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Abstract: Bulk ideal flows constitute a wide class of solutions in plasticity theory. Ideal flow solutions
concern inverse problems. In particular, the solution determines part of the boundary of a region
where it is valid. Bulk planar ideal flows exist in the case of (i) isotropic rigid/plastic material
obeying an arbitrary pressure-independent yield criterion and its associated flow rule and (ii) the
double sliding and rotation model based on the Mohr–Coulomb yield criterion. In the latter case,
the intrinsic spin must vanish. Both models are perfectly plastic, and the complete equation systems
are hyperbolic. All available specific solutions for both models describe flows with a symmetry axis.
The present paper aims at general solutions for flows with no symmetry axis. The general structure
of the solutions consists of two rigid regions connected by a plastic region. The characteristic lines
between the plastic and rigid regions must be straight, which partly dictates the general structure of
the characteristic nets. The solutions employ Riemann’s method in regions where the characteristics
of both families are curvilinear. Special solutions that do not have such regions are considered
separately. In any case, the solutions are practically analytical. A numerical technique is only
necessary to evaluate ordinary integrals. The solutions found determine the tool shapes that produce
ideal flows. In addition, the distribution of pressure over the tool’s surface is calculated, which is
important for predicting the wear of tools.

Keywords: ideal flows; double sliding and rotation model; Riemann’s method; plasticity; process design

1. Introduction

Ideal or streamlined flows constitute a class of solutions within the classical theory
of rigid plasticity. The ideal flow condition is an additional equation within the standard
system of equations of the latterly mentioned theory. Nevertheless, the resulting overde-
termined system of equations is compatible, and restrictions are imposed on boundary
conditions. Ideal flow solutions are design solutions. In particular, in the case of bulk
stationary flows, a tool’s shape is not a given but is partly determined by the solution [1].
The first design solution of this kind has been presented in [2]. It was based on the method
of characteristics. The traditional finite element method cannot calculate ideal flows. An
ideal flow condition is advantageous for some deformation processes. In particular, ideal
flows produce no redundant work [2]. This work is not zero in real processes. However,
the experiment carried out in [3] has demonstrated that the ideal-flow die calculated in [2]
is the best in terms of the following criteria: efficiency, uniformity of deformation, product
strength, ductility, and fatigue life. This die has been compared to straight, convex circular,
and concave circular die profiles. Therefore, ideal flow theory is used for the preliminary
design of deformation processes [1]. This design aims to calculate the tool shape that
produces an ideal flow. However, it has been seen from the solution in [2] that it is not
unique. Therefore, other design criteria can be combined with the ideal flow condition. For
example, the ideal flow solution for the axisymmetric drawing presented in [4] calculates
the die of minimum length. This solution is for Tresca’s yield criterion. Papers [5,6] have
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demonstrated that steady and nonsteady three-dimensional ideal flows exist for the mate-
rial model comprising this yield criterion and its associated flow rule. Only this material
model has been associated with the concept of bulk ideal flows for a long time.

Many materials obey pressure-dependent yield criteria ([7–10] among many others).
Various plastic flow rules are used in conjunction with such yield criteria. All these
plastic flow rules can be conveniently divided into two groups. The models of one of
these groups are plastically compressible. This property is inherent to many granular and
similar materials. Models that account for this property have been proposed (in [11,12],
among many others). However, in many cases, materials can be treated as plastically
incompressible. The models of the other group describe the responses of these materials.
Corresponding theories, solutions, and experiments have been reported in [13,14] for soils,
granular materials [15,16], and traditional metals [17–19]. A test for verifying the theory
proposed in [13] has been carried out in [20]. It has been concluded that the theory may
be a viable law to describe the deformation of granular materials. The discrete element
method has been employed in [21] to show that the model [22] for plastically incompressible
materials provides a reasonable continuum mechanics description of the behavior of some
granular materials. The present paper adopts the double shearing and rotation model
proposed in [22]. Considering steady planar flows, it has been recently proven in [23] that
the ideal flow condition is compatible with this material model if the intrinsic spin vanishes.
Note that this condition is not satisfied for the model proposed in [13].

To the best of the authors’ knowledge, all available planar ideal flow solutions are
symmetric relative to an axis. In particular, the solution [2] and its generalizations [24–26]
are. On the other hand, some engineering applications require non-symmetric extrusion
and drawing dies [27].

The present paper provides a steady planar ideal flow solution through a non-symmetric
die. The theory developed in [23] is adopted. The solution for Tresca’s yield criterion is
obtained as a particular case. Another particular case is the flow through a symmetric die.
In these two particular cases, the new solution coincides with available solutions.

2. Statement of the Problem

A sheet of initial thickness hin is extruded through a frictionless die. The final thickness
of the sheet is hout. The process is stationary, and the deformation is plane strain. The
elastic portion of the strain tensor is neglected. A plastic region in the die connects two
rigid regions. One of the rigid regions moves horizontally with velocity Vout after exiting
the plastic region. The other rigid region approaches the plastic region with velocity Vin
at some angle ψin measured from the horizontal direction. A schematic diagram of the
extrusion process is shown in Figure 1, where Fe is the extrusion force. The die shape that
produces the above processes under the ideal flow condition should be found in the course
of the solution.
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It is assumed that the material obeys the double shearing and rotation model [22]. The
constitutive equations are the Mohr–Coulomb yield criterion and the plastic flow rule. Let
σxx, σyy, and σxy be the stress components referred to Cartesian coordinates (x, y). The yield
criterion is represented as

(
σxx + σyy

)
sin ϕ +

√(
σxx − σyy

)2
+ 4σ2

xy = 2k cos ϕ, (1)

where k is the cohesion, and ϕ is the angle of internal friction. It is convenient to represent
the plastic flow rule in terms of the angle of inclination of the direction of the algebraically
greater principal stress to the x-axis. This angle is denoted as ψ. Then, the plastic flow
rule becomes

ξxx + ξyy = 0,
sin 2ψ

(
ξxx − ξyy

)
− 2 cos 2ψξxy − 2 sin ϕ

(
ωxy + Ω

)
= 0.

