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Abstract: Curved glass enables designers to achieve unparalleled innovation in creating modern
and undulating shapes for building enclosures. However, the curvature of panes changes the static
and especially the dynamic behavior of the panes under loading. Studies on low-velocity impacts
on curved glass have been limited and have primarily involved numerical studies. This paper
experimentally investigates the dynamic response of cylindrically curved glass panes under a low-
velocity impact. A flat, 5 mm thick, single-pane geometry with three curvature radii and the lack
or presence of movement restraint is considered. Special attention is also paid to the variations
caused by impacting bodies involving different stiffness, mass, and geometry parameters. It was
found that flat plates have a lower capacity to dampen oscillations, resulting in longer decay times
compared to curved panes. For impactors with a lower stiffness, the glass panes experience uneven
oscillations at the moment of impact, followed by a chaotic period of transient vibrations before
reaching a stationary state. This contrasts bodies with greater deformability in which the main
dynamic behavior follows a more predictable pattern.

Keywords: curved glass; impact loading; dynamic; experiments

1. Introduction

Glass has been a popular material for building use for many decades. Its transparency
has long been a key feature that has inspired designers to find innovative ways to incorpo-
rate it into architectural designs [1]. Today, glass is being used more and more frequently
in construction, even as a load-bearing element in the form of glass roofs, facades, and
balustrades, as well as glass beams and stairs [2]. The reason behind this, in addition to
esthetic features, is the growing trend of maximizing natural sunlight in buildings, which
has a positive impact on people who live and work indoors [3].

The rise of free-form architectural structures has led to the development and advance-
ment of curved glass as a component of geometrically intricate building facades [4]. In
this way, utilizing curved glass enables designers to achieve unparalleled innovation in
creating modern and undulating shapes for building enclosures.

There is a significant difference in the structural behavior of flat and curved sheets as
demonstrated by Pini et al. [5]. The curvature particularly stiffens spatially thin sheets and
changes their static and especially dynamic behavior [6]. In the case of Insulating Glass
Units (IGUs), the curvature of the panes can result in unexpected structural responses to
static and climatic loads due to their increased spatial stiffness [7,8].

An aspect that is crucial and often underestimated in the design process is dynamic
loads. These actions usually govern the final thickness of the glass and should not be
overlooked. Even after physical contact between an impactor and a glass element has
ended, the glass may continue to react dynamically for a significant period [9]. As a result,
the glass may experience critical stresses much later than the initial impact [10]. This is
especially apparent in glass elements with intricate shapes or in slender glass panes with
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openings in which the maximum stresses may occur during the later stages of a dynamic
event [11].

Although curved elements have been extensively utilized in various applications, there
has been limited research on low-velocity impact on shells. Ramkumar and Thaker [12]
utilized Donnell’s approximations for thin shells and the Fourier series method to predict
the transient response of a curved, laminated plate under low-velocity transverse impacts
by a rigid object. Similarly, Christoforou and Swanson [13] employed the Fourier series
method to derive a closed-form solution for the problem of simply supported orthotropic
cylindrical shells. Lin and Lee [14] conducted experimental and numerical studies on the
impact damage of laminated plates and cylindrical panels, finding that shell structures
are more vulnerable to damage than plates when exposed to the same impact velocity
conditions. The study by Palazotto et al. [15] shed more light on the utilization of nonlinear
shell theory to obtain the impact response of cylindrical panels, predicting deflections and
stresses by experimental means. Kim et al.’s results contribute to our understanding of the
dynamic behavior of curved laminated composite structures [16]. Numerical computations
were carried out to show the effects of curvature and stacking sequence on the impact
response of cylindrical composite shells. It was found that the curvature significantly affects
the dynamic behavior; in particular, the contact force exerted on a cylindrical composite
shell increases with the curvature.

