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Abstract: The scientific community has raised increasing apprehensions over the transparency and
interpretability of machine learning models employed in various domains, particularly in the field of
materials science. The intrinsic intricacy of these models frequently results in their characterization as
“black boxes”, which poses a difficulty in emphasizing the significance of producing lucid and readily
understandable model outputs. In addition, the assessment of model performance requires careful
deliberation of several essential factors. The objective of this study is to utilize a deep learning frame-
work called TabNet to predict lead zirconate titanate (PZT) ceramics’ dielectric constant property by
employing their components and processes. By recognizing the crucial importance of predicting PZT
properties, this research seeks to enhance the comprehension of the results generated by the model
and gain insights into the association between the model and predictor variables using various input
parameters. To achieve this, we undertake a thorough analysis with Shapley additive explanations
(SHAP). In order to enhance the reliability of the prediction model, a variety of cross-validation
procedures are utilized. The study demonstrates that the TabNet model significantly outperforms tra-
ditional machine learning models in predicting ceramic characteristics of PZT components, achieving
a mean squared error (MSE) of 0.047 and a mean absolute error (MAE) of 0.042. Key contributing
factors, such as d33, tangent loss, and chemical formula, are identified using SHAP plots, highlighting
their importance in predictive analysis. Interestingly, process time is less effective in predicting the
dielectric constant. This research holds considerable potential for advancing materials discovery and
predictive systems in PZT ceramics, offering deep insights into the roles of various parameters.

Keywords: material; ceramic; TabNet; machine learning; deep learning; explainable artificial
intelligence; Shapely

1. Introduction

Within the field of materials science, the precise forecasting of attributes of ceramic
materials is regarded as a crucial undertaking with extensive ramifications [1]. The capacity
to predict these properties is essential for the progression of materials exploration and de-
sign methodologies. The use of ceramics in several fields, including electronics, healthcare,
and energy systems, is significantly influenced by advancements and breakthroughs in
this domain [2]. There is an increasing demand for the integration of artificial intelligence
(AI) applications in the simulation and exploration of innovative materials [3]. The appli-
cation of AI analysis in materials design is expected to yield innovative materials while
reducing the time and resources required for development. However, it is important to
note that the scientific community has recognized many limitations linked to the imple-
mentation of sophisticated materials discovery and artificial intelligence (AI) approaches in
this particular domain [2]. Computational simulation has several obstacles, and the studied
materials require high-performance-index properties [4]. Therefore, it is imperative to
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conduct sophisticated research on materials that combine artificial intelligence techniques
with experimental methods in order to develop a comprehensive understanding of the
relationships between input parameters and performance indices [5–7]. The field of ma-
chine learning originated from the desire to achieve artificial intelligence [8]. During the
1950s, many symbolic methods were employed in order to tackle the difficulty of machine
knowledge acquisition [9]. Subsequently, a comprehensive investigation was undertaken
to explore methodologies based on the notion of connection, such as neural networks
and perceptron [10]. Subsequently, a multitude of techniques rooted in statistical learning
theory (SLT), including support vector machines (SVMs) [11] and decision trees (DTs) [12],
were introduced. There is a significant amount of interest in academic and industry sectors
regarding various advanced machine techniques, with a special focus on deep learning
methods for analyzing large datasets. Machine learning functions as a mechanism for
automating the creation of analytical models. Machine learning enables computers to
discover hidden insights without explicit programming guidance by utilizing algorithms
that iteratively learn from data [13]. It employs previous computations to produce depend-
able and replicable judgments and outcomes. As a result, it has significantly contributed
to various fields, such as speech recognition, image recognition [14], bioinformatics [15],
information security [16], and natural language processing (NLP) [17].

The utilization of machine learning in materials science first appeared during the
1990s. During this time, several methods, such as symbolic approaches and artificial neural
networks (ANNs), were employed to predict corrosion behavior, as well as tensile and
compressive strength in ceramic-matrix composites [18–20]. Subsequently, the field of
machine learning has found extensive application in various domains of materials sci-
ence, encompassing the investigation of novel materials, as well as the prognostication
of material properties. The selection of an appropriate machine learning algorithm is a
critical step in developing a machine learning system, as it substantially influences the
accuracy of predictions and the system’s ability to generalize [21]. Probability estimate
techniques are primarily utilized in the field of novel materials discovery [2]. In addition,
the utilization of regression, clustering, and classification methods is prevalent in the pre-
diction of material properties at both macroscopic and microscopic scales. In addition,
machine learning techniques are commonly combined with other intelligent optimization
algorithms [22,23], such as Genetic Algorithms (GAs), Simulated Annealing Algorithms
(SAAs), or Particle Swarm Optimization (PSO) algorithms, particularly to optimize model
parameters. Moreover, these optimization techniques can be employed to tackle complex
optimization tasks, including the optimization of spatial configurations and material at-
tributes. . Isayev et al. (2019) [24] presented a computational tool called Property-Labelled
Materials Fragments (PLMF). This tool was specifically developed to facilitate the construc-
tion of machine learning models for the prediction of the properties of inorganic crystals.
The initial step in the PLMF method involves filtering characteristics that exhibit low vari-
ance and strong correlation, resulting in the creation of a feature vector. The classification
of a potential material as either a metal or an insulator, along with the prediction of the
band-gap energy in the case of an insulator, is accomplished through the utilization of the
gradient boosting decision tree (GBDT) technique [25]. The computational method known
as Property-Labelled Materials Fragments (PLMF), developed by Isayev et al. [24], was
built specifically to create machine learning models to predict the properties of inorganic
crystals. In the PLMF approach, the initial step involves filtering characteristics that exhibit
low variance and strong correlation to generate a feature vector. [25].

