the FSC. The plastic parts of the volumetric and shear strain
increments are:

δε
p
υ = δευ − δεe

υ, (9)

δε
p
q = δεq − δεe

q, (10)

δευ = δε1 + 2δε3, (11)

δεq = 2(δε1 − δε3)/3, (12)

where
δεe

υ = δp′/K, (13)

δεe
q = δq/3G, (14)

ε1 = εa, ε3 = εa; K and G are the elastic bulk and shear modulus, respectively. Poisson’s
ratio can be calculated using

ν =
3K− 2G

2(3K + G)
. (15)



Materials 2023, 16, 7381 3 of 16

For triaxial compression (σ′2 = σ′3),

M = Mo
c = 6sin φo/(3− sin φo), (16)

where φo is the angle of friction at the critical frictional state [24,25]. The definition of critical
frictional state and the calculation procedure using φo were provided by Szypcio [24]. For
conventional drained triaxial compression, δq/δp′ = 3, and

A = Ao
c = 1− (Mo

c /3). (17)

For undrained triaxial compression, the stress path [25] is undefined. The correct stress
ratio–plastic dilatancy relationship [25,26] is obtained for

A = Ao
c = 1 + (2Mo

c /3). (18)

An example of correct stress ratio–plastic dilatancy relationships for drained and
undrained conditions for fully destructured clay taken from the Acquara-Vadoncello old
landslide [27] is shown in Figure 1.
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Figure 1. Stress ratio–plastic dilatancy relationships for clay taken from the Acquara-Vadoncello old
landslide (adopted from [27]).

3. Test Material

In this study, recycled concrete aggregate (RCA) from the demolition waste material
from the construction of concrete façade walls of Warsaw buildings in the 1990s was
used. The material was supplied as damaged concrete cubic samples with dimensions
of 150 × 150 × 150 mm. The strength class of the analyzed RCA was determined to be
between C16/20 and C30/37 according to [28]. The raw material was crushed through a
five-stage Proctor crushing and fractionated using a sieve separation process. The resulting
mixtures were used for further laboratory testing. The current paper presents only the
results for one selected blend, i.e., fraction 0–7 mm. The images of the test material before
crushing and after the mixing process to the final blend are provided in Figure 2. Before
being crushed, the grains were sharp-edged and came in various shapes, blades, discs, or
cylinders, according to Zingg’s classification [29]. After crushing, the shape of the grains
became more uniform and spherical.

For the investigated RCA material, the dominant component was broken cement
concrete (around 99%), and less than 1% was glass and brick. During the preparation of
the target mixes, the glass and rock elements were removed. Conventional laboratory tests
and procedures typical for natural soils were used in the geotechnical characterization
of all prepared concrete aggregate specimens. In Figure 3, the distribution curve of the
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particle size of the RCA employed in the tests is shown. The grain size distribution
analysis was performed according to [30]. This analysis led to the classification of the tested
anthropogenic material as gravel with sand (saGr), according to [31].
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The selected physical properties of RCA and leachate concentration from the RCA
mixture are presented in Tables 1 and 2. In Table 1, the typical characteristics for natural
soils are included, like the values of the mean diameter (d50) and the coefficients (Cu, Cc) or
parameters that characterize the process of compaction. Note: These are average values,
characterizing the entire test material. The obtained grain-size indicators classified the RCA
employed in the tests as a well-graded material, susceptible to compaction, and suitable for
earthworks. The minimum dry density (ρd,min) is the result of vibration testing [32]. The
optimum moisture content (OMC) and maximum dry density (ρd,max) were estimated using
the Proctor method. According to Sulewska [33], in the case of RCA, it is recommended
to use the Proctor method for compaction, although it is characterized by a grain size
indicative of non-cohesive soil. From the compactibility results, it can be concluded that
the tested RCA compacted similarly to natural aggregates, where a characteristic value of
optimum moisture content was observed. The phenomenon of the strong correlation of
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OMC with ρd,max, and with the narrow moisture range observed in this study, points to
coarse soils with low fine fractions. This phenomenon resembles the compaction of gravel
with a low clay content [34].