The topic of the dynamic response of curved shells to low-velocity impact has indeed
been addressed in the literature; however, it pertained to other materials such as steel,
composites, and various honeycomb structures [17,18]. Glass is an entirely different mate-
rial with different Young’s modulus and damping properties, which influence its specific
dynamic response. There are likely no strictly experimental research examples in the litera-
ture. It is probably caused by the fact that performing experimental studies is costly and
challenging due to the fragility and smooth surface of the glass, which significantly limits
the possibilities for the use of experimental equipment [19]. The novelty of the research
results published in this article probably pertains to some of the initial studies of such
structures made of glass. Another novelty lies in the analysis of various types of impactors
involving different stiffness, mass, and geometry parameters.

In the case of glass, studies on low-velocity impact loads on curved glass have
been limited and primarily involved performing numerical studies. Galuppi and Royer-
Carfagni [20] analytically examined the effect of curvature on the shear coupling of glass
plies through the interlayer using the traditional approach developed by Newmark. It
was found that the response of a curved structure is greatly influenced by the axial force
it undergoes, and such internal action is mainly governed, for fixed applied loads, by the
boundary conditions at the extremities.

Sukhanova et al. performed a numerical analysis of the dynamic state of shallow
shell laminated glasses [21]. Their work aimed to investigate the dependence of laminated
glass’s dynamic deformation on the glass curvature. The laminated glass model with
a dimension of 305 × 305 mm2 consisted of two glass panes with a thickness of 5 mm,
laminated together with a PVB interlayer with a thickness of 1.52 mm. The curved samples
were subjected to impact through contact with the 83 mm diameter smooth solid steel
ball (2.3 kg). The results showed that the distribution of the maximum magnitude of
the displacement vector and intensity strain could be traced with an increasing curvature
parameter. The authors concluded that the maximum magnitude of the displacement vector
decreases with increasing curvature parameters, but with a high curvature parameter, it
can increase slightly. Moreover, the intensity stress increases with increasing curvature
parameter until about 45 mm and then decreases. Sukhanova and Larin [19] studied
the numerical dynamics of laminated glass panes with different curvatures (a curvature
parameter ranging from 0 mm to 250 mm). Their work studied the influence of the curvature
parameter on the frequencies and modes of composite panes involving the propagation of
elastic waves in the linear state. It was found that, with a threshold value of the curvature



Materials 2023, 16, 7335 3 of 15

parameter of 48.88 mm, the first natural frequency increased by more than 330% and
then decreased.

In the current paper, the authors empirically investigate the dynamic response of
cylindrically curved glass panes under low-velocity impact. A 5 mm thick, single-pane
geometry with different radii of curvature and the lack or presence of movement restraint is
considered. Special attention is also paid to the variations caused by an impactor involving
different stiffness, mass, and geometry parameters.

2. Materials and Methods
2.1. Test Specimens

Plates with dimensions of 1000 × 1000 mm2 and a thickness of 5 mm, were made of
soda-lime-silica glass. The length of the arc determined the dimension of the curved sheet.
For all samples, fully tempered (toughened) glass was used. Before the heat treatment
process, the edges were ground and polished.

Four glass plates were investigated: one was flat, while the other three had varying
bending radii: 2821 mm, 1444 mm, and 1000 mm, which corresponds to an arch height of
approx. 29, 57, and 86 mm, respectively. The minimum radius (1000 mm) was determined
by production limitations for the glass thickness of 5 mm, while the others resulted from
the division of the arch height of 86 mm (for the curved sample with a 1000 mm bending
radius) into three parts.

2.2. Impacting Bodies

For the tests, impacting bodies with varying characteristics were selected, which
involved different stiffness, mass, and geometry parameters, see Figure 1. A practically
undeformable steel ball, a basketball (with a pressure equal to 0.62 bar), a rubber ball filled
with sand, and a fabric bag filled with peas (beanbag) were used. A 7 mm thick rubber
pad with dimensions of 300 × 300 mm2 was used with the steel ball to ensure safety and
that the pane would not be damaged during the tests. It should be noted that this setup
resulted in a semi-hard-body impact.
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The parameters of the impacting bodies are summarized in Table 1.
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Table 1. Parameters of impact bodies.