Lundberg and Lee (2019) [26] made a significant contribution to the field by employing
the Shapley additive explanations (SHAP) method to forecast the properties of ceramic
materials, with a particular focus on transparent frameworks. Xie and Grossman [27] con-
ducted a thorough analysis of the shortcomings present in existing methodologies, which
aligns with our objective of improving the accuracy of prediction models. Schmidt and
Lipson [28] conducted a comprehensive examination of the utilization of machine learning
techniques in the prediction of diverse ceramic material properties. The scholarly works
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by Ward et al. [29] provide a thorough overview, encompassing a range of topics such
as general-purpose applications, precise thermal conductivity predictions, and the wider
implications of deep learning in materials science. The study [30] utilized machine learning
techniques on quantum computations to enhance the efficiency of material property predic-
tions. The approach involves generating decision rules that rely on chemo-structural or
electronic fingerprints. By utilizing these rules, the predictions are not only rapid but also
highly precise. Consequently, this methodology expedites the process of discovering novel
materials. Another study [31] showcased the application of machine learning techniques
for predicting crucial characteristics of organic photovoltaic materials, including power
conversion efficiency and molecular orbital energies. This process expedites the preliminary
evaluation to develop efficient and economically viable solar cell designs in the context
of green energy applications. The work [32] introduced MIPHA and rMIPHA, machine
learning algorithms designed for the prediction and inverse analysis of steel characteris-
tics and microstructures. These tools provide satisfactory performance and continuous
enhancements, indicating possibilities for future microstructure-to-processing inverse anal-
ysis. The study [33] provides a comprehensive analysis of the latest advancements and
obstacles encountered in applying machine learning techniques for predicting properties
associated with energetic materials. The primary focus is placed on highlighting the con-
siderable potential of machine learning for propelling the development of these materials.
In the field of materials science, there has been significant progress in utilizing artificial
intelligence (AI) and machine learning (ML) techniques to predict material properties.
However, a major difficulty that persists is the lack of comprehensive interpretability in
these models, as highlighted by Kondo et al. in their studies [33–35]. Although explanation
techniques like LIME and SHAP have been employed in several fields, there is a noticeable
lack of comprehensive comparative analysis primarily focused on materials science [36–38].
Our critical analysis of the current state of the art in materials science reveals several key
inconsistencies in the application of machine learning, particularly in ceramic materials.
A prominent concern is the lack of transparency and interpretability in these models [39,40],
often referred to as “black boxes” due to their reliance on substantial training data [38–40].
Despite machine learning’s preference for material property discovery and prediction, there
is a crucial need for model outputs to be both highly accurate and interpretable [39–41].

1.1. Motivation

We believe that the utilization of AI or machine learning approaches in the prediction
of the dielectric constant property of PZT (lead zirconate titanate) ceramic materials holds
significant importance in materials science applications for many reasons:

• Firstly, the utilization of this technology expedites the process of materials discovery
by facilitating the swift screening and optimization of PZT compositions.

• Consequently, this approach substantially diminishes the temporal and financial
resources often expended on experimental trials.

• Furthermore, it enables engineers and researchers to customize PZT materials for par-
ticular applications, such as sensors and actuators, by precisely adjusting the dielectric
characteristics. This, in turn, promotes innovation in several technical domains.

• In general, the utilization of artificial intelligence (AI) for predicting the features of lead
zirconate titanate (PZT) has the capacity to bring about a significant transformation
in the field of materials science. This is achieved by optimizing research processes,
enhancing productivity, and facilitating the creation of customized materials that
exhibit enhanced performance characteristics.

1.2. Contribution

The primary contribution of this study is the utilization of an interpretable TabNet
deep learning approach to forecasting the dielectric constant attribute of PZT materials. This
analysis aims to evaluate each parameter’s significance, investigate the connections among
these features, and offer justifications for the model’s particular judgments. The study
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being suggested demonstrates a novel approach within the existing body of literature,
presenting a methodology that has yet to be investigated. This signifies the initial execution
of the planned concept. As a result, this research endeavor also aims to offer insights into
model results by employing diverse SHAP plots.

To summarize, this work presents significant contributions to the field of piezoelectric
material property prediction as follows:

• Development of a novel deep learning (DL) framework based on TabNet specifically
tailored to predict PZT ceramics’ properties, demonstrating its effectiveness in accurate
predictions.

• Investigation into the intricate relationships between the model and predictor vari-
ables, particularly under various input parameters, through a comprehensive analysis
of individual forecasts using Shapley outputs. This analysis not only enhances model
interpretability but also provides insights into the underlying factors affecting ceramic
property predictions.

• By developing a specialized deep learning framework based on TabNet, our research
enables highly accurate predictions of ceramic properties crucial for advanced mate-
rials engineering, providing valuable insights into the predictive relationships and
enhancing the precision of model evaluations in the field of piezoelectric material
property prediction.

• The proposed study has the potential to provide valuable assistance to materials
scientists and engineers in the optimization of production processes for piezoelectric
materials. By accurately anticipating important features, this research can contribute
to enhanced product performance and efficiency.

