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Abstract: Laser-based directed energy deposition using metal powder (DED-LB/M) offers great
potential for a flexible production mainly defined by software. To exploit this potential, knowledge of
the process parameters required to achieve a specific track geometry is essential. Existing analytical,
numerical, and machine-learning approaches, however, are not yet able to predict the process
parameters in a satisfactory way. A trial-&-error approach is therefore usually applied to find the best
process parameters. This paper presents a novel user-centric decision-making workflow, in which
several combinations of process parameters that are most likely to yield the desired track geometry
are proposed to the user. For this purpose, a Gaussian Process Regression (GPR) model, which has
the advantage of including uncertainty quantification (UQ), was trained with experimental data
to predict the geometry of single DED tracks based on the process parameters. The inherent UQ
of the GPR together with the expert knowledge of the user can subsequently be leveraged for the
inverse question of finding the best sets of process parameters by minimizing the expected squared
deviation between target and actual track geometry. The GPR was trained and validated with a
total of 379 cross sections of single tracks and the benefit of the workflow is demonstrated by two
exemplary use cases.

Keywords: machine learning; Gaussian Process Regression; directed energy deposition; single track
geometry; uncertainty quantification; user-centric decision making; expert knowledge

1. Introduction

Manufacturing companies face the challenge of ever shorter development and prod-
uct life cycles and individualized products [1–3]. Software-defined manufacturing is an
approach that enables flexible and reconfigurable systems and is therefore able to handle
these challenges [4]. The successful implementation of software-defined manufacturing
requires production systems that are as flexible and universal as possible [5] and that
are sufficiently defined via software so that they can flexibly adapt to changing specifi-
cations [6,7]. Laser-based directed energy deposition with metal powder (DED-LB/M)
offers such a flexible process, as it can be used for coating, welding, repairing and additive
manufacturing without major change in hardware [8–10]. To weld single DED tracks, which
are the basis of all mentioned applications, powder is transported to the process zone and
the laser beam melts both powder and workpiece leading to a metallurgic bonding [11–13].
The geometry of the DED tracks and the corresponding height of the produced layers are
influenced by the process parameters such as velocity v, laser power P, powder flow rate ṁ
and the diameter dL of the laser beam on the surface of the workpiece. These parameters
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are all specified and adjusted via software. However, finding suitable process parameters
to achieve the required track geometry for each application is currently a highly manual
process relying on the individual process knowledge of the operator. Defining the geometry
and process parameters in the software layer without performing prior experiments may
yet offer a promising step towards software-defined manufacturing. Therefore, models that
enable the prediction of the process parameters that yield the desired track geometry are
essential for implementing a software-defined workflow.

Physics-based models provide valuable information about the formation of single
tracks in DED. Ahsan and Pinkerton [14], for example, propose an analytical-numerical
model to predict the geometry of single tracks, El Cheikh et al. [15] analytically describe the
geometry of single DED tracks, Gao et al. [16] established a three-dimensional numerical
model to predict the single track geometry and temperature distribution for single-tracks,
Huang et al. [17] developed a physics-based process model for the prediction of the ge-
ometry of single tracks and multi-layer deposition and Zhang et al. [18] developed a
three dimensional transient model for evolving temperature fields of thin walls. Despite
their undeniable added value, none of the aforementioned models can represent the full
complexity of the process. For instance, thermophysical properties are assumed to be
constant in Ahsan and Pinkerton [14] and Huang et al. [17], heat convection is neglected in
Huang et al. [17], the influence of molten pool fluid and the heat loss caused by vaporiza-
tion of powder is ignored in Gao et al. [16], the heat that is incorporated into the melt-pool
by the powder is neglected and assumptions about the catch efficiency of the powder
are made in Zhang et al. [18], the absorption coefficient is determined experimentally in
El Cheikh et al. [15] and some input values for the simulation such as the intensity profile
of the laser in Gao et al. [16] are prone to some uncertainty. That is why physics-based
models lose predictive accuracy in consideration of the process variability [19].