(2)

Here, ξxx, ξyy, and ξxy are the strain rate components in the Cartesian coordinates; ωxy
is the only non-zero spin component in the Cartesian coordinates; and Ω is the intrinsic
spin. In many cases, Ω = 0 [22,28]. The present paper is concerned with this version of the
model. Then, Equation (2) becomes

ξxx + ξyy = 0,
sin 2ψ

(
ξxx − ξyy

)
− 2 cos 2ψξxy − 2 sin ϕωxy = 0.

(3)

The constitutive equations above are supplemented with the stress equilibrium equations:

∂σxx

∂x
+

∂σxy

∂y
= 0 and

∂σxy

∂x
+

∂σyy

∂y
= 0. (4)

The ideal flow condition is that the trajectories of one of the principal stresses coincide
with the streamlines. This condition and the equations above constitute an overdetermined
system of equations. However, it has been shown in [23] that this system is compatible.

3. System of Equations in Characteristic Coordinates

Equations (1), (3), and (4) constitute a hyperbolic system. This section briefly summa-
rizes available results concerning this system that are necessary for the subsequent solution.

Using a principal line coordinate system (ξ, η) for finding ideal flow solutions is
convenient. The ξ-coordinate lines are the trajectories of the principal stress σξ , and the
η-coordinate lines are the trajectories of the principal stress ση . It is assumed without loss
of generality that

σξ > ση . (5)

Then, ψ involved in (3) is the anticlockwise angular rotation of the ξ-lines from the
x-axis. The characteristic directions are determined as

Hη

Hξ

dη

dξ
= − tan χ and

Hη

Hξ

dη

dξ
= tan χ, (6)

where Hξ and Hη are the scale factors of the ξ- and η-coordinate curves, respectively, and
χ = π/4 + ϕ/2. The characteristic coordinates are denoted as (α, β). The first equation
in (6) corresponds to the α-lines and the second to the β-lines. The ideal flow condition
requires that the velocity vector V is tangent to the ξ-coordinate lines (Figure 2). The
velocity vector may also be tangent to the η-coordinate lines. However, this condition is not
required for the problem solved in the next section. The characteristic relations resulting
from the stress equations are

cos ϕdp + 2(p sin ϕ + cos ϕ)dψ = 0 along an α− line,
cos ϕdp− 2(p sin ϕ + cos ϕ)dψ = 0 along a β− line,

(7)
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where
p = −

σξ + ση

2k
. (8)
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It has been shown in [29] that it is always possible to put

ψ = (α + β) cos ϕ (9)

in regions where both characteristic families are curved. In this case, Equation (7) allows
for p to be determined as

ln
(

p sin ϕ + cos ϕ

p0 sin ϕ + cos ϕ

)
= 2(β− α) sin ϕ, (10)

where p0 is constant. It has been shown in [23] that the plastic flow rule is compatible with
the ideal flow condition and the stress solution above if

V
V0

=

(
p sin ϕ + cos ϕ

p0 sin ϕ + cos ϕ

)t
, (11)

where V is the magnitude of V, V0 is constant, and t = sin ϕ−1
2 sin ϕ .

In regions where the α-lines are straight, Equations (9) and (10) are replaced with

ψ = (α0 + β) cos ϕ, and ln
(

p sin ϕ + cos ϕ

p0 sin ϕ + cos ϕ

)
= 2(β− α0) sin ϕ, (12)

where α0 is constant. Equation (11) is valid.
In regions where the β-lines are straight, Equations (9) and (10) are replaced with

ψ = (α + β0) cos ϕ and ln
(

p sin ϕ + cos ϕ

p0 sin ϕ + cos ϕ

)
= 2(β0 − α) sin ϕ, (13)

where β0 is constant. Equation (11) is valid.
If the characteristic lines of both families are straight in a region, its motion is a rigid

body translation.
The above equations show that calculating ideal flows mainly requires a characteristic

network. The remaining calculations are merely manipulations with elementary functions.

4. Characteristic Network and Ideal Die Shapes

The solution for symmetric dies [23] allows for the general structure of the characteris-
tic network to be guessed (Figure 3).
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4.1. Special Solutions near the Die’s Exit

It is convenient to start analyzing this network from the die’s exit. Since the rigid
region exiting the die moves horizontally, straight lines AD and AD’ are inclined to the
horizontal line at angles χ, as shown in Figure 3. It has been taken into account here that the
direction of the principal stress σξ is horizontal at point A. The position of point A relative
to points D and D’ can be chosen arbitrarily, giving one of the parameters that control the
characteristic network. It is convenient to choose the origin of the Cartesian coordinate
system at point A. The distance between the x-axis and the center line of the sheet after
exiting the die may serve as the noted parameter. This parameter is denoted as â (Figure 3).
It varies in the range − hout

2 ≤ â ≤ hout
2 . It follows from the geometry of Figure 3 that the

lengths of lines AD and AD’ are

rAD =

(
hout

2
− â
)

1
sin χ

and rAD′ =

(
hout

2
+ â
)

1
sin χ

. (14)

Using this equation, one can find the Cartesian coordinates of points D and D’ in
the form

xD = −
(

hout

2
− â
)

cot χ, yD =
hout

2
− â, xD′ = −

(
hout

2
+ â
)

cot χ, and yD′ = −
(

hout

2
+ â
)