Impactor Mass of Impactor [g] % of Glass Weight Diameter [mm]

Steel ball 510.25 4.08 50
Basketball 483.35 3.87 220

Rubber ball filled with sand 891.24 7.13 107
Fabric bag filled with peas 506.24 4.05 104/120 1

1 Measured in a hanging position/resting on a flat surface.

2.3. Experimental Setup

The test stand is presented in Figures 2 and 3. It consists of four wooden beams on
which Teflon flat bars, glass panes, and steel racks were placed to form a framework to
attach the measuring tools that determine the height of the body drop. Figure 4 illustrates
the plate locking elements required for two types of tests: simply supported slabs and
those with restrained sliding (outside) perpendicular to the line of supports. Additional
Teflon strips were used for wedging the plates. In addition, Teflon tubes were fitted in
the corner zones of the sample to prevent the plates from moving horizontally in parallel
directions to the support lines (as shown in Figure 4). It should be noted that the horizontal
restraints only worked for the curved panes, while, for the flat panels, they were inactive.
This occurred because, during impact, the curved sample flattens; its straight edges move
to the outsides (the sample opens up), and horizontal reactions occur. However, the flat
sample behaves differently during the impact; it deflects in the opposite direction of the
impact, and its edges move closer to the center of the sample (chord shortening). Thus,
restraining the movement of the flat sample was not effective, as it did not have a horizontal
reaction on the supports during impact.
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Figure 2. Top view of the test stand scheme: (1) glass plate, (2) rubber pad (used for steel ball impact),
(3) bottom accelerometer, (4) inductive displacement sensor mounted from the bottom, (5) Teflon
tubes that block movement in the direction parallel to the edge of the supports, (6) wooden frame,
(7) Teflon strips on which the pane rests, and (8) additional Teflon strips (used in the variant with
locked horizontal sliding).
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Figure 4. Detailed support arrangement of the test stand: (a) simple support; (b) restrained movement.

The sensors were attached to the pane and then connected to two measurement
devices: Alitec™ QACQ, Alitec, Łódź, Poland [22] and QuantumX - MX840B, HBM, Poznań,
Poland [23]. The first recorded the acceleration of a selected point on the surface using an
accelerometer weighing 10.5 g, with a maximum measuring range of ±4900 m/s2 and a
frequency range of 1 to 5000 Hz ± 5%. This type of accelerometer was chosen due to its
relatively small size and low mass to minimize its influence on the dynamic behavior of thin
plates and the measured values. The latter was a Linear Variable Differential Transformer
(LVDT) to collect displacement data.

To carry out this research, two highly specialized measuring devices were necessary.
The Catman® 5.6.1 [24] software was used to collect displacement sensor data, while
VIDIA® [25] was used to gather data from a QACQ device (acceleration). The measurement
systems used in this research allowed for the independent recording of results. The QACQ
device was able to sample at a frequency of 64,000 Hz, while the HBM QuantumX device
was able to sample at 19,200 Hz. Figure 5 presents the sensors that were attached to the
pane—the displacement sensor was attached at the center point of the pane, while the
acceleration sensor was shifted 20 mm in the direction of the unsupported edge from the
center point. Both the LVDT and the accelerometer were securely placed on the bottom
surface of the glass sample. Details of the experimental campaign can be found in a master’s
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degree thesis devoted to the dynamical response of the curved glass pane subjected to
impact [26].
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2.4. Experimental Methodology

Four types of experiments were carried out using the impact bodies mentioned in
Section 2.2 to investigate the dynamic behavior of curved glass panes under low-velocity
impact. Each body was dropped from a different height, ensuring it impacted the panes
with the same kinetic energy of 2.5 J according to EAD 210005-00-0505 [27]. The calculations
were based on the potential energy equation, which indicates that a heavier body must fall
from a lower height to achieve the same energy as a lighter body. The drop heights derived
analytically for the individual bodies are presented in Table 2. However, it should be noted
that achieving this precision during experiments was practically impossible, and this could
affect the measured values and their scatter.

Table 2. Parameters of impacts.