In recent years, data-driven models are becoming increasingly popular for performing
such tasks as they are less computationally expensive and do not require that assumptions
be made about the underlying physical process [20]. Hereby, deterministic models such as
artificial neural networks [21–28] or Regression trees (RT) [24,29] are for example applied
to predict the track geometry as a function of the process parameters in DED. However,
deterministic models cannot provide uncertainty quantification (UQ), which is crucial for
reliable additive manufacturing due to the various sources of uncertainties in additive
manufacturing [30–33]. Probabilistic machine learning models such as Gaussian Process
Regression (GPR) [34,35] can account for this UQ and have been applied in laser powder bed
fusion (LPBF) to predict the melt pool geometry [36–41] or in DED to predict the mechanical
properties [42], the component height [43], the geometry of single tracks [44,45], or melt
pool geometry [46,47] based on the process parameters. The inverse problem, i.e., the
determination of a suitable process to produce the desired track geometry, can principally be
solved by combining the regression model with an optimization algorithm. In this context,
GPR may be combined with a global optimization algorithm, for example, to minimize
distortion in fused filament fabrication (FFF) [48], to optimize the microstructure in electron
beam melting (EBM) [32], to reduce the surface roughness and the geometric deviation in
LPBF, or to optimize the parameters with respect to the mechanical properties in DED [49].
Mondal et al. [50] trained a GPR model with simulation data for predicting the melt
pool geometry as a function of laser power P and velocity v, and performed a Bayesian
optimization to determine the optimal parameter combination to keep the geometry of the
melt pool at a suitable value.

However, with an increasing number of considered process parameters, different sets
of parameters may lead to the same processing results. Therefore, we include the prediction
uncertainty of each combination of process parameters as well as expert knowledge when
selecting the best parameters to manufacture a desired track geometry. Thus, this paper
presents a novel workflow to select multiple parameter combinations that are most likely to
yield the desired track geometry in DED. This is achieved by combining a GPR-model with
an optimization algorithm that identifies multiple suitable sets of process parameters based
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both on the deviation from the targeted geometry of the single tracks as well as on the
uncertainty of the prediction. The consideration of several possible parameter combinations
allows the user to select the process parameters that best suit the application in question and
make an informed decision on how to manufacture the component. Section 2 introduces
the workflow on a general level, highlighting the interaction between the building blocks.
Section 3.1 describes how the experimental data are obtained, while Section 3.2 introduces
the GPR model. The data are subsequently used in Section 4 to validate the workflow, give
exemplary applications, and discuss quantitative results apparent in the given DED process.

2. Prediction Workflow

As schematically shown in Figure 1, the workflow to determine suitable processing
parameters consists of three main elements:

• Regression models
• Identification of optimal process parameters
• Application

Figure 1. Workflow for finding optimal process parameters.

The manufacturing of the component takes place in the application layer that is
displayed at the bottom of Figure 1. Based on the requirements from the application, the
user defines the targeted geometry of a single track and the constraints on the process
parameters. The targeted track geometry results from the geometry of the component
(usually a CAD-part), and the constraints on the process parameters are mostly given
by the limits of the given machine. In return, the application layer requires information
about the optimal process parameters that lead to the targeted track geometry in order
to be able to perform the toolpath planning. The toolpaths and process parameters are
stored in a numerical control (NC) code that is readable by the machine and that enables
manufacturing of the component. The probabilistic regression models that are displayed
at the top of Figure 1 are essential to identify the required process parameters. These
models predict the geometry of single tracks based on the process parameters and offer
an uncertainty quantification (UQ) of the prediction. Parts of the available data, which are
described in Section 3.1, were used to train the models and the rest of the data were used to
test the performance of the models.