. (15)

The orientation of the principal stress σξ at point A demands that AD is an α-line and
AD’ is a β-line. Therefore, all α-lines are straight lines through D in region AFD. Similarly,
all β-lines are straight lines through D’ in region AF’D’. It follows from (6) that the angle
between the characteristic directions equals 2χ. Therefore, AF and AF’ are logarithmic
spirals. In particular, AF can be represented as

r = rAD exp(−θ tan ϕ). (16)
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Here, (r, θ) is the polar coordinate system with the origin at D, and θ is measured from
line AD anticlockwise. Both families of characteristics are straight in DFC, where DC is a
portion of the die’s surface. Therefore, the magnitude of angles FDC and DCF is χ. The
inclination of DC to the x-axis is γ. The magnitude of this angle should be found in the
course of the solution. It follows from the geometry of Figure 3 that the magnitude of angle
ADF is also γ. Therefore, the length of DF is determined from (16) as

rDF = rAD exp(−γ tan ϕ). (17)

Using this equation, one can find the length of DC as

rDC = 2rAD exp(−γ tan ϕ) cos χ. (18)

The Cartesian coordinates of point C are determined by employing (14), (15), and (18)
in the form

xC = (hout − 2â) cot χ
[
exp(−γ tan ϕ) cos γ− 1

2

]
,

yC = (hout − 2â)
[
exp(−γ tan ϕ) cot χ sin γ + 1

2

]
.

(19)

Since the magnitude of angle ADF is γ, region ADF vanishes if γ = 0. Therefore, the
solution under construction is valid if

γ ≥ 0. (20)

Similarly, AF’ can be represented as

r = rAD′ exp(θ tan ϕ). (21)

Here, (r, θ) is the polar coordinate system with the origin at D’, and θ is measured
from line AD’ clockwise. Both families of characteristics are straight in D’F’C’, where D’C’
is a portion of the die’s surface. Therefore, the magnitude of angles F’D’C’ and D’C’F’ is χ.
The inclination of D’C’ to the x-axis is γ’. The magnitude of this angle should be found in
the course of the solution. It follows from the geometry of Figure 3 that the magnitude of
angle AD’F’ is also γ’. Therefore, the length of D’F’ is determined from (21) as

rD′F′ = rAD′ exp
(
−γ′ tan ϕ

)
. (22)

Using this equation, one can find the length of D’C’ as

rD′C′ = 2rAD′ exp
(
−γ′ tan ϕ

)
cos χ. (23)

The Cartesian coordinates of point C’ are determined by employing (14), (15), and (23)
in the form

xC′ = (hout + 2â) cot χ
[
exp(−γ′ tan ϕ) cos γ′ − 1

2

]
,

yC′ = −(hout + 2â)
[
exp(−γ′ tan ϕ) cot χ sin γ′ + 1

2

]
.

(24)

Since the magnitude of angle AD’F’ is γ’, region AD’F’ vanishes if γ’ = 0. Therefore,
the solution under construction is valid if

γ′ ≥ 0. (25)

4.2. Region AFBF’ (Figure 3)

The characteristics of both families are curved in this region. Since ψ = 0 at point A,
Equation (9) demands that the base α-line coincides with AF’ and the base β-line with AF
(i.e., α = 0 on line AF, and β = 0 on line AF’). It follows from the geometry of Figure 3 that
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ψ = γ at point F and ψ = γ’ at point F’. Therefore, Equation (9) supplies the characteristic
coordinates of points F’ and F in the form

αF′ = −
γ′

cos ϕ
and βF =

γ

cos ϕ
. (26)

The radii of curvature of the α- and β-characteristic lines are denoted as R and S,
respectively. These quantities can be defined as

1
R

=
∂ψ

∂sα
and

1
S
= − ∂ψ

∂sβ
, (27)

where ∂
∂sα

and ∂
∂sβ

denote differentiation along the α- and β-characteristic lines, respectively.
It is advantageous to introduce the following quantities:

R0 = R exp[(β− α) sin ϕ] and S0 = S exp[(β− α) sin ϕ]. (28)

It has been shown in [29] that these quantities satisfy the equations:

∂R0

∂β
= S0 and

∂S0

∂α
= −R0. (29)

One can transform these equations to

∂2R0

∂α∂β
+ R0 = 0 and

∂2S0

∂α∂β
+ S0 = 0. (30)

Each of these equations is the equation of telegraphy. Therefore, they can be integrated
by the method of Riemann. In particular, the Green’s function is

G(a, b, α, β) = J0

[
2
√
(a− α)(b− β)

]
, (31)

where J0(z) is the Bessel function of zero order.
Formulating the boundary conditions on lines AF and AF’ requires calculating the

radii of curvature of these lines. Differential geometry supplies the formula for the radius
of curvature of a curve represented in polar coordinates. Substituting (16) and (21) into this
formula and using (14), one arrives at

SAF = − (hout − 2â)
2 sin χ cos ϕ

exp(−θ tan ϕ) and RAF′ = −
(hout + 2â)
2 sin χ cos ϕ

exp(θ tan ϕ), (32)

where SAF is the value of S on line AF, and RAF’ is the value of R on line AF’. Since ψ = 0,
and θ = 0 at point A, Equations (9) and (32) combine to give

SAF(β) = − (hout − 2â)
2 sin χ cos ϕ

exp(−β sin ϕ) and RAF′(α) = −
(hout + 2â)
2 sin χ cos ϕ

exp(α sin ϕ). (33)

Substituting SAF(β) into the second equation in (28) at α = 0 and RAF’(α) into the first
equation in (28) at β = 0 supplies

SAF
0 = − (hout − 2â)

2 sin χ cos ϕ
and RAF′

0 = − (hout + 2â)
2 sin χ cos ϕ

, (34)

where SAF
0 is the value of S0 on line AF, and RAF′

0 is the value R0 on line AF’. The equations
in (34) are the boundary conditions for the equations in (30).
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According to Riemann’s method, the value of S0 at a generic point P in region AFBF’
is determined from the following equation (Figure 4):∫

PPα

(
S0

∂G
∂β − G ∂S0

∂β

)
dβ +

∫
Pα A

(
G ∂S0

∂α − S0
∂G
∂α

)
dα+

+
∫

APβ

(
S0

∂G
∂β − G ∂S0

∂β

)
dβ +

∫
PβP

(
G ∂S0

∂α − S0
∂G
∂α

)
dα = 0.