Table 1. Summary of physical properties of RCA.

Specimen
GS

a d50
b Cu

c Cc
d ρ e ρ d,max

f ρ d,min
g e h OMC i

− mm − − g/cm3 g/cm3 g/cm3 − %

RCA 2.60 2.50 9.09 2.59 1.80 1.710 1.390 0.600 9.5
a Specific gravity; b Average particle size; c Uniformity coefficient Cu = d60/d10; d Curvature coefficient
Cc = d30

2/(d60 × d10); e Bulk density; f Minimum bulk density of soil skeleton; g Maximum bulk density
of soil skeleton; h Void ratio; i Optimum moisture content.

Table 2. Summary of chemical properties of RCA.

Specimen Co Ni Cu Cd Sulfate Chlorides Specific
Conductivity pH

mg/L mg/L mg/L mg/L mg/L mg/L µS/cm −
RCA 0.1180 <0.015 0.013 <0.008 112.3 21.6 511.7 8.17

Acceptance criteria * 1 0.5 0.5 0.05 500 1000

* Official Gazette of the Republic of Poland, Regulation of the Minister of the Environment of 18 November 2014,
on the conditions to be met for the introduction of sewage into waters and to land and on substances particularly
harmful to the aquatic environment.

The methodology for preparing samples and aqueous extracts for the determination of
water-soluble chloride and sulfate concentrations was based on the standard [35]. Sulfates
and dissolved chlorides were determined based on the methodology given by Kiedryńska
et al. [36]. For heavy metals, the methodology was taken from the standard [37]. The con-
centration of heavy metals in the aqueous extracts was measured using atomic absorption
spectrometry (type of atomization: flame). In addition, the electrolytic conductivity and pH
of the aqueous extracts prepared from the RCA were tested. The results obtained indicate
that the leachability of chlorides, sulfates, and selected heavy metals from the tested con-
crete aggregate was below the permissible limits. In conclusion, the RCA investigated in the
laboratory was chemically safe for the soil and water environment when used, for example,
in unbound mixtures for road pavement foundations or water damming embankments.

4. Test Procedure

An experimental investigation program was carried out in order to gain insight into
the stress–strain behavior of the studied RCA mixtures. A total of nine specimens (denoted
by the symbols RCA-1 to RCA-9) were tested employing standard monotonic triaxial tests,
according to the standard [38]. The automated triaxial testing system (Figure 4a) adopted
for this study is described in [39,40]. The tests were carried out on remolded samples
prepared either in a loose state (dry tamping method; specimens RCA-5 to RCA-9) or in a
compacted state (moist tamping method; specimens RCA-1 to RCA-4) based on OMC and
ρd,max. All the specimens had a height of about 140 mm and a diameter of approx. 70 mm,
and they were prepared in a special triplicate mold located on the base of the apparatus.
In Figure 4b, there is an exemplary illustration of the triaxial specimen during formation;
Figure 4c shows the final mixture.