To answer the inverse question of finding optimal process parameters for a given
targeted geometry, we implemented the optimization workflow that is displayed in the
middle of Figure 1. Finding the optimal set of process parameters to achieve a specific track
geometry may be a trade-off between accuracy and uncertainty. This choice depends on
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whether one prefers a precise prediction with tight tolerances but a high uncertainty or a
less accurate prediction that is fulfilled with a higher probability. While both accuracy and
uncertainty could be kept as separate optimization goals, we incorporate them into a single
measure of optimality. The expected squared deviation d2

exp between the predicted values
y(x) of a geometric property (such as height, width or melting depth) of the track obtained
with a set x of processing parameters (e.g. laser power, beam diameter, velocity and powder
flow rate) and the targeted value z of each geometric property can be expressed by

d2
exp(x) = E

[
||y(x)− z||2

]
= Var[y(x)] + ||ȳ(x)− z||2. (1)

Using the approach of GPR, the predicted values y(x) are subject to a Gaussian prob-
ability distribution with the expected value ȳ(x). The value of d2

exp(x) is then minimized
in order to identify the optimal process parameters. As we want to identify multiple
sets of process parameters at different parameter ranges, we use Newton optimization in
combination with a multistart strategy. The step size ∆x of the Newton algorithm is limited
to ensure that the algorithm converges to the closest local minimum and the multistart
strategy augments the probability that all relevant local minima are identified during the
optimization. The process parameters x are varied within the constraints on the search
space as given by the user (depending on the used machine) with a step size that is varied
based on the hyperparameters of the GPR models. The process parameters corresponding
to the identified local minima are subsequently delivered to the application layer, which
allows the parameters that best suit the application to be selected.

The principle of the identification of the most promising processing parameters and
the involved quantities are illustrated by Figure 2.

Figure 2. Fictional illustration of the approach. (Top): expected values ȳ(x) (blue), variation of y(x)
as given by the 95% confidence interval (black dotted) and targeted value z (green dashed). (Bottom):
expected squared deviation d2

exp(x) in relation to the targeted value z.

The stars in the upper diagram represent the training data, which are obtained from
experiments. The GPR then yields the expected values ȳ(x) (blue, top graph) and the
variation of y(x), as represented by the 95% confidence interval (black dotted). The green
dashed line represents the targeted value z. The red dashed lines mark the local minima
of the expected squared deviation d2

exp (x) defining the most promising sets of processing
parameters xa,b. At the local minimum a, the expected value ȳ(xa) equals the targeted value
z, but the variance of y(xa) is larger than at the local minimum b, where the expected value
ȳ(xb), however, does not correspond exactly to the desired value z. Hence, although the
certainty of the predicted value ȳ(xb) is higher at the local minimum b, the application of
the corresponding processing parameters xb is expected to result in a value y(xb) slightly
larger than the target z. Conversely, this means that the expected value ȳ(x) at the local
minimum a is more accurate but has a higher uncertainty compared to the one obtained
at the minimum b. Both minima are, however, of similar quality with respect to the
expected squared deviation d2

exp(x). Depending on whether uncertainty or accuracy is
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more important and depending on which of the processing parameters better suit the
application in question, the user may either select local minimum a or b. The choice of
a local optimization with multistart instead of a global optimization such as Bayesian
optimization or Upper Confidence Bound (UCB) enables the identification of multiple sets
of suitable process parameters at different parameter ranges and allows the user to select
the set of parameters that best suits the application in question.

3. Materials and Methods

To apply the described workflow, the regression models were trained with and tested
on experimental results. Section 3.1 describes the experimental set-up and Section 3.2
describes the details of the regression models and how they were trained.