Impactor Mass [g] Drop Height Derived Analytically [m]

Steel ball 510.25 0.499
Basketball 483.35 0.545

Rubber ball filled with sand 891.24 0.287
Fabric bag filled with peas 506.24 0.510

The glass panes were directly impacted at the center point. The objects were directly
dropped on the glass pane, except the steel ball, which had a rubber pad of dimensions
300 × 300 mm2 and thickness of 7 mm placed on it. The initial stage involved analyzing a
flat reference sheet by subjecting it to six impacts with each object. Subsequently, curved
sheets were tested in two variations. The first variation involved restraining the horizontal
movement of the sample with Teflon flat bars, while the second was a simply supported
scheme without an additional restraint (see Figure 4). Similar to the testing of the reference
samples, curved glasses were subjected to six impacts. Regular checking of the displacement
sensor was critical during the experiments as the vibrations from the impact could fall off
the sensor from the tested samples. It is worth emphasizing that each of the impactors,
except for a fabric bag filled with peas (beanbag), was caught after the first drop (after the
first impact on the glass pane) to avoid a second impact. After dropping on the sample,
only the beanbag was allowed to remain on it until the measurements were completed.
Moreover, in each attempt, the beanbag hit the sample with a different shape due to its
irregular structure. The above-mentioned facts could affect the final results due to the
increased weight of the element.



Materials 2023, 16, 7335 7 of 15

3. Results and Discussion

To comprehensively study how glass panes react to low-velocity impact, the experi-
mental results were analyzed by examining the displacement history of the glass panes,
the decay time, and the maximum accelerations over time.

3.1. Displacement Response

Figures 6–9 show the displacement histories measured in the center of the glass panes
during the tests for all impact bodies for flat and curved panes. The figures also show the
difference in the dynamic behavior under two boundary conditions: simply supported
and restrained movement. To maintain clarity, only one randomly chosen analysis result
within each series is shown. To gain a deeper understanding of the subject of this research,
the histories of the displacement for the centers of the panes have also been compiled
separately for each impactor, considering different bending radii, see Figures 10–13. Table 3
presents detailed data in the form of tables regarding the mean values with coefficients
of variation.
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movement.

Comparing Figures 6, 7a, 8a, 9a and 10a showing the results for simply supported
conditions, it can be noticed that the impactor significantly affects the dynamic behavior of
the glass panes, and several observations can be made. The results indicate that the flat
sheet has a lower capacity for energy dissipation, and its oscillation amplitudes decline
exponentially with time. This is in contrast to the curved sheets, which experienced fewer
oscillations. The curved plate (2821 mm) also exhibited a similar pattern of decreasing
vibration amplitude in time for both support conditions. However, the damping for the
curved plates (1444 mm and 1000 mm) was more erratic, with vibration amplitudes not
decreasing exponentially. The damping waveforms for the plates were very similar, but
there was a noticeable difference in the value of the first peak displacement. A common
observation in all plots was the presence of noise in the first displacement peak, which
was most likely due to the ball hitting the rubber pad first. Although a 2821 mm curved
plate had a greater maximum displacement when simply supported, its damping time
was comparable to that of a restrained pane. The ability to dissipate energy decreased as
the bending radius increased. This ability was further demonstrated when comparing a
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2821 mm slab with 1444 mm and 1000 mm panes. The results confirmed that 1444 mm
and 1000 mm panes with restricted movement exhibited a similar course of displacements
in time. The impact that resulted in a chaotic change in displacements over time was
in the case of the rubber ball filled with sand. The trend of a flat sheet having a longer
vibration damping time remained consistent. Similar to the damping course for a steel
ball, the damping courses for sheets with a bending radius of 1444 mm and 1000 mm
were comparable. For the beanbag, it was observed that the damping of the 1444 mm and
1000 mm panes were very similar. However, comparing them to the 2821 mm surface, it can
be concluded that energy dissipation occurred much faster in more-curved sheets. Similarly,
comparing panes with the same bending radii but different support methods, it was found
that panes with locked travel tended to dampen vibrations quicker. The flat plate and the
2821 mm curved pane exhibited an exponential decrease in vibration amplitude. For the
fabric bag filled with peas (beanbag), the values of minimal displacement were significantly
smaller than the maximal (positive) ones. This can be caused by an impactor that remained
on the sample after the impact. For restrained movement support, the minimal (negative)
value of displacement was greater than the positive values (except for beanbag impact).
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Fabric bag filled with 
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Max. 2.95 ± 0.06 2.21 ± 0.04 2.12 ± 0.01 2.33 ± 0.02 1.06 ± 0.02 2.07 ± 0.03 0.91 ± 0.01 
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Figure 13. Results of experiments with basketball: (a) simply supported, (b) restrained movement.