Each specimen was saturated and initially flushed with de-aerated water. Thereafter,
a high back pressure (minimum 240 kPa and more) was applied. The Skempton parameter
B values obtained for RCA mixtures were B = 0.97–0.99. When the saturation was complete
(back pressure method [41]), the specimens were isotropically consolidated. The monotonic
triaxial tests were executed in two ways, either in drained conditions (CD) (for specimens
RCA-1 to RCA-6) or in undrained conditions (CU) (for specimens RCA-7 to RCA-9),
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according to the assumed testing procedure (Table 3). Specimen height changes, shear force
value, and eventually pore water pressures were recorded during shearing. For the results
of this experimental study to be applicable in engineering practice, a range of confining
stresses from 45 kPa to 400 kPa [16] were utilized in the tests (p′ = 45 kPa for RCA-1,
p′ = 90 kPa for RCA-2, p′ = 180 kPa for RCA-3, p′ = 270 kPa for RCA-4, p′ = 50 kPa for
RCA-7, p′ = 200 kPa for RCA-5 and RCA-8, p′ = 400 kPa for RCA-6 and RCA-9). The shear
rate of each specimen was set at 0.033 mm/min based on the oedometric tests performed
and the experience of the researchers [42]. In addition, at the end of the consolidation
process of some mixtures, the small-strain stiffness (G0) was determined using the bender
element (BE) test method. The BE test involves the use of a pair of piezoelectric ceramic
transducers to transmit or receive a mechanical disturbance, from which the measurement
of the shear wave velocity (Vs) can be made. Such disturbance is generated by a voltage
signal in the BE transmitter and detected by the BE receiver that converts it into another
voltage signal [43–45]. The piezoelectric transducers for BE testing in the triaxial chamber
were used. The values of the estimated G0 modulus for the selected test mixtures are
summarized in Table 3.
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Table 3. Test conditions characteristics for mixtures used in further analyses.

Test Type of
Test

Compaction
State

Dr
a ρ b ρd

c e0
d p′ e G0

f

% g/cm3 g/cm3 − kPa MPa

RCA-1 CD

dense 65–85

1.751 1.638 0.588 45 75.461

RCA-2 CD 1.772 1.634 0.592 90 98.678

RCA-3 CD 1.793 1.675 0.594 180 177.434
a Relative density of soil; b Bulk density; c Dry density of soil; d Initial void ratio; e Mean effective stress (shearing);
f Small-strain shear modulus.

5. Methodology

The experimental values of q and ευ as functions of ε1(εa) were approximated section-
ally using high-degree polynomials (Figure 5).

Materials 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

to transmit or receive a mechanical disturbance, from which the measurement of the shear 

wave velocity (Vs) can be made. Such disturbance is generated by a voltage signal in the 

BE transmitter and detected by the BE receiver that converts it into another voltage signal 

[43–45]. The piezoelectric transducers for BE testing in the triaxial chamber were used. 

The values of the estimated 𝐺0 modulus for the selected test mixtures are summarized in 

Table 3.  

Table 3. Test conditions characteristics for mixtures used in further analyses. 

Test 
Type of 

Test 

Compaction 

State 

Dr a   b  d c  e0 d p′ e G0 f 

% g/cm3 g/cm3 − kPa MPa 

RCA-1 CD 

dense 65–85 

1.751 1.638 0.588 45 75.461 

RCA-2 CD 1.772 1.634 0.592 90 98.678 

RCA-3 CD 1.793 1.675 0.594 180 177.434 
a Relative density of soil; b Bulk density; c Dry density of soil; d Initial void ratio; e Mean effective 

stress (shearing); f Small-strain shear modulus. 

5. Methodology 

The experimental values of q and 𝜀𝜐 as functions of 𝜀1(𝜀𝑎) were approximated sec-

tionally using high-degree polynomials (Figure 5). 

 

 

Figure 5. Example of approximations of experimental values of 𝜎1
′ 𝜎3

′⁄  and 𝜀𝜐: (a) 𝜎1
′ 𝜎3

′⁄ − 𝜀1; (b) 

𝜀𝜐 − 𝜀1. 

Attention was focused on achieving the continuity of the approximate values but also 

their increments at the section connection points. Other stress and strain values were cal-

culated using the following equations: 

𝜎1
′ 𝜎3

′⁄ = (𝑞 𝜎3
′⁄ ) + 1, (19) 

Figure 5. Example of approximations of experimental values of σ′1/σ′3 and ευ: (a) σ′1/σ′3 − ε1;
(b) ευ − ε1.