3.1. Experimental Data

To collect the necessary data for the training of the regression models for the different
geometrical features of the DED welding tracks, a total of 379 single tracks were produced
on a 10 mm thick plate of AlMg3 using different process parameters. Some of the tracks
are exemplarily shown on the left in Figure 3. The DED-LB/M was performed on the
five-axis laser machine TruLaser Cell 3000 using the 4 kW disk laser TruDisk4001 with a
wavelength of 1030 nm and a beam parameter product of 4 mm×mrad, a laser light cable
with a diameter of 100 µm and the optics focusLine Professional all from TRUMPF Laser-
und Systemtechnik GmbH, Ditzingen, Germany. The AlSi10Mg powder from Carpenter
Additive (CA), Widnes, UK, with particle diameters ranging from 45 to 107 µm, was fed
using a vibratory feeder from Medicoat AG, Mägenwil, Switzerland and a helium gas flow
with a flow rate of 10 L/ min. The multijet nozzle from TRUMPF Laser- und Systemtechnik
GmbH, with seven jets arranged coaxially around the laser beam was used as a powder
nozzle and Argon with a flow rate of 12 L/ min used to shield the process zone from the
atmosphere. The powder was melted by a defocused laser beam with a focus diameter of
200 µm and a variable diameter dL on the surface of the substrat. Cross-sections of the DED
tracks were prepared by cutting, grinding, polishing and etching with a water solution
containing 10% sodium hydroxide.

The depth dw, the width w and the height h of the tracks were measured from the
resulting cross-sections, as displayed on the right in Figure 3, by means of an optical
microscope. The laser power P, the mass supply rate ṁ of the powder, the diameter dL
of the laser beam on the surface, and the velocity v have a significant influence on the
geometry of the resulting track and were therefore varied over a wide range and in variable
steps: P between 1 and 4 kW in 16 steps, ṁ between 0 and 42 g/min in 21 steps, dL between
1 and 2 mm in 4 steps and v between 0.75 and 20 m/min in 14 steps. Each combination of
parameters was repeated at least three times, resulting in a total of 379 single tracks.

Figure 3. Picture of multiple separate DED tracks (left) and microscopical image of a cross section of
a single DED track (right) .

3.2. Training of Regression Models

Since the identification of optimal process parameters described in Section 2 is based
on the probability of producing the targeted track geometry, a prediction model with
built-in uncertainty quantification is required. The specific mathematical tool employed
in this work is Gaussian Process Regression (GPR), which is capable of quantifying the
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uncertainty. We trained one regression model to predict the width w, one for predicting
the height h and one for the prediction of the depth dw of a single track. The models use
the laser power P, the mass supply rate ṁ, the velocity v and the beam diameter dL as
the relevant processing parameters. A fraction of 80% of the acquired experimental data
was randomly selected to train the models using k-fold cross-validation with five folds.
The use of k-fold cross-validation enables a more robust model, which is less sensitive to
the sampling of the data and the specification of the prior [51]. The remaining 20% of the
data were used to test the performance of the data-driven models. All the repetitions of
the experiments with the same set of processing parameters were kept in the same control
group to make sure that the test data set only contained parameter combinations that the
models were not trained on before. We integrated linear basis functions into our models
because we assume that a linear trend of the mean-function can be continued to some extent
when extrapolated at the boundaries of our experimental domain. For this, we used the
same approach as described in ([34], Section 2.7) where the dependant variable y(x) of the
regression model, which is the predicted track geometry in our application, is modelled by

y(x) = f (x) + q(x)T β. (2)

Here, q(x) contains the linear basis functions and β the corresponding coefficients, which
are determined from the data. The function f (x) denotes the prediction of a Gaussian
process at the parameter vector x with a zero mean-function and a squared exponential
kernel k, which is defined by

k(xi, xj) = σ2
f exp

[
−1

2

d

∑
m=1

(xj,m − xi,m)
2

(lm)2

]
(3)

for two input vectors xi and xj and their elements xi,m and xj,m in the dimension m. For our
application the input vector x contains the processing parameters and has d = 4 dimensions
(P, ṁ, dL, v). The hyperparameters of the kernel k, i.e., the length scales lm and the signal
variance σ2

f are determined from the data. Homoscedastic noise is assumed. Therefore,
the corresponding covariance matrix C is defined by

Cij = k(xi, xj) + σ2δij, (4)

where δij is the Kronecker delta and σ2 is the noise variance. The predicted mean f̄ (x) and
the variance Var[ f (x)] of the prediction are calculated by

f̄ (x) = kTC−1t (5)

Var[ f (x)] = c− kTC−1k, (6)

where the scalar c = k(x, x), the vector k has the elements k(xn, x) for n = 1, . . . , N and
the vector t contains the measured target values at the input points xn. N represents the
number of data points used to train the models. The data are normalized in the input space
and in the output space before training the models.