Table 3. Values of maximal and minimal displacements for impactors and four radii of the panes.

Impacting Body Flat Pane SS 1 RM 2 SS RM SS RM

Steel ball
Max. 2.82 ± 0.02 3.85 ± 0.02 2.91 ± 0.01 3.52 ± 0.02 1.87 ± 0.01 3.25 ± 0.02 1.46 ± 0.02
Min. −3.09 ± 0.03 −3.03 ± 0.02 −3.32 ± 0.03 −2.89 ± 0.02 −1.93 ± 0.02 −2.26 ± 0.04 −2.07 ± 0.02

Rubber ball filled
with sand

Max. 5.29 ± 0.05 4.93 ± 0.07 3.82 ± 0.03 4.34 ± 0.06 1.97 ± 0.02 3.74 ± 0.04 1.47 ± 0.02
Min. −4.62 ± 0.05 −4.31 ± 0.11 −4.10 ± 0.03 −3.93 ± 0.09 −2.13 ± 0.05 −3.21 ± 0.07 −1.67 ± 0.05

Fabric bag filled
with peas

Max. 2.95 ± 0.06 2.21 ± 0.04 2.12 ± 0.01 2.33 ± 0.02 1.06 ± 0.02 2.07 ± 0.03 0.91 ± 0.01
Min. −2.10 ± 0.05 −2.07 ± 0.05 −1.83 ± 0.02 −1.78 ± 0.02 −0.61 ± 0.02 −1.31 ± 0.02 −0.55 ± 0.01

Basketball
Max. 4.97 ± 0.02 5.11 ± 0.05 4.04 ± 0.03 4.81 ± 0.06 2.29 ± 0.01 4.47 ± 0.12 1.73 ± 0.01
Min. −5.25 ± 0.02 −4.60 ± 0.04 −4.63 ± 0.02 −4.31 ± 0.05 −3.16 ± 0.02 −3.54 ± 0.12 −3.11 ± 0.01

1 SS stands for simply supported. 2 RM stands for restrained movement.

3.2. Decay Time

Figures 14 and 15 show the decay times for all impact bodies for the flat and curved
panes. The figures also show the differences between two boundary conditions: simply
supported and restrained movement. Table 4 presents detailed data in the form of a table
regarding the mean values and coefficients of variation.
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Figure 14. Mean decay time of the plates as a result of impact by (a) steel ball, (b) rubber ball filled
with sand, (c) fabric bag filled with peas, (d) basketball.

Table 4. Values of maximal and minimal displacements for different impactors and four radii of
the panes.

Impacting Body Flat Pane
R = 2821 mm R = 1444 mm R = 1000 mm

SS 1 RM 2 SS RM SS RM

Steel ball 1.64 ± 0.01 0.42 ± 0.03 0.49 ± 0.02 0.35 ± 0.02 0.45 ± 0.07 0.28 ± 0.01 0.41 ± 0.01
Rubber ball filled with sand 0.88 ± 0.04 0.71 ± 0.01 0.69 ± 0.02 0.38 ± 0.01 0.67 ± 0.03 0.29 ± 0.02 0.63 ± 0.01
Fabric bag filled with peas 1.51 ± 0.01 0.50 ± 0.01 0.42 ± 0.01 0.23 ± 0.01 0.39 ± 0.03 0.15 ± 0.01 0.15 ± 0.01

Basketball 1.66 ± 0.01 0.67 ± 0.01 0.64 ± 0.01 0.42 ± 0.01 0.43 ± 0.03 0.26 ± 0.01 0.27 ± 0.01