(35)
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These integrals are evaluated separately below. The value of S0 at point P is denoted
as SP

0 .
It follows from (31) that G = 1 on lines PβP and PPα. Therefore,

∫
PPα

(
S0

∂G
∂β
− G

∂S0

∂β

)
dβ = −SAF′

0 + SP
0 and

∫
PβP

(
G

∂S0

∂α
− S0

∂G
∂α

)
dα = SP

0 − SAF
0 , (36)

where SAF′
0 is the value of S0 on line AF’. Employing (34), one can integrate the second

equation in (29) to get
SAF′

0 = −RAF′
0 α + SAF

0 . (37)

Since S0 = SAF
0 on APβ and G = 1 at point Pβ,

∫
APβ

(
S0

∂G
∂β
− G

∂S0

∂β

)
dβ = SAF

0

[
1− J0

(
2
√

ab
)]

. (38)

Here, Equation (31) has been used. Integrating by parts, one can transform the second
integral in (35) as

∫
Pα A

(
G ∂S0

∂α − S0
∂G
∂α

)
dα =

0∫
a

(
G ∂S0

∂α − S0
∂G
∂α

)
dα =

=
0∫
a

[
2G ∂S0

∂α −
∂(S0G)

∂α

]
dα = 2

0∫
a

G ∂S0
∂α dα− (S0G)|α=0 + (S0G)|α=a.

(39)

Since S0 = SAF′
0 on APα, substituting (30) and (36) into (38) leads to

∫
Pα A

(
G

∂S0

∂α
− S0

∂G
∂α

)
dα = SAF

0

[
1− J0

(
2
√

ab
)]
− 2RAF′

0

0∫
a

J0

[
2
√
(a− α)b

]
dα. (40)
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This result can be further simplified taking into account that

d[zJ1(z)]/dz = zJ0(z), (41)

where J1(z) is the Bessel function of first order. Put z = 2
√
(a− α)b. Then, using (41),

one gets

J0

[
2
√
(a− α)b

]
= −

d
{√

(a− α)bJ1

[
2
√
(a− α)b

]}
bdα

. (42)

Substituting (42) into (40) yields

∫
Pα A

(
G

∂S0

∂α
− S0

∂G
∂α

)
dα = SAF

0

[
1− J0

(
2
√

ab
)]

+
2
√

abRAF′
0

b
J1

(
2
√

ab
)

. (43)

Equations (35), (36), (38), and (43) combine to give

SP
0 = SAF

0 J0

(
2
√

ab
)
−
√

abRAF′
0

b
J1

(
2
√

ab
)

. (44)

One can eliminate SAF
0 and RAF′

0 in this equation employing (34). It is seen from (26)
that ab < 0. Therefore, it is convenient to rewrite (44) as

SP
0 = SAF

0 I0

(
2
√
|ab|

)
+

√∣∣∣ a
b

∣∣∣RAF′
0 I1

(
2
√
|ab|

)
. (45)

Here, I0(z) and I1(z) are the modified Bessel functions of zero and first orders, respectively.
Using the same line of reasoning as above, one can represent the solution of the first

equation in (30) as

RP
0 = RAF′

0 I0

(
2
√
|ab|

)
+ SAF

0

√∣∣∣∣ ba
∣∣∣∣I1

(
2
√
|ab|

)
. (46)

The radius of curvature of line FB is determined from (28) and (46) as

RFB(α) =

[
RAF′

0 I0

(
2
√
|αbF|

)
+ SAF

0

√∣∣∣∣ bF
α

∣∣∣∣I1

(
2
√
|αbF|

)]
exp[(α− βF) sin ϕ]. (47)

Therefore, the Cartesian coordinates of this line can be represented by the equations

xFB = xF + cos ϕ
α∫

0

[
RAF′

0 I0

(
2
√
|abF|

)
+ SAF

0

√∣∣∣ bF
a

∣∣∣I1

(
2
√
|abF|

)]
exp[(a− βF) sin ϕ] cos(ψ− χ)da,

yFB = yF + cos ϕ
α∫

0

[
RAF′

0 I0

(
2
√
|abF|

)
+ SAF

0

√∣∣∣ bF
a

∣∣∣I1

(
2
√
|abF|

)]
exp[(a− βF) sin ϕ] sin(ψ− χ)da.

(48)

Here ψ is determined from (9) as ψ = (a + βF) cos ϕ and αF′ ≤ a ≤ 0. The x- and
y- coordinates of point F are readily found from (14) and (17) as

xF = rDF cos(χ− γ)− rAD cos χ =
(

hout
2 − â

)[
cos(χ−γ)

sin χ exp(−γ tan ϕ)− cot χ
]
,

yF = hout
2 − rDF sin(χ− γ) =

(
hout

2 − â
)[

1− exp(−γ tan ϕ) sin(χ−γ)
sin χ

]
.