4. Results and Discussion

To show that the workflow described above can be successfully applied to predict
the processing parameters required to produce the desired geometry of single tracks in
DED-LB/M, we applied our workflow and regression models to the previously described
test data. The predictive quality of the models as a function of the process parameters
is discussed in Section 4.1. Section 4.2 is then devoted to the inverse problem of finding
optimal process parameters. The workflow is found to yield plausible results and we show
how the user can interact and profit in realistic scenarios.
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4.1. Analysis of Regression Models

For each quantity of interest, i.e., track-width, track-height, and track-depth, a separate
Gaussian process was trained with the input parameters laser power P, mass supply rate ṁ
of the powder, laser beam diameter dL and velocity v. The resulting length scales lm,
which are determined via automated relevance determination (ARD), show the influence
of the input parameters on the respective output quantity, whereby a small length scale
indicates possible changes in output even for small changes in input. The coefficients β
of the linear model in Equation (7) provide information about the offset and the linear
trends regarding the influence of the input parameters on the respective output quantity.
The mean-absolute-error (MAE) between the mean value ȳ(x) of the prediction and the
corresponding value ytest(x) of the test data set as well as the coefficient of determination
R2, which is calculated by

R2 = 1− ∑(ytest(x)− ȳ(x))2

∑(ytest(x)− ȳtest)2 , (7)

were used as a measure to evaluate the accuracy. Hereby, ȳtest is the average value of the test
data set. The resulting numerical values are summarized in Table 1. The expected prediction
errors that arise for track-width w, track-height h and track-depth dw are tolerable for most
applications. The two values R2 and MAE only consider the mean prediction of the models
and therefore enable comparison to other deterministic models. However, in the following,
we present capabilities that are exclusive to the probabilistic paradigm.

Table 1. Optimal hyperparameters and accuracy of the GPR models.

σ
lm per Predictor
(P/ṁ/dL/v)

β: Coefficients of Linear
Basis (1/P/ṁ/dL/v) R2 MAE

w 0.08 1.05/0.03/1.05/0.15 [2.06/0.31/0.08/0.09/−0.65] 0.89 0.11 mm
h 0.04 1.62/0.25/1.95/0.05 [0.53/0.03/0.45/−0.01/−0.48] 0.88 0.04 mm
dw 0.02 1.17/0.04/1.90/0.17 [0.52/0.13/−0.05/0.04/−0.13] 0.91 0.04 mm

For the discussion of the influence of the process parameters on the processing result,
Figure 4 exemplarily shows the predicted dependence of the width (in red), the height
(in blue), and the depth (in green) of the tracks on the laser power. All other parameters
are kept constant: v = 2 m/min, dL = 2 mm and ṁ = 2 g/min. The pale-colored areas
represent the 95 % confidence intervals around the predicted values (solid lines).
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Figure 4. Dependence of the predicted track geometry on the applied laser power for v = 2 m/min,
dL = 2 mm and ṁ = 2 g/min
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The track width and track depth both increase steadily with increasing laser power.
This can be explained by an increase of the volume of the melt pool. The height of the track
does not change significantly. The fact that the product of the track width and the height
increases despite the constant powder flow rate indicates that increasing the laser power
yields an increased powder efficiency. The laser power that was applied in the training data
mostly ranged between 2000 W and 3400 W. This is why the uncertainties of the predictions
are lower in this range of laser power and increase significantly when the predictions are
made for laser powers above or below this range.

4.2. Identification of Optimal Process Parameters
4.2.1. Multiple Local Minima

The proposed optimization approach is able to find multiple sets of optimal process
parameters corresponding to the local minima of the expected squared deviation. This
allows the user to select the parameter combination that best fits a given application.