1 SS stands for simply supported. 2 RM stands for restrained movement.

It was observed that the larger the bending radius, the lower the energy dissipation
ability and the longer the decay time. For flat panes in a simply supported arrangement,
this effect was significant. For the simply supported arrangement, it can be noted that the
values for the fabric bag filled with peas (beanbag) for smaller radii were the smallest of all,
whereas, for greater radii (2821 and flat), they were greater than for the steel ball and the
rubber ball with sand, respectively. This unexpected outcome could be explained by the
fact that, for the impact series with a fabric bag with peas, the impactor was not removed
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after the first impact. This results in increasing the oscillatory period; thus, the decay time
also increases.
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Figure 15. Mean values of decay time for four impactors in (a) simply supported, (b) restrained
movement supports.

3.3. Maximum Acceleration

The results of testing glass plates with varying bending radii, both freely supported
and locked with sliding outside the arc and struck with four different bodies are presented
in this section. Figures 16 and 17 and Table 5 provide a summary of the average maximum
acceleration values, including their standard deviation.

Table 5. Mean maximal values of the acceleration of the sample during tests.

Impacting Body Flat Pane
R = 2821 mm R = 1444 mm R = 1000 mm

SS 1 RM 2 SS RM SS RM

Steel ball 2476 ± 88 2934 ± 99 2506 ± 293 2241 ± 47 2122 ± 31 2650 ± 363 2552 ± 390
Rubber ball filled with sand 311 ± 30 162 ± 13 308 ± 47 202 ± 10 228 ± 8 226 ± 3 261 ± 22
Fabric bag filled with peas 640 ± 195 706 ± 111 940 ± 58 515 ± 33 440 ± 29 871 ± 141 1052 ± 157

Basketball 776 ± 24 321 ± 86 510 ± 122 213 ± 12 501 ± 41 449 ± 104 593 ± 75

1 SS stands for simply supported. 2 RM stands for restrained movement.

The highest values of mean acceleration of the sample were observed to be achieved by
the steel ball impact, whereas the smallest values were obtained for a rubber ball with sand.
Moreover, for most impactors, it can be seen that, for samples with a radius of 1444 mm, the
accelerations were the lowest. After analyzing the data presented, it can be inferred that the
steel ball resulted in the highest accelerations. On the other hand, the rubber ball filled with
sand caused the least acceleration. However, the results do not offer a definite conclusion
on how the bending radius of the slab and its support method affect the impulse load
acceleration. Accelerations and similar quantities are highly prone to aliasing errors [28].
This is also reflected in the values of the coefficients of variation.
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4. Conclusions and Further Work

This paper presents the experimental results of dynamic tests of curved glass panes
under low-velocity impact with simply supported and restrained boundary conditions. It
investigates the variations caused by an impactor involving different parameters of stiffness,
mass, and geometry. In this study, a 5 mm thick pane with a geometry of 1000 × 1000 mm2

was examined.
From the experiments performed, the following conclusions were drawn.
Flat plates have a lower capacity to dampen oscillations, resulting in longer decay times

compared to curved panes. Smaller bending radii in the panels lead to lower displacement
values and faster dissipation of impact energy. This aligns with the observation that curved
elements are generally more rigid than flat ones.

The size of the contact area plays a crucial role in determining the displacement.
A smaller contact area concentrates the impact energy in a smaller point, resulting in
greater displacement.

The geometry of the impactor also affects the contact area. The behavior of the glass
varies depending on the type of impact body. For impactors with lower deformability, the
glass panes experience uneven vibrations at the moment of impact, followed by a chaotic
period of transient oscillations before reaching a stationary state. This is in contrast to
bodies with greater deformability in which the main dynamic behavior shows a more
predictable pattern.

Author Contributions: Conceptualization, M.K. and K.Z.; methodology, M.K. and K.Z.; formal
analysis, M.K. and K.Z.; investigation, M.K. and K.Z.; data curation, M.K. and K.Z.; writing—original
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version of the manuscript.
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