(49)

The radius of curvature of line F’B is determined from (28) and (45) as

SF′B(β) =

[
SAF

0 I0

(
2
√
|aF′β|

)
+

√∣∣∣∣ aF′
β

∣∣∣∣RAF′
0 I1

(
2
√
|aF′β|

)]
exp[(αF′ − β) sin ϕ]. (50)
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Therefore, the Cartesian coordinates of this line can be represented by the equations

xF′B = xF′ − cos ϕ
β∫

0

[
SAF

0 I0

(
2
√
|aF′b|

)
+

√∣∣∣ aF′
b

∣∣∣RAF′
0 I1

(
2
√
|aF′b|

)]
exp[(αF′ − b) sin ϕ] cos(ψ + χ)db,

yF′B = yF′ − cos ϕ
β∫

0

[
SAF

0 I0

(
2
√
|aF′b|

)
+

√∣∣∣ aF′
b

∣∣∣RAF′
0 I1

(
2
√
|aF′b|

)]
exp[(αF′ − b) sin ϕ] sin(ψ + χ)db.

(51)

Here ψ is determined from (9) as ψ = (αF’ + b) cos ϕ and 0 ≤ b ≤ βF. The x- and
y- coordinates of point F’ are readily found from (14) and (22) as

xF′ = rD′F′ cos(χ− γ′)− rAD′ cos χ =
(

hout
2 + â

)[
cos(χ−γ′)

sin χ exp(−γ′ tan ϕ)− cot χ
]
,

yF′ =
hout

2 − rDF sin(χ− γ) =
(

hout
2 + â

)[
1− exp(−γ′ tan ϕ) sin(χ−γ′)

sin χ

]
.

(52)

The Cartesian coordinates of point B, xB and yB, are determined from (48) at a = αF’
or (51) at b = βF.

4.3. Regions FCEB and F’C’E’B (Figure 3)

The β-lines are straight in region FCEB. Therefore, the angle ψ is independent of β.
Since ψ = γ and α = 0 on line CF, the dependence of this angle on α follows from (9) in
the form

ψ = α cos ϕ + γ. (53)

It follows from the geometry of Figure 3 that

∂x
∂α = R cos ϕ cos

(
ψ− π

4 −
ϕ
2
)
, ∂x

∂β = −T(α) sin
(
ψ− π

4 + ϕ
2
)
,

∂y
∂α = R cos ϕ sin

(
ψ− π

4 −
ϕ
2
)
, ∂y

∂β = T(α) cos
(
ψ− π

4 + ϕ
2
)
.

(54)

Here T(α) is an arbitrary function of α. The compatibility equations are

∂2x
∂α∂β

=
∂2x

∂β∂α
and

∂2y
∂α∂β

=
∂2y

∂β∂α
. (55)

Substituting (53) and (54) into (55) yields

∂R
∂β cos ϕ cos(ψ− χ) = dT

dα cos(ψ + χ)− T sin(ψ + χ) cos ϕ,
∂R
∂β cos ϕ sin(ψ− χ) = dT

dα sin(ψ + χ) + T cos(ψ + χ) cos ϕ.
(56)

One can solve these equations for the derivatives dT/dα and ∂R/∂β. As a result,

dT
dα

= T sin ϕ and
∂R
∂β

= − T
cos ϕ

. (57)

The solution of the first equation satisfying the condition T = 1 for α = 0 is

T = eα sin ϕ. (58)

Substituting this solution in the second equation in (57) and integrating the resulting
equation leads to

R = − eα sin ϕ

cos ϕ
(β− βF) + RFB(α). (59)

Here, the last term can be eliminated by employing (45), giving the dependence of R
on α and β in region FCEB.

Curve CE bisects the angle between the α- and β- directions. Therefore, the equation
for this curve is

dsα = dsβ. (60)
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It follows from (56) that dsα = R cos ϕ dα, and dsβ = Tdβ. These Equations (58), (59),
and (60) combine to give

dβ

dα
= cos ϕRFB(α)e−α sin ϕ − β + βF. (61)

The solution of this equation satisfying the boundary condition β = βC for α = 0 is

β = βF + (βC − βF)e−α + e−α cos ϕ

α∫
0

RFB(µ)eµ(1−sin ϕ)dµ. (62)

Using (59) and (60), one can derive the following equations for determining curve CE:

dx
dα = 2 cos χ cos ψ

[
RFB(α) cos ϕ− eα sin ϕ(β− βF)

]
,

dy
dα = 2 cos χ sin ψ

[
RFB(α) cos ϕ− eα sin ϕ(β− βF)

]
.

(63)

In these equations, β should be eliminated by means of (62) and ψ by means of (53).
Integrating the resulting equations gives

xCE = 2 cos χ
α∫

0
cos ψ

[
RFB(η) cos ϕ− eη sin ϕ(β− βF)

]
dη + xC,

yCE = 2 cos χ
α∫

0
sin ψ

[
RFB(η) cos ϕ− eη sin ϕ(β− βF)

]
dη + yC.