To illustrate how our optimization routine identifies these local minima, we exemplar-
ily defined a targeted geometry with w = 2.5 mm, h = 0.45 mm and dw = 0.6 mm. In the
optimization procedure the process parameters were varied with equidistant steps that
correspond to one non-standardized length scale of the GPR process, i.e., ∆P = 936 W,
∆dL = 0.33 mm and ∆v = 0.35 m/min. The mass supply rate ṁ of the powder was adapted
in a way that the mass per distance remains constant at 2.1 g/m. These initial parameters
yield the different local optima listed in Table 2. They are sorted from the lowest to highest
expected squared deviation and are also provided to the user in this way.

Table 2. Identified process parameters when searching for local minima of the expected
squared deviation.

No. P [W] ṁ [g/min] dL [mm] v [m/min] d2
exp [mm2]

a 2836 3.0 1.3 1.5 0.014
b 2815 3.3 1.8 2.0 0.027
c 2669 1.6 1.6 1.0 0.060
d 3399 3.1 1.0 2.3 0.064
e 2173 2.1 2.3 1.0 0.071
f 2173 2.0 1.5 1.0 0.076
g 3054 7.3 2.1 4.0 0.082
h 2965 7.3 2.3 3.9 0.083

The corresponding predicted track geometry is shown in Figure 5 together with the
95% confidence interval. The black dashed lines represent the targeted values. It is evident
that there is more than one set of process parameters leading to the targeted geometry and
that the combination of the multistart with our optimization algorithm is able to identify
these suitable sets of process parameters. A comparison with a gridsearch optimization
revealed that our optimization identifies all interesting local minima.

By proposing several sets of suitable processing parameters, we provide the user
with sufficient information to asses which process parameters best suit a given application.
For our exemplary target geometry, local optimum a, cf. Figure 5, exhibits the smallest
expected squared deviation and the expected depth and height are significantly closer
to the targeted value as compared to local optimum b. When the height and the depth
of a track are critical for the application, the user will most likely opt for the parameter
set a. If multiple local minima are of similar quality the user may also consider further
criteria for the selection of process parameters based on his or her expert knowledge: higher
velocities may be preferred for economic reasons or lower laser power may be preferred
when dealing with heat sensitive parts.
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Figure 5. Predicted track geometry for the different local minima listed in Table 2

4.2.2. Optimal Process Parameters at Different Velocities 293

In many industrial applications, certain cycle times and thus velocities have to be 294

achieved in order to be economical [52]. In the following, we therefore demonstrate how 295

our workflow can be used to find the optimal processing parameters at a given velocity 296

using an exemplary targeted track geometry of w =2 mm, h =0.45 mm and dw =0.5 mm 297

and perform the optimization for ten different fixed velocities from 2 to 20 m/min. The 298
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Figure 5. Predicted track geometry for the different local minima listed in Table 2.

4.2.2. Optimal Process Parameters at Different Velocities

In many industrial applications, certain cycle times and thus velocities have to be
achieved in order to be economical [52]. In the following, we therefore demonstrate how our
workflow can be used to find the optimal processing parameters at a given velocity using an
exemplary targeted track geometry of w = 2 mm, h = 0.45 mm and dw = 0.5 mm and perform
the optimization for ten different fixed velocities from 2 to 20 m/min. The parameters that
are most likely to yield the targeted geometry at the given velocity are listed in Table 3.