2. Materials and Methods

The field of machine learning has brought about substantial advancements in the areas
of classification and prediction across various domains [42–45], leading to the discovery
of novel possibilities and the acquisition of valuable knowledge. This study proposes a
comprehensive technique for predicting the dielectric constant property of PZT materi-
als. The detailed architecture of the proposed framework is shown in Figure 1, formally
presented in Algorithm 1, and focuses on the following main modules:

• This study utilized the TabNet-based deep learning (DL) [46] approach to construct
a model. The inputs for the model included ceramic components and processes,
covering host, additive, alloying, and process value. The model underwent training
and testing using data related to PZT material processes and components.

• The XAI framework was applied to interpret the results of the TabNet model predic-
tions. This approach facilitated the assessment of the individual impact of each input
component on the prediction, ensuring the transparency and comprehensibility of the
analysis.

• To bolster the robustness and reliability of the findings, a five-fold cross-validation
technique was utilized.

• To assess the effectiveness of the ML model, a performance evaluation was conducted
using metrics such as mean squared error (MSE) and mean absolute error (MAE)
for visualization of the outcomes.

2.1. Dataset

The dataset under consideration consists of around 5000 instances of PZT (lead zir-
conate titanate) materials and was graciously donated by the Materials Digitalization
Center, Korea Institute of Ceramic Engineering and Technology, Republic of Korea, for
a collaborative study with Jeju National University. The dataset comprises significant
attributes, including material composition, processing parameters, and resultant features.
The overview of the dataset values’ trends is shown in Figure 2, wherein additive, alloying,
and chemical formulas represent PZT components; process denotes the PZT process and
its completion time; d33, tangent loss, density, and dielectric constant denote properties,
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wherein the symbol “d” represents a piezoelectric charge coefficient. The term “33” denotes
a particular mode of the piezoelectric response. Among these parameters, the dielectric
constant is the target variable; the rest are input parameters. The detailed explanation of
these parameters is illustrated in Table 1.

Figure 1. Proposed architecture for explainable AI analysis for identifying influential ceramic param-
eters using deep learning model.

Figure 2. PZT ceramic material parameters, showcasing the diversity and range.
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Algorithm 1 Shapley-based explainable algorithm for PZT property prediction
Input: PZT ceramic material components - host, additive, alloying, chemical formula, process time, d33, density,

tangent loss; PZT ceramic material dielectric constant.
Output: Dielectric Constant Property, MSE, and MAE.
Procedure:

Data Preprocessing:
Initialize PreprocessedData← {} for each component do

EncodedData← Encode(Component)
NormalizedData← Normalize(EncodedData)
ImputedData← Impute(NormalizedData)
PreprocessedData← PreprocessedData∪ ImputedData

Correlation Analysis:
Initialize
CorResults← CalculateCorrelation(PreprocessedData, DielectricConstant)

Model Training and Hyperparameter Tuning:
for each fold in (1-fold, 2-fold, 3-fold, 5-fold) do

TrainData, TestData ← SplitData(PreprocessedData, fold) BestHyperp ← TuneHyperp(TabNetModel)
TrainedModel
← TrainModel(TabNetModel, TrainData, BestHyperp)

Performance Evaluation:
MSE ← CalculateMSE(PredictedDielectricConstant, TestData) MAE ←
CalculateMAE(PredictedDielectricConstant, TestData)

Explainable AI (XAI) using SHAP:
Initialize SHAPExplainer← InitializeSHAP(TabNetModel) for each instance in TestData do

SHAPValues← ExplainSHAP(SHAPExplainer, instance) EvaluateImpact(SHAPValues, instance)

Comparison Analysis:
CompareSHAPandCorrelation(SHAPValues, CorrelationResults)

2.2. Data Preprocessing

In the context of our PZT material property prediction, we utilized data preparation
approaches to improve the overall quality of our dataset. Figure 3 presents a thorough
data preparation procedure that was implemented on a dataset consisting of PZT (lead
zirconate titanate) ceramic materials. The workflow commences with the initial dataset,
which encompasses various categories, including additives (such as PMS, Nd, Ni, Nb),
alloying information, chemical formulas, and process details. Additionally, the dataset in-
cludes attributes such as d33 (representing the piezoelectric coefficient), dielectric constant,
tangent loss, and density. The initial step involved the application of label encoding to
convert categorical information into numerical values, hence enhancing the computational
process. Subsequently, the dataset underwent KNN (K-Nearest Neighbors) [47] imputation
techniques to estimate and substitute missing values, perhaps leveraging the character-
istics of analogous materials. Afterward, min–max scaling [48] was applied as a means
of normalizing numerical data inside a predetermined range, often ranging from 0 to 1.
This normalization process has significant importance for numerous machine learning
algorithms that exhibit sensitivity towards the scale of the input data. The process of
normalization is implemented to provide a uniform scale for all features, hence preventing
any individual feature from exerting excessive influence on model training as a result of its
scale. The standard formula for normalization is shown in Equation (1).

Xnormalized =
Xmax − Xmin

X− Xmin
(1)

2.3. Detailed Architecture of TabNet Architecture

In this study, we employed a DNN classification model based on TabNet [46] to predict
the “dielectric constant” value of PZT materials using the above dataset. The choice of
TabNet as the deep learning framework was motivated by its compatibility with tabular
data, which aligns well with the nature of our dataset comprising process and component
parameters of piezoelectric materials. The selection of TabNet was primarily driven by
its performance in the contemporary state of the art [46] and its notable interpretability
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attributes, including attention processes and Shapley values. The competitive predictive
performance and computational efficiency of the model further enhance its eligibility for
our research, finally establishing it as the ideal alternative for forecasting ceramic qualities
in our study. In addition, TabNet is interpretable, and it can also achieve competitive
performance, which is important when you want to make accurate predictions.