(64)

Here 0 ≤ α ≤ αF′ . Equation (19) provides the values of xC and yC. Integrating by parts
in (64) simplifies subsequent numerical integration. As a result,

xC′E′(α) = 2 cos χ cos ϕ
α∫

0
RFB(µ) cos(µ cos ϕ + γ)dµ−

− (βC−βF) cos χ
(1−sin ϕ)

{
v1(α)e−α(1−sin ϕ) + cos γ− sin(ϕ + γ)

}
−

− cos χ cos ϕ
(1−sin ϕ)

{
v1(α)e−α(1−sin ϕ)

α∫
0

RFB(µ)eµ(1−sin ϕ)dµ−
α∫

0
RF′B(µ)v1(µ)dµ

}
+ xC,

yC′E′(β) = 2 cos χ cos ϕ
α∫

0
RFB(µ) sin(µ cos ϕ + γ)dµ+

+ (βC−βF) cos χ
(1−sin ϕ)

[
v2(α)e−α(1−sin ϕ) − sin γ− cos(ϕ + γ)

]
+

+ cos χ cos ϕ
(1−sin ϕ)

{
v2(α)e−α(1−sin ϕ)

α∫
0

RFB(µ)eµ(1−sin ϕ)dµ−
α∫

0
RFB(µ)v2(µ)dµ

}
+ yC,

(65)

where
v1(z) = sin(z cos ϕ + γ + ϕ)− cos(z cos ϕ + γ),
v2(z) = sin(z cos ϕ + γ) + cos(z cos ϕ + γ + ϕ).

(66)

This solution supplies the shape of wall CE in parametric form. In particular, the
Cartesian coordinates of point E are determined from (65) as

xE = xCE(αF′) and yE = yCE(αF′). (67)

Region F’C’E’B, where the α-lines are straight, can be treated similarly. The angle ψ is
independent of α. Since ψ = −γ’ and α = 0 on line C’F’, the dependence of this angle on β
follows from (9) in the form

ψ = β cos ϕ− γ′. (68)
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It follows from the geometry of Figure 3 that

∂x
∂α = T2(β) cos

(
ψ− π

4 −
ϕ
2
)
, ∂x

∂β = S cos ϕ sin
(
ψ− π

4 + ϕ
2
)
,

∂y
∂α = T2(β) sin

(
ψ− π

4 −
ϕ
2
)
, ∂y

∂β = −S cos ϕ cos
(
ψ− π

4 + ϕ
2
)
.

(69)

Here, T2(β) is an arbitrary function of β. Substituting (68) and (69) into (55) yields

∂S
∂α cos ϕ cos(ψ + χ) = − dT2

dβ cos(ψ− χ) + T2 sin(ψ− χ) cos ϕ,
∂S
∂α cos ϕ sin(ψ + χ) = − dT2

dβ sin(ψ− χ)− T2 cos(ψ− χ) cos ϕ.
(70)

One can solve these equations for the derivatives dT2
dβ and ∂S

∂α . As a result,

dT2

dβ
= −T2 sin ϕ, and

∂S
∂α

= − T2

cos ϕ
. (71)

The solution of the first equation satisfying the condition T2 = 1 for β = 0 is

T2 = e−β sin ϕ. (72)

Substituting this solution in the second equation in (71) and integrating the resulting
equation leads to

S = −exp(−β sin ϕ)

cos ϕ
(α− αF′) + SF′B(β). (73)

Here, the last term can be eliminated by employing (50), giving the dependence of S
on α and β in region F’C’E’B.

Curve C’E’ bisects the angle between the α- and β- directions. Therefore, Equation (60)
is valid. It follows from (70) that dsβ = −S cos ϕdβ, and dsα = T2dα. These Equations, (60), (72),
and (73) combine to give

dα

dβ
= − cos ϕSF′B(β)eβ sin ϕ + α− αF′ . (74)

The solution of this equation satisfying the boundary condition α = αC’ for β = 0 is

α = αF′ + (αC′ − αF′)e
β − eβ cos ϕ

β∫
0

SF′B(µ)e
−µ(1−sin ϕ)dµ. (75)

Using (60) and (73), one can derive the equations for determining curve C’E’ in
the form

dx
dβ = −2 cos χ cos ψ

[
SF′B(β) cos ϕ− e−β sin ϕ(α− αF′)

]
,

dy
dβ = −2 cos χ sin ψ

[
SF′B(β) cos ϕ− e−β sin ϕ(α− αF′)

]
.

(76)

In these equations, α should be eliminated by means of (75) and ψ by means of (68).
Integrating the resulting equations gives

xC′E′(β) = −2 cos χ
β∫

0
cos ψ

[
SF′B(µ) cos ϕ− exp−µ sin ϕ(α− αF′)

]
dµ + xC′ ,

yC′E′(β) = −2 cos χ
β∫

0
sin ψ

[
SF′B(µ) cos ϕ− exp−µ sin ϕ(α− αF′)

]
dµ + yC′ .

(77)
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Here 0 ≤ β ≤ βF. Equation (19) provides the values of xC’ and yC’. Integrating by
parts in (77) simplifies subsequent numerical integration. As a result,

xC′E′(β) = −2 cos χ cos ϕ
β∫

0
SF′B(µ) cos(µ cos ϕ− γ′)dµ+

+
(αC′−αF′) cos χ

(1−sin ϕ)

{
u1(β)eβ(1−sin ϕ) − cos γ′ + sin(ϕ + γ′)

}
−

− cos χ cos ϕ
(1−sin ϕ)

{
u1(β)eβ(1−sin ϕ)

β∫
0

SF′B(µ)e−µ(1−sin ϕ)dµ−
β∫

0
SF′B(µ)u1(µ)dµ

}
,

yC′E′(β) = −2 cos χ cos ϕ
β∫

0
SF′B(µ) sin(µ cos ϕ− γ′)dµ+

+
(αC′−αF′) cos χ

(1−sin ϕ)

[
u2(β)eβ(1−sin ϕ) + sin γ′ + cos(ϕ + γ′)

]
−

− cos χ cos ϕ
(1−sin ϕ)

{
u2(β)eβ(1−sin ϕ)

β∫
0

SF′B(µ)e−µ(1−sin ϕ)dµ−
β∫

0
SF′B(µ)u2(µ)dµ

}
,

(78)

where
u1(z) = cos(z cos ϕ− γ′) + sin(z cos ϕ− γ′ − ϕ),
u2(z) = sin(z cos ϕ− γ′)− cos(z cos ϕ− γ′ − ϕ).