Table 3. Optimal process parameters with lowest expected squared deviation at different velocities.

v [m/min] P [W] ṁ [g/min] dL [mm] d2
exp [mm2]

2 1856 3.2 2.0 0.018
4 2188 8.4 2.0 0.014
6 2684 12.6 2.0 0.028
8 3329 16.8 1.1 0.020
10 3867 21.0 2.0 0.025
12 3647 25.1 2.8 0.087
14 4000 29.2 2.7 0.095
16 4000 33.6 3.0 0.130
18 4000 37.7 3.0 0.251
20 4000 42 3.0 0.457

The mean of the predicted geometries (coloured circles connected by dashed lines),
including their 95% confidence interval (pale-couloured areas) for these parameters, are
displayed in Figure 6. The targeted geometry is indicated by the black dashed lines.
The predictions match the target reasonably well with an expected squared deviation of
less than 0.03 mm2 up to a velocitiy of 10 m/min. For higher velocities, the prediction
quality deteriorates both in closeness to the targeted value and certainty for all three
geometrical features, cf. Figure 6. The increased uncertainty observed for all three geometric
characteristics at feedrates above 10 m/min is due to the low number of training data in
the range of these identified parameter combinations. The mean of the predicted track
width deviates downwards from the targeted value for feedrates above 12 m/min and the
mean of the predicted track depth for velocities above 16 m/min. These observations are
consistent with those of [53], where it was observed that a maximum laser power of 4 kW is
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insufficient to weld tracks with a width of 2 mm up to velocities of 20 m/min and that both
the maximum track width and track depth decrease for velocities above 10 m/min due to
the limited laser power. The information about the processing parameters, the uncertainty
of the prediction, and the deviation from the targeted geometry enables a user to make an
informed decision regarding the economic stipulations and quality requirements.
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Figure 6. Predicted track geometry for the optimal process parameters listed in Table 3.

5. Conclusions

In conclusion, it was shown that the combination of an optimization workflow and
expert knowledge with probabilistic regression models such as GPR enables us to predict
the process parameters needed to achieve a specific track geometry for laser-based directed
energy deposition using metal powder (DED-LB/M). The validation with a large number
of individual tracks revealed a good agreement between the test data and the predictions
of the regression models. The usefulness and applicability of the proposed workflow
for a user to make an informed decision on optimal process parameters as well as for
receiving optimal process parameters at different velocities has been demonstrated with
two exemplary targeted geometries of a single track. The proposed workflow thus provides
a promising step towards software-defined manufacturing.

Even though the potential of that workflow has been shown, further investigation
may be undertaken. The models are so far only applied to isolated welding tracks on a
plane sample. A generalization of the models towards more complex geometric scenarios
may enable a much wider range of uses. This incorporates many new challenges, such
as the detection and the addition of other relevant parameters and effects such as heat
accumulation. The latter challenge may be tackled by the integration of uncertainty-aware
temperature predictions, as proposed by Sideris et al. [20]. Furthermore, to get closer to an
efficient industrial application, the generation of the data for this data-based model can be
automated to make it less time-consuming. The combination of automated and optimized
selection of parameters with automated data acquisition allows for quick training of the
model and a rapid adaption of the workflow to new circumstances such as the use of
different alloys. Bayesian optimization or upper-confidence bound (UCB), both of which
merge the mean and variance of a prediction, may be used in order to design a data-efficient
adaptive experimental design. One possibility to adapt the model to new environments is
to train only the deviation from the old model instead of training the model from scratch.
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FFF Fused filament fabrication
EBM Electron beam melting
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ARD Automatic relevance determination
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P Laser power
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dw Depth of of a single DED track
w Depth of a single DED track
h Height of a single DED track
R2 Coefficient of determination
q(x) Vector with linear basis functions
β Coefficients of linear basis
k Kernel of GPR model
lm Length scale
σ2

f Signal variance
δij Kronecker delta
ytest Measured values in the test data set
ȳtest Mean value of ytest



Materials 2023, 16, 7308 12 of 13

References
1. Schuh, G.; Rudolf, S.; Riesener, M. Design for industrie 4.0. In Proceedings of the 14th International Design Conference, Cavtat,