Deep neural networks (DNNs) provide a proficient method for encoding tabular data
using end-to-end training, diminishing the necessity for substantial feature engineering,
particularly when dealing with sizable datasets.

2.3.1. TabNet Decoder Architecture

The TabNet architecture comprises three components: a feature transformer, an at-
tentive transformer, and feature masking implemented at every decision step. This ar-
chitectural framework is designed to process and analyze category and quantitative data
effectively. The output of the attentive transformer in prior iterations has a significant
impact on the properties of succeeding iterations, hence playing a crucial role in the whole
process of decision making. The complete procedure for predicting the dielectric constant
property was implemented by employing Keras and PyTorch, with TensorFlow serving as
the foundational framework.

Table 1. Explanation of PZT material features.

Sr # Feature
Name Category Description

1 Additive Component
Additives incorporated into PZT (lead zirconate titanate) materials serve as
supplementary components that are introduced to alter or augment the material’s
properties, hence rendering it acceptable for particular applications.

2 Alloying Component
The process of alloying in PZT materials involves incorporating additional elements
or metals to modify and improve the material’s characteristics, such as electrical
conductivity or mechanical strength, to cater to certain applications.

3 Chemical
formula Component

The chemical formula utilized in PZT materials denotes the precise amalgamation of
components and their respective proportions, commonly denoted as Pb(ZrxTi1−x)O3.
The variable x inside the formula specifies the ratio of Zr to Ti, influencing the
material’s qualities.

4 Process
value Process

Within the context of PZT materials, the term “process” pertains to the stages
involved in their manufacturing, encompassing activities such as mixing and
sintering. Conversely, “process time” denotes the time required to complete these
stages. The duration of the processing period has a significant influence on the quality
and characteristics of the material. The process value represents the amalgamation of
both factors.

5 D33 Property

The feature denoted by “d33” refers to a piezoelectric characteristic that quantifies the
response of a material to mechanical stress exerted in a direction perpendicular to its
electric field. The term “d33” denotes the 3-3 mode, which specifically refers to
measuring a material’s piezoelectric response when subjected to stress perpendicular
to its electric field.

6 Dielectric
constant Property

The dielectric constant, commonly represented as “ε” or “k”, quantifies the ability of a
substance to store electrical energy within an electric field. PZT materials are
important in various applications, such as capacitors, sensors, and transducers.

7 Tangent
loss Property

The tangent loss, also known as “tan δ” is a measure of the amount of energy
dissipated in a dielectric material during the oscillation of an electric field. Using PZT
materials with low tangent loss is highly advantageous in various applications such as
sensors and actuators, since it enables effective energy utilization.

8 Density Property
The concept of density in PZT materials refers to measuring mass per unit volume.
Mechanical strength and performance are crucial factors in certain applications, such
as sensors and actuators, where a preference is generally given to increased density.
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Figure 3. Employed raw PZT material data overview featuring host, additive, alloying, process value,
and dielectric constant properties.

2.3.2. Feature Selection

The feature selection process was carried out using the mask module in every decision
step, where the attentive converter determines the specific function to be executed. The at-
tentive transformer facilitates the feature selection process in the present decision stage,
as illustrated in Figure 4. This is achieved through the acquisition of a mask through learn-
ing. The numerical value assigned to each element in Figure 5 represents the sequential
arrangement of tensor flow.
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Figure 4. The structural layout of the TabNet encoder module architecture.

Figure 5. The structural layout of the TabNet attentive transformer layer.

2.3.3. Feature Processing

The features that have been filtered are thereafter subjected to additional processing
through the mask in order to undergo further manipulation within the feature transformer
layer. The aforementioned properties are categorized into two distinct components: one
component functions as the output for the present phase. In contrast, the other component
serves as the input for the subsequent step. The feature transformer layer is composed of
three components: the batch normalization (BN) layer, the gated linear unit (GLU) layer,
and the fully connected (FC) layer, as depicted in Figure 6.

Figure 6. Feature transformer structure module in the TabNet architecture.
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2.3.4. Decoder Architecture

The input provided to the decoder comprises the encoded representation depicted
in Figure 7, excluding the fully connected (FC) layer. The decoder utilizes the feature
transformer layer to reconstruct the representation vector into a feature. A series of pro-
cessing steps form the reconstructed feature. Each of these core TabNet components is fully
implemented to make predictions regarding ceramics’ properties.

Figure 7. The structural layout of the TabNet decoder module architecture.

2.4. Conventional Machine Learning Algorithms

In this study, we utilized Bi-Layered Artificial Neural Network (Bi-Layered ANN) [49]
and XGBoost [50] to compare them with the TabNet model. The objective was to evaluate
various modeling methodologies and determine the most effective method for forecasting
PZT material properties. Through the examination of several algorithmic paradigms, our
objective was to determine the optimal and resilient model, hence facilitating thorough
assessment and bolstering the dependability of our predictions.

• Bi-layered ANN: Bi-Layered Artificial Neural Network (Bi-Layered ANN) is a specific
architecture of an artificial neural network consisting of two distinct layers: an input
layer and an output layer. The proposed approach utilizes a network of interconnected
nodes, where the connections among nodes are assigned weights. This network is
employed to acquire knowledge and establish mappings of intricate relationships in
the input data, with the ultimate goal of predicting the material properties of PZT.