(79)

Equation (78) supplies the shape of wall C’E’ in parametric form. In particular, the
Cartesian coordinates of point E’ are determined from (78) as

xE′ = xC′E′(βF) and yE′ = yC′E′(βF). (80)

4.4. Ideal Die Shapes

The general solution in Sections 4.1–4.3 determines the shapes of DCE and D’C’E’
(Figure 3) and contains three parameters: γ, γ’, and â. The process is classified by two
independent parameters, hin/hout and ψin (Figure 1). To calculate an ideal die for a specific
process, one must connect the first group of the parameters and the second.

It is seen from Figure 3 that ψ = ψin at point B. On the other hand, α = αF’, and β = β F,
at this point. Therefore, it follows from (9) and (26) that

ψin = γ− γ′ (81)

In particular, ψin = 0, and γ = γ’, in the case of symmetric dies.
It follows from (10) and (11) that

ln
V
V0

= (1− sin ϕ)(α− β). (82)

Since α = 0 and β = 0 at point A, it follows from (82) that V0 = Vout, and

ln
Vin

Vout
= (1− sin ϕ)(αF′ − βF). (83)

The material is incompressible. Therefore, Vouthout = Vinhin. This equation, (26),
and (83) combine to give

ln
hin

hout
=
(
γ + γ′

)
cot χ. (84)

Solving Equations (81) and (84) for γ and γ’ supplies

γ =
1
2

[
ln
(

hin

hout

)
tan χ + ψin

]
are γ′ =

1
2

[
ln
(

hin

hout

)
tan χ− ψin

]
. (85)
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Since hin/hout > 1 and ψin ≥ 0, the first equation in (85) shows that the inequality
in (20) is automatically satisfied. The second equation in (85) and the inequality in (25)
impose the following restriction on the process parameters:

ln(hin/hout) tan χ ≥ ψin. (86)

The parameter â is not connected to hin/hout and ψin. It can be used for calculating
different ideal dies for the same process (i.e., for the same values of hin/hout and ψin). This
parameter may vary in the range

−hout/2 ≤ â ≤ hout/2. (87)

4.5. Special Solutions

Some regions shown in Figure 3 degenerate to lines or points at certain values of the
parameters classifying the characteristic network. One of the special solutions is obtained
if γ’ = 0. In this case, angle AD’F’ vanishes, and line DAF’C’ becomes straight. This
straight line is the rigid/plastic boundary, and triangle D’F’C’ becomes a part of the rigid
sheet that exits the die. Since line AF’ degenerates to a point, region DAF’C’E’BF becomes
a characteristic fan with a point singularity D. Thus, line DFBE’ becomes straight, and
region DFBEC becomes a triangle, which can be treated as a part of the rigid sheet that
enters the die. Therefore, line DFBE’ is the rigid/plastic boundary. Figure 5 illustrates the
characteristic network. It is seen from (85) that this special solution corresponds to the
maximum possible value of ψin at a given ratio hin/hout. This maximum value is readily
determined from (86). It is clear from the above that the value of â is immaterial for this
special solution.
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Another special solution is obtained if â = hout/2. Line AD and region AFCD de-
generate to points. The solution given in Section 4.2 is not required for calculating the
characteristic network. The value of â is immaterial for this special solution. Any value of
ψin that satisfies (86) can be chosen. Figure 6 illustrates the characteristic network at ψin = 0.
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( ) ( ) ( )cos 1 sin tan cot exp 2 tan cot .q kησ ϕ ϕ χ ϕ γ ϕ ϕ= = − − + + −    (92)

Similarly, the dimensionless pressure on the die’s wall between points D’ and C’ is 
determined as 
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Note that 

0
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ϕ
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0
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ϕ

γ
→
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on walls DC and D’C’, respectively. 

Figure 6. General structure of the characteristic network corresponding to the special solution
â = hout/2 at ψin = 0.

5. Pressure on the Die’s Walls

The pressure on the die’s walls is important for the process design. In particular, it
is involved in many empirical equations for calculating the wear of tools [30–33]. Since
the die is frictionless, the normal stress acting on the die’s walls equals ση . The principal
stresses are readily found by employing the solution in Section 4.

In terms of the principal stresses, Equation (1) has the following form:

−p sin ϕ +
σξ − ση

2k
= cos ϕ. (88)

Using (8) and (88), one can represent the principal stresses as

σξ/k = cos ϕ− (1− sin ϕ)p and ση/k = − cos ϕ− (1 + sin ϕ)p. (89)

Since σξ = 0 on lines AD and AD’, it follows from (10) and the first equation in (89)
that

p0 = tan χ. (90)

Equations (12) and (90) supply the value of p in region DFC, where the principal
stresses are constant. In particular,

pDFC = (tan χ + cot ϕ) exp(2γ tan ϕ)− cot ϕ. (91)

Then, the dimensionless pressure on the die’s wall between points D and C is deter-
mined from (89) and (91) as

q =
∣∣ση

∣∣/k = |− cos ϕ− (1 + sin ϕ)[(tan χ + cot ϕ) exp(2γ tan ϕ)− cot ϕ]|. (92)

Similarly, the dimensionless pressure on the die’s wall between points D’ and C’ is
determined as

q =
∣∣ση

∣∣/k =
∣∣− cos ϕ− (1 + sin ϕ)

[
(tan χ + cot ϕ) exp

(
2γ′ tan ϕ

)
− cot ϕ

]∣∣. (93)

Note that
lim
ϕ→0

q = 2 + 2γ and lim
ϕ→0

q = 2 + 2γ′ (94)

on walls DC and D’C’, respectively.
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Equation (13) is valid in region CFBE. Therefore, taking into account (90), one can get

p = (tan χ + cot ϕ) exp[2(γ tan ϕ− α sin ϕ)]− cot ϕ. (95)

The second equation in (89) and (95) combine to give

q = |− cos ϕ− (1 + sin ϕ){(tan χ + cot ϕ) exp[2(γ tan ϕ− α sin ϕ)]− cot ϕ}|. (96)

This equation provides the pressure on the die between points C and E. Equations (65)
and (96) allow the pressure distribution to be calculated in the Cartesian coordinates.