Dubrovnik, 16–19 May 2016.
2. Maalouf, E.; Daaboul, J.; Le Duigou, J.; Hussein, B. Production management for mass customization and smart cellular manufacturing

system: NSGAII and SMPSO for factory-level planning. Int. J. Adv. Manuf. Technol. 2022, 120, 6833–6854. [CrossRef]
3. Mourtzis, D.; Doukas, M.; Vandera, C. Smart mobile apps for supporting product design and decision-making in the era of mass

customisation. Int. J. Comput. Integr. Manuf. 2017, 30, 690–707. [CrossRef]
4. Thames, L.; Schaefer, D. Software-defined Cloud Manufacturing for Industry 4.0. Procedia CIRP 2016, 52, 12–17. [CrossRef]
5. Xu, L.; Chen, L.; Gao, Z.; Moya, H.; Shi, W. Reshaping the Landscape of the Future: Software-Defined Manufacturing. Computer

2021, 54, 27–36. [CrossRef]
6. Lechler, A.; Riedel, O.; Coupek, D. Virtual representation of physical objects for software defined manufacturing. In Proceedings

of the 24th International Conference on Production Research (ICPR 2017), Posnan, Poland, 30 July–3August 2017. [CrossRef]
7. Barwasser, A.; Lentes, J.; Riedel, O.; Zimmermann, N.; Dangelmaier, M.; Zhang, J. Method for the development of Software-

Defined Manufacturing equipment. Int. J. Prod. Res. 2023, 61, 6467–6484. [CrossRef]
8. Poprawe, R. Lasertechnik für die Fertigung; VDI-Buch, Springer: Berlin/Heidelberg, Germany, 2005.
9. Cavaliere, P. Laser Cladding of Metals; Springer International Publishing: Cham, Switzerland, 2021. [CrossRef]
10. Mahamood, R.M. Laser Metal Deposition Process of Metals, Alloys, and Composite Materials; Springer International Publishing: Cham,

Switzerland, 2018. [CrossRef]
11. Toyserkani, E.; Khajepour, A.; Corbin, S. Laser Cladding; CRC Press: Boca Raton, FL, USA, 2005.
12. Moeller, M. Prozessmanagement fuer das Laser-Pulver-Auftragschweissen; Springer: Berlin/Heidelberg, Germany, 2021. [CrossRef]
13. Huegel, H.; Graf, T. (Eds.) Additive Verfahren. In Materialbearbeitung mit Laser; Springer Fachmedien Wiesbaden: Wiesbaden,

Germany, 2022; pp. 415–454.
14. Ahsan, M.N.; Pinkerton, A.J. An analytical–numerical model of laser direct metal deposition track and microstructure formation.

Model. Simul. Mater. Sci. Eng. 2011, 19, 055003. [CrossRef]
15. El Cheikh, H.; Courant, B.; Hascoët, J.Y.; Guillén, R. Prediction and analytical description of the single laser track geometry in

direct laser fabrication from process parameters and energy balance reasoning. J. Mater. Process. Technol. 2012, 212, 1832–1839.
[CrossRef]

16. Gao, J.; Wu, C.; Hao, Y.; Xu, X.; Guo, L. Numerical simulation and experimental investigation on three-dimensional modelling of
single-track geometry and temperature evolution by laser cladding. Opt. Laser Technol. 2020, 129, 106287. [CrossRef]

17. Huang, Y.; Khamesee, M.B.; Toyserkani, E. A new physics-based model for laser directed energy deposition (powder-fed additive
manufacturing): From single-track to multi-track and multi-layer. Opt. Laser Technol. 2019, 109, 584–599. [CrossRef]

18. Zhang, D.; Feng, Z.; Wang, C.; Liu, Z.; Dong, D.; Zhou, Y.; Wu, R. Modeling of Temperature Field Evolution During Multilayered
Direct Laser Metal Deposition. J. Therm. Spray Technol. 2017, 26, 831–845. [CrossRef]

19. Chadha, U.; Selvaraj, S.K.; Lamsal, A.S.; Maddini, Y.; Ravinuthala, A.K.; Choudhary, B.; Mishra, A.; Padala, D.; M, S.; Lahoti, V.; et al.
Directed Energy Deposition via Artificial