• XGboost: In contrast, XGBoost, a type of ensemble learning algorithm, is founded
upon decision trees and utilizes a boosting methodology. The proposed methodology
involves the iterative and adaptive training process of constructing a series of decision
trees. Each subsequent decision tree is designed to rectify the errors made by its
predecessor. This sequential approach ultimately leads to the development of a robust
predictive model for PZT material properties.

2.5. SHAP Interpretable Model

In 2021, Chen [51] proposed Shapley additive explanations (SHAP), an approach
rooted in game theory that aims to assess the effectiveness of prediction systems. In order
to establish a method that is easily understandable, SHAP utilizes an additive feature
attribution strategy, which involves expressing the model’s output as a linear mixture of
input variables. The solid theoretical foundations of SHAP make this approach particularly
helpful in supervised situations:

• The alignment between the explanation technique and the primary model’s findings
is crucial for achieving local accuracy.

• The explanation method should effectively address the issue of missing features by
discarding any characteristics that are not present in the primary input.
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• The maintenance of consistency is of utmost importance in order to ensure that the
significance of a variable remains constant, even when the model’s reliance on said
variable is modified, irrespective of the relevance of other variables.

2.6. Data Split

Conventional machine learning techniques follow a systematic process involving
model creation with a designated training dataset and later using this model for predictions,
such as ceramic property prediction. However, using inadequate training and test datasets
can yield unreliable and scientifically inconclusive ML results. To improve the reliability of
model performance evaluation, it is recommended to employ a hold-out dataset along with
cross-validation (CV) techniques. CV helps mitigate dataset biases and prevents overfitting
or underfitting in ML algorithms during the optimization phase. We applied this procedure
to preprocess the dataset for training and evaluating our proposed deep learning (DL)
models. Our proposed approach underwent five iterations, with one fold being reserved for
validation in each iteration, remaining unchanged during training. As a result, the model
was trained with 80% of the PZT material data during each iteration, with the performance
evaluation being conducted on the remaining 20% of the data. Figure 8 illustrates the
utilization of the five-fold CV technique on the employed PZT material inventory dataset.

Figure 8. Five-fold cross-validation (CV) technique to improve model prediction performance.

2.7. Evaluation

To assess the performance of the prediction outcomes, we employed standard evalua-
tion measures, including MAE and MSE, which are explained below.

2.7.1. Mean Absolute Error

Mean absolute error, an alternative to MSE, captures the average absolute differences
between predicted and actual values. Significantly less sensitive to outliers than MSE,
MAE offers a more balanced evaluation, assigning equal weight to errors of all magnitudes.
Lower MAE values signify better model performance, making it a suitable metric when
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seeking robustness against extreme values. The MAE computation formula is shown in
Equation (2).

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

2.7.2. Mean Squared Error

This is the average of the squared differences between predicted and actual values. Its
sensitivity to larger errors is significant, attributing greater weight to them. Lower MSE
values suggest superior model performance, yet it is essential to recognize its vulnerability
to outliers, where substantial errors can disproportionately influence the overall score.
The formula to compute MSE is shown in Equation (3).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

3. Performance Analysis

This section presents a comprehensive investigation of the predictive modeling of the
dielectric constant property of PZT materials, offering a detailed and nuanced examina-
tion. The analysis commences by scrutinizing the concept of “Data Distribution”, offering
valuable insights into the fundamental properties of the dataset. In the following, the objec-
tive of “Correlation Analysis” is to reveal the complex interactions that exist among the
variables. The study titled “Comparative Impact Assessment of Imputation on Analysis
Outcomes” examines the consequences of employing data imputation methods on the
predictive outcomes. Following that, a comprehensive analysis titled “Comparative Eval-
uation of TabNet and Conventional Machine Learning Models” outlines the advantages
and disadvantages of advanced deep learning in comparison to traditional methodologies.
The publication titled “SHAP Analysis Outcomes” provides a comprehensive analysis of
the model predictions, offering valuable insights into the interpretation of feature contribu-
tions, thus enhancing our comprehension of the model’s performance. Table 2 provides a
comprehensive overview of the development environment and hardware specs employed
in our research. The implemented methodology utilized TabNet version 3.1, which was
implemented using Python 3.8 programming language. The essential libraries utilized in
this study encompassed TensorFlow 2.4, scikit-learn 0.24, pandas 1.2, and NumPy 1.19,
thereby establishing a resilient and effective computational framework. The system config-
uration included of an Intel Core i7-10700K central processing unit (CPU) and an NVIDIA
GeForce RTX 3080 graphics processing unit (GPU), complemented by 32 gigabytes of
DDR4 random-access memory (RAM). The integration of software and hardware played a
crucial role in effectively managing the computing requirements of the TabNet method and
guaranteeing the replicability of our research.

Table 2. Development environment and hardware specifications.