One can similarly derive the equation for the pressure on the die between points C’
and E’. As a result,

q =
∣∣− cos ϕ− (1 + sin ϕ)

{
(tan χ + cot ϕ) exp

[
2
(
γ′ tan ϕ + β sin ϕ

)]
− cot ϕ

}∣∣. (97)

This equation and (78) allow the pressure distribution to be calculated in the Cartesian
coordinates.

It follows from (7) that p is constant along lines EB and E’B. Therefore, it is constant
along the entire rigid/plastic boundary. Thus, the value of p is the same at points E and E’.
Then, it follows from (89) that the value of q is the same at these points. This value can be
found from (96) or (97) using (26). As a result,

qE,E′ =
∣∣− cos ϕ− (1 + sin ϕ)

{
(tan χ + cot ϕ) exp

[
2
(
γ + γ′

)
tan ϕ

]
− cot ϕ

}∣∣. (98)

Eliminating in this equation γ and γ’ employing (84), one gets

qE,E′ =
∣∣∣− cos ϕ− (1 + sin ϕ)

{
(tan χ + cot ϕ)(hin/hout)

2 tan ϕ tan χ − cot ϕ
}∣∣∣. (99)

It follows from this equation that

lim
ϕ→0

qE,E′ = 2 + 2
(
γ + γ′

)
= 2 + 2 ln(hin/hout) (100)

Equation (99) shows that the value of q at points E and E’ is independent of ψin.
Since the value of q on the rigid/plastic boundary has been found, the principal stress

σξ is readily determined from (89) by eliminating p. The quantity σξ/k may be regarded as
a dimensionless extrusion force.

6. Illustrative Examples

This section presents the numerical results demonstrating the process parameters’
effect on the ideal die shape and wall pressure. The deviation from the symmetric shape is
emphasized. All the calculations have been performed for hin/hout = 2. Figures 7–9 show
several die profiles and the corresponding wall pressure distributions at â =0. The parameter
ψin varies from 0 (symmetric dies) to its maximum value determined by Equation (86).
Different figures correspond to different values of the angle of internal friction. In particular,
ϕ = 0 in Figure 7 (pressure-independent material); ϕ = 15◦ in Figure 8; and ϕ = 30◦ in
Figure 9.

The influence of parameter â is revealed in Figures 10–13. In these cases, ϕ = 0. As
in Figures 7–9 the parameter ψin varies from 0 to its maximum value. Also, â = hout/4 in
Figure 10; â = hout/2 in Figure 11; â = −hout/4 in Figure 12; and â = −hout/2 in Figure 13.
The dies in Figures 11 and 13 correspond to the special solutions discussed in Section 4.5.
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Figure 7. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 0° and â = 0. Figure 7. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 0◦ and â = 0.
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Figure 8. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 15° and â = 0. 
Figure 8. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 15◦ and â = 0.
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Figure 9. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 30° and â = 0. Figure 9. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 30◦ and â = 0.
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Figure 10. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 0° and â = hout/4. Figure 10. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 0◦ and â = hout/4.
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Figure 11. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 0° and â = hout/2. 

Figure 11. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 0◦ and â = hout/2.
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Figure 12. Die shape (upper diagram) and wall pressures (lower diagram) at φ = 0° and â = −hout/4. Figure 12. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 0◦ and â = −hout/4.
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Figure 13. Die shape (upper diagram) and wall pressures (lower diagram) at ϕ = 0◦ and â = −hout/2.
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The numerical results show that the length of the upper wall decreases, and the length
of the lower wall increases as parameter ψin increases. The leftmost point of the upper die
is to the right of the leftmost point of the lower die if â > 0. Accordingly, the leftmost point
of the upper die is to the left to the leftmost point of the lower die if â < 0. The pressure on
the upper die is always higher than on the lower die, except for the symmetric dies.

7. Conclusions

A new general stationary planar ideal flow solution has been found for the double
slip and rotation model. Its distinguishing feature, as compared to other planar ideal
flow solutions, is that the flow has no symmetry axis. The solution in Section 4 includes
all possible ideal flows, assuming that the characteristic field is singular at the die’s exit
(Figure 3). Generally, the characteristic network consists of three types of regions. Both
families of characteristics are straight in the regions of one type; the characteristics of one
family are curved in the regions of the second type; and both families of characteristics are
curved in the regions of the third type. However, some of these regions may not exist under
certain conditions. The solution is purely analytical in the regions where the characteristics
of at least one family are curved. Riemann’s method is employed for calculating the
characteristic network in the regions where both families of characteristics are curved. In
this case, a numerical technique is only necessary to evaluate ordinary integrals. It is known
that Riemann’s method is very accurate, and corresponding solutions can be used to verify
the accuracy of numerical solutions [34]. The general solution is used to show the effect
of process and material parameters on the ideal die’s shape and the distribution of wall
pressures. The corresponding symmetric shapes are obtained as a particular case. The die’s
shapes calculated are compared to shapes for pressure-independent material.
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