Attention was focused on achieving the continuity of the approximate values but
also their increments at the section connection points. Other stress and strain values were
calculated using the following equations:

σ′1/σ′3 =
(
q/σ′3

)
+ 1, (19)

p′ =
1
3

σ′3
(
σ′1/σ′3 + 2

)
, (20)

η = q/p′, (21)
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εq = ε1 −
1
3

ευ, (22)

D = δευ/δεq, (23)

The stress ratio–dilatancy relationship for the experimental test values is shown in
Figure 6.
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6. Elasticity Parameters

To be able to analyze the relationship between stress ratio and plastic dilatancy
(η − Dp), it is necessary to know the elasticity parameters. Assuming the elastic behavior
of soil at the beginning of shear, the shear and bulk modulus can be calculated using:

G∗ =
1
3

(
δq
δεq

)
0
, (24)

K∗ =
(

δp′

δευ

)
0
, (25)

The values δq, δp′, δεq, δευ, G∗, and K∗ were calculated for εa = δεa = 0.01%. The
calculated values of G∗ and K∗ and the experimental values of maximum shear modulus
G0 are shown in Table 4.

Table 4. Elasticity parameters of crushed concrete.

p0 e0 G* G0 a aavg K* ν*

kPa − kPa kPa − − kPa −
45 0.572 21,215 75,461 3.557

3.758

21,531 0.129
90 0.570 26,229 98,678 3.762 28,849 0.151

180 0.566 44,874 177,439 3.954 43,954 0.119
200 0.491 18,085 − − 17,714 0.119
270 0.564 31,152 − − 30,621 0.120
400 0.513 30,868 − − 24,174 0.052
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The experimental values of G0 are higher than the calculated values of G∗. The differ-
ence is influenced by unidentified errors in the measurement of strains at the beginning of
shear and approximation errors. In further calculations, it is assumed that

G = aavg G∗, (26)

where aavg = 3.758 is the average value of the ratios (Table 4)

a = G0/G∗, (27)

and G∗ is a function of the mean effective stress

G∗ = 21.063 p′ + 24, 577, (28)

where p′ and G∗ are expressed in kPa (Figure 7).
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It is also assumed that Poisson’s ratio for drained triaxial compression is influenced
by the stress level and can be expressed as (Figure 8)

ν = ν∗ = 0.1812 e−0.003 p′ , (29)

where p′ is expressed in kPa.
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Figure 8. Effect of the mean effective stress on Poisson’s ratio.

The bulk modulus (K) adapted for further calculations was calculated from

K =
2G(1 + ν)

3(1− 2ν)
, (30)

where G and ν are defined in Equations (26) and (29), respectively.
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For undrained triaxial compression, as for drained conditions, the shear modulus is
defined in Equations (26) and (28). The Poison’s ratio of crushed concrete, like Toyoura
sand [26], is assumed to change during undrained shear and can be given by

ν =

{
0.495− εa

0.35 (0.495− νa) f or εa ≤ 0.35%
0.1802 e−0.003 p′ f or εa > 0.35%

(31)

where νa is the value of ν calculated from Equation (29) for p′ at εa = 0.35% (Figure 9).
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The bulk modulus is calculated using Equation (30), with G and ν defined in
Equations (26) and (31), respectively.

Knowing the elasticity parameters (G, K), approximated shear test data (q, p′, ευ, εq),
and their increments (δq, δp′, δευ, δεq), the plastic parts of volumetric and shear strain incre-
ments (δε

p
υ , δε

p
q ) and stress ratio–plastic dilatancy relationship (η − Dp) can be calculated.

7. Stress Ratio–Plastic Dilatancy Relationship
7.1. Drained Conditions

Figure 10 shows the stress ratio–plastic dilatancy relationship for the drained triaxial
compression test of crushed concrete.
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The dilatant failure states (DFSs) and maximum curvature of η−Dp relationships [24]
can be easily identified. Points F in Figure 10 represent the DFSs. A straight line approximat-
ing the DFSs, called the dilatant failure state line (DFSL) defined by Equation (1), intersects
the vertical axis at η = Q = 1.532, and its slope is A = AF = 0.886 (Figure 10). For granular
material, Q = Mo

c = 1.532 [22], so the critical frictional state angle φo = 37.6◦. For conven-
tional drained triaxial compression, Ao

c = 0.489 (Equation (17)); hence,
β = βF = AF/Ao

c = 1.812. The value of βF > 1.0 (AF > Ao
c) represents the intensity

of grain crushing during shearing [22]. Because crushed concrete grains have a very angu-
lar shape, the crushing effect occurs at low stress levels, similar to limestone gravel and
railway ballast [46–49].