Category Description

Method and version TabNet 3.1 in Python

Programming environment Python 3.8, key libraries: TensorFlow 2.4, Keras 2.4,
PyTorch 1.7, scikit-learn 0.24, pandas 1.2, NumPy 1.19

Hardware specifications
CPU: Intel Core i7-10700K,
GPU: NVIDIA GeForce RTX 3080,
RAM: 32 GB DDR4

3.1. Data Distribution

The histograms and overlaid density plots for several variables related to material
properties are shown in Figures 9 and 10. “Dielectric constant” is shown as an outcome
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variable in a wide range of values, while “additive”, “alloying”, “chemical formula”,
“process time”, “d33”, “tangent loss”, and “density” are input parameters, each with its
own distribution. Most input parameters exhibit a clear central tendency, implying that they
are likely controlled during the experimental process, whereas “dielectric constant” shows
greater variance, suggesting it is a result of the interplay of different input parameters.
The density plots suggest that while some parameters, like “alloying” and “density”, follow
a normal distribution, others, like “process time”, might have a more complex distribution,
indicative of different underlying processes or a combination of effects.

Figure 9. Additive, alloying, chemical formula, and process time data distribution analysis.

Figure 10. d33, dielectric constant, tangent loss, and density data distribution analysis.

3.2. Correlation Analysis

A heatmap is utilized to visually represent the correlations between many input
factors and the dielectric constant, which serves as the dependent variable, as shown in
Figure 11. Every individual cell within the dataset denotes the correlation coefficient,
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which quantifies the strength and direction of the relationship between two variables.
The correlation coefficient is a numerical measure that ranges from −1 to 1, indicating the
extent to which the variables are linearly related. Values that are close to 1 or −1 imply a
robust positive or negative linear relationship, respectively, whilst values in proximity to
0 reflect the absence of a linear association. Within this particular context, it is observed
that the variable “d33” has a noteworthy positive correlation with the dielectric constant,
suggesting that it holds substantial predictive value. Additional input factors, namely,
“tangent loss”, “density”, “additive”, “alloying”, and “chemical formula”, exhibit varying
degrees of association, although none are as significant as the correlation observed with
“d33”. The variable “process time” demonstrates a modest negative correlation, suggesting
a nuanced or potentially indirect association with the dielectric constant. The presented
heatmap offers a detailed depiction of the potential impact of each input parameter on
the target variable. It is observed that the parameter “d33” exhibits the highest level of
influence within the dataset.

Figure 11. Pearson correlation analysis between input and target parameter.

3.3. Comparative Impact Assessment of Imputation on Analysis Outcomes

This section provides an overview of the anticipated results pertaining to the dielectric
constant property. In the first step, we analyze the outcomes derived from a five-fold
cross-validation procedure, taking into account two scenarios: one using imputed data
and the other without imputed data. Following this, we present a comparison analysis
that juxtaposes the performance of the TabNet architecture with that of typical machine
learning models over all validation folds.

A comparison analysis is undertaken in order to evaluate the influence of data imputa-
tion on the performance of the model. The number of missing records in all the parameters
in the PZT material dataset is shown in Table 3. Following that, we conducted two sets of
experiments: one utilizing the incomplete dataset, in which occurrences containing missing
values were omitted, and another utilizing the dataset after K-Nearest Neighbors (KNN)
imputation. By employing this methodology, we were able to quantitatively assess the
impact of imputation by conducting a comparative analysis of model performance indi-
cators, including loss, mean absolute error (MAE), and mean squared error (MSE), across
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the two datasets. The forthcoming discussion will provide a comprehensive analysis of
the results, shedding light on the impact of KNN-imputed data on the predictive accuracy
of the model. This will offer valuable insights into the effectiveness and reliability of our
data-handling approach.

Table 3. Number of missing records for each parameter.

Sr # Parameter Missing Records Sr # Parameter Missing Records

1 Additive 205 5 Density 200
2 Alloying 79 6 d33 35
3 Chemical formula 321 7 Tangent loss 24
4 Process Time 185 8 Dielectric constant 101

The prediction performance analysis of the TabNet model on two distinct datasets is
shown in Figures 12 and 13. One dataset was processed by removing missing records, while
the second dataset underwent missing-data imputation using the K-Nearest Neighbors
(KNN) method.

(a) Training and validation MAE analysis (b) Training and validation MSE analysis

Figure 12. TabNet model prediction outcomes with removed missing records.

(a) Training and validation MAE analysis (b) Training and validation MSE analysis

Figure 13. TabNet model prediction outcomes with imputed missing records.

In the initial scenario (see Figure 12), whereby the exclusion of missing records was
implemented, the model’s training and validation MAE (mean absolute error) and MSE
(mean squared error) demonstrate a degree of consistent performance after an initial phase.
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Nevertheless, in the second scenario (see Figure 13), employing KNN imputation yields a
discernible enhancement in the rate of early convergence, indicating that the imputation
technique potentially plays a role in fostering a more steadfast and precise learning process.
The graphs illustrate that the utilization of KNN imputation contributes to a decrease in
the disparity between training and validation metrics. This effect is particularly evident in
the mean squared error (MSE) graph, where the lines representing training and validation
metrics exhibit greater proximity in comparison to the dataset including removed instances.
This implies that the model that was trained using the imputed dataset has the potential to
exhibit improved generalization and hence provide more dependable predictions.

Similarly, Figure 14 and Table 4 present the values pertaining to model performance
measures, considering both the scenarios of data imputation and non-imputation. The bars
are shaded in a light-blue hue to represent the scenario without imputation, while a light-
green hue is used to depict the scenario with imputation. Slashes and backslashes are
utilized as patterns to differentiate between the two scenarios. The visual comparison
presented herein provides obvious evidence that the model trained with imputed data
exhibits superior performance. This is evident from the lower values seen for training loss,
validation loss, mean absolute error (MAE), and mean squared error (MSE). These findings
suggest that the process of data imputation has a beneficial influence on the correctness of
the model.