The relationships η − D and η − Dp are shown in Figure 11.
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Differences are observed not only in the initial but also in the advanced shear stages.
The q− εa and ευ − εa relationships for drained triaxial compression, similar to those

usually presented in the geotechnical literature, are shown in Figure 12.
The F points representing the DFS’s maximum plastic dilatancy are shown in Figure 12.

The locations of F (DFS) points are simply identified for η − Dp relationships but difficult
for q− εa and ευ − εa relationships. The η − Dp relationships are rarely found in the soil
mechanics literature.
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7.2. Undrained Conditions

Under undrained conditions, the sample volume does not change during shear
(δευ = 0), and the dilatancy is zero (D = 0). The plastic parts of strain increments are
equivalent to the elastic strain increments (δε

p
υ = δεe

υ). Assuming that the shear moduli (G)
for drained and undrained conditions are equal and the change in Poisson’s ratio (ν) during
shear is described by Equation (31), the stress ratio–plastic dilatancy can be calculated
(Figure 13).
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The DFS, represented by F points, is the minimum value of plastic dilatancy (Dp
min),

and can be approximated using a straight line (DFSL). The DFSL intersects the vertical
axis at η = Mo

c = 1.532, as in the drained conditions. This means that the critical frictional
state angle (φo = 37.6◦) is the same for drained and undrained conditions and does not
depend on the stress path. The slope of DFSL in the η − Dp plane is AF = 3.94 (Figure 13).
For the undrained conditions, Ao

c = 2.021 (Equation (18)); hence, βF = AF/Ao
c = 1.95

is very similar to βF = 1.812 for the drained conditions. This means that the effects of
grain crushing on the shear behavior of crushed concrete under drained and undrained
conditions are very similar.

In Figure 14, the relationships q − εa, u − εa and q − p′ for the undrained triaxial
compression tests of crushed concrete are shown.
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The F points representing the DFSs are also shown in Figure 14. The location of the F
points cannot be simply identified in the q− εa, u− εa, and q− p′ relationships. Therefore,
the very important characteristic behavior of soil during undrained shear can be easily
identified in the η − Dp plane.
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8. Conclusions

The laboratory investigations performed using the triaxial apparatus of the selected
geomaterial, namely, crushed concrete, and elastic–plastic modeling using the frictional
state concept allowed us to draw some important conclusions. The main conclusions
reached from this study are highlighted below.

(1) The characteristic behavior of crushed concrete during triaxial shearing can be de-
scribed using the frictional state concept.

(2) The dilatant failure state can be easily identified only in the stress ratio–plastic dila-
tancy plane.

(3) The values of the βF parameter, which represents the crushing effect, are almost
identical for drained and undrained conditions. This means that the assumptions of
the frictional state concept are correct. The crushing effect in the shearing of crushed
concrete is observed at low stress levels.

(4) The stress ratio–plastic dilatancy relationship, which is very important in elastic-
plastic modeling, can be parametrized using the frictional state concept.

In order to enhance the model’s applicability and expand the practical implications of
the research, further improvements can be made to the model considering the variation
of a smaller number of parameters. Future research should therefore aim to create a new,
even simpler, elastic–plastic model of geomaterials to solve various engineering problems.
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40. Gabryś, K.; Soból, E.; Sas, W.; Šadzevičius, R.; Skominas, R. Warsaw Glacial Quartz Sand with Different Grain-Size Charac-teristics
and Its Shear Wave Velocity from Various Interpretation Methods of BET. Materials 2021, 14, 544. [CrossRef] [PubMed]
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