Figure 14. Comparison of model performance metrics with and without data imputation.

Table 4. Comparison of model performance metrics with and without imputation.

Metric Without Imputation With Imputation

Training MAE 0.03820 0.03200
Validation MAE 0.04570 0.04177
Training MSE 0.03877 0.03127
Validation MSE 0.05122 0.04744

3.4. Comparative Evaluation of TabNet and Conventional Machine Learning Models

The bar charts shown in Figure 15a,b depict a comparative assessment of the mean
squared error (MSE) and mean absolute error (MAE) for three distinct predictive models
across five validation rounds. TabNet consistently demonstrates superior performance
compared with the other models, as evidenced by its consistently lower mean squared error
(MSE) and mean absolute error (MAE) values. This suggests a greater level of prediction
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accuracy and model reliability. The XGBoost model demonstrates superior performance in
terms of error metrics compared with TabNet. However, it still outperforms the Bi-Layered
ANN model, which exhibits the greatest error rates throughout the folds. The observed
hierarchy of model performance indicates the efficacy of TabNet in effectively managing the
given dataset and its inherent intricacies. The visual distinction of each fold inside the bars
allows for the clear differentiation of the variability in and consistency of the performance
exhibited by each model across various subsets of data.

(a) MSE comparison between models for 5 folds (b) MAE comparison between models for 5 folds

Figure 15. Comparative evaluation of TabNet and conventional machine learning models.

3.5. Shapely Analysis of Dielectric Constant Property Prediction Model

This section provides an in-depth analysis of the SHAP (Shapley additive explanations)
outcomes derived from the TabNet model, focusing on the prediction of the dielectric
constant property of PZT materials. The aim is to meticulously evaluate the contribution
and significance of each parameter within the model’s predictive framework. The bar chart
shown in Figure 16 shows the mean SHAP values assigned to different features within
a predictive model. These values serve to quantify the average influence of each feature
on the model’s output. The amount of average impact is shown by the length of the bars,
where larger bars signify a higher level of influence. Within the depicted picture, the feature
denoted by “d33” exhibits the greatest mean SHAP value, indicating its predominant
positive influence on the model predictions. Additionally, the features “process time”,
“chemical formula”, “alloying”, “additive”, “density”, and “tangent loss” are presented in
descending order based on their beneficial impact.

Figure 16. Mean SHAP values illustrating the average impact of model features on output magnitude.

The beeswarm plot shown in Figure 17 effectively portrays the distribution of SHAP
values pertaining to each feature across the entirety of data points within the model. Each
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data point is represented by a dot, where the intensity of color and the dispersion of the dots
indicate the frequency and range of influence of the respective feature. The feature denoted
by “d33” exhibits a broad dispersion of positive SHAP values, indicating a substantial and
fluctuating impact on the output of the model. The feature “process time” also demonstrates
a range of values, albeit with a lower density in comparison to “d33”, suggesting a smaller
yet still significant impact on the result.

Figure 17. Beeswarm plot of SHAP values for each feature, highlighting the distribution and density
of impact on the model’s output.

Similarly, the bar chart shown in Figure 18 indicates the average impact of each fea-
ture on the model output, measured in SHAP values. Positive contributions are shown
in blue, and negative contributions, in pink. Notably, “d33” shows the largest positive
impact, whereas “tangent loss” has a marginal negative impact. The varying bar lengths
represent the relative significance of each feature, with “process time” and “chemical for-
mula” demonstrating moderate positive impacts, and “alloying”, “additive”, and “density”
showing smaller yet positive contributions.

Figure 18. Bar chart of average SHAP values of model features, with positive impacts in blue and
negative ones in pink, demonstrating the relative influence on model output.

The force plot shown in Figure 19 shows the distinct influences exerted by each feature
on a particular model prediction. The plot demonstrates the impact of each feature’s value
on the model’s output, as it transitions from the base value (representing the average
model output across the dataset, depicted on the left side of the plot) to the final prediction
(displayed on the right side). The figure displays features that positively influence the
forecast in blue, while features that negatively impact the prediction are represented in
pink. The primary factors positively influencing the forecast value are “d33”, “chemical
formula”, and “alloying”, whilst “density” and “additive” have a minor negative impact.
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Figure 19. Force plot depicting individual feature contributions.

The waterfall plot shown in Figure 20 presents the incremental impact of individual
features on a certain model prediction. The narrative commences by establishing an initial
projected model output value, which represents the average forecast throughout the dataset.
Subsequently, the influence of each feature is incrementally incorporated or deducted based
on the respective SHAP value. The variable “d33” has a notable positive impact, whereas
the variable “process time” has a negative effect. The numbers enclosed in parenthesis
depict the intermediate forecasts following the contribution of each feature, up to the
ultimate anticipated value emphasized at the conclusion of the plot.

Figure 20. Waterfall plot demonstrating the cumulative impact of features on prediction.

The waterfall plot shown in Figure 21 delineates the individual contributions of var-
ious features towards a certain prediction generated by the model. The visualization
demonstrates the progressive impact of individual features, commencing from the antic-
ipated value (E[f(X)]) and then adjusting the prediction (f(X) = 1) by incorporating the
corresponding SHAP value of each feature. The analysis reveals that the variables “d33”
and “process time” exhibit significant positive effects on the prediction, whilst the variable
“additive” has a minor negative impact.

Figure 21. Waterfall plot of feature contributions to a model prediction.
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The bar chart shown in Figure 22 shows the varying effects of different parameters
on the output of a model. Red bars extending to the left symbolize negative influences,
with the variable “process time” exhibiting the most significant adverse impact. On the
contrary, the presence of positive influences is shown by blue bars that expand towards the
right side of the graph. Among these influences, it is noteworthy that “d33” has the most
significant positive effect. The visual contrast serves to emphasize the elements that have
the highest predictive capacity in either augmenting or diminishing the output values of
the model.

Figure 22. Comparative impact of parameters on model output.

3.6. Factors Affecting the Dielectric Constant

• D33: The d33 coefficient emerges as the most influential parameter impacting the
dielectric constant, as seen by the highest positive SHAP values. The metric that quanti-
fies piezoelectric strain is strongly correlated with the dielectric behavior, highlighting
its substantial advantageous influence.

• Process time: In contrast to the findings of d33, it was discovered that process time
exerts a significant negative influence on the dielectric constant. Extended processing
durations have a notable influence, albeit adverse in this particular case, on the
dielectric characteristics, potentially leading to improved crystallinity or phase purity.

• Chemical formula: The SHAP study demonstrates that the chemical formula has a
significant positive influence. The inherent qualities of a substance, such as permittiv-
ity, are determined by the precise composition and quantity of its components, thus
highlighting the vital role they play.

• Alloying: The process of alloying demonstrates a discernible beneficial influence on the
piezoelectric properties, hence changing the dielectric constant in a significant manner.
The incorporation of supplementary elements has been recognized as a substantial
catalyst in improving the performance of a material.

• Additive: Additives, although they possess a certain degree of influence, exhibit
comparatively reduced magnitude of impact when juxtaposed with the underlying
composition of the material. The SHAP values indicate a slight negative impact,
indicating that additives may be involved in modifying microstructural properties
such as grain size.

• Density: The relationship between density and the dielectric constant is less straight-
forward compared with its influence on mechanical qualities.
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3.7. Comparison Analysis between Correlation and Shapely

After performing an examination of the results obtained from both SHAP values and
correlation analysis, it becomes apparent that there exist disparities in the significance of
parameters between these two approaches. The SHAP analysis reveals that the variables
d33, tangent loss, and chemical formula exhibit a noteworthy positive impact on the output
of the model. Conversely, the variable process time demonstrates a detrimental effect on
performance. On the other hand, the correlation analysis indicates complex and interrelated
associations among the parameters, wherein the same components do not consistently
demonstrate significant individual correlations with the target variable. This suggests that
although certain parameters are considered significant in both analyses, there are variations
in the extent and type of their significance. SHAP primarily emphasizes the predictive
influence of parameters, whereas correlation analysis primarily examines the correlations
among variables.

4. Practical Implementation and Use Cases

The proposed study can be implemented in various real-world applications as ex-
plained below:

Design and production:

• The incorporation of Computer-Aided Design (CAD) systems enables the enhance-
ment of material selection for the purpose of optimizing the design of piezoelectric
devices.

• Real-time quality control is a crucial aspect of manufacturing lines, as it involves the
continuous adjustment of process parameters to guarantee that the material qualities
align with the specified design specifications.

Materials development:

• This study aims to provide guidance for experimental design in the research and
development (R&D) of novel piezoelectric materials by utilizing predictive models to
estimate attributes based on compositional data.

Supply chain management:

• The practice of strategically stocking materials in supply chains is informed by the use
of predictive analytics to forecast market demands and assess product performance
requirements.

Sustainability:

• The objective is to identify materials that effectively balance performance attributes
while also minimizing their environmental impact, thus aligning with the principles
of eco-friendly design.

Education and compliance:

• This study aims to provide training tools specifically designed for engineers and mate-
rials scientists, with the purpose of facilitating the application of artificial intelligence
(AI) in the prediction and selection of material properties.

5. Conclusions

This paper conducted a thorough examination of the prediction capacities of different
models, including TabNet, Bi-Layered ANN, and XGBoost, in relation to the crucial ob-
jective of predicting the dielectric constant property of PZT ceramics. The findings of our
study, which involved meticulous experimentation and thorough performance analysis,
are here presented. Significantly, TabNet demonstrated superior performance compared
with both Bi-Layered Artificial Neural Network (ANN) and XGBoost, hence highlighting
its effectiveness in capturing complex patterns present in the dataset. The incorporation of
Shapley additive explanations (SHAP) into our research yielded significant insights into
the influential aspects that contribute to the prediction of the dielectric constant. The SHAP
plots demonstrate that both process values and additives exerted considerable impact,



Materials 2023, 16, 7322 22 of 24

hence highlighting their importance in achieving precise property predictions. On the
other hand, the host material exhibited relatively diminished influence on the resulting
dielectric constant. The comprehensive understanding obtained through the utilization
of SHAP analysis not only improved the interpretability of our models but also provided
valuable insights for materials scientists and researchers seeking to optimize PZT ceramics
for particular applications. The results of our research, which culminated in the exceptional
performance of TabNet and the detailed insights obtained from SHAP analysis, have signif-
icantly advanced our understanding and predictive abilities in the field of PZT ceramics.
The incorporation of sophisticated machine learning models and interpretable analysis tools
constitutes a notable advancement in the pursuit of accurate and transparent predictions
in the field of materials science. The observed results show potential for further progress
in the field of materials discovery and emphasize the crucial significance of explainable
artificial intelligence in revealing the complexities of material properties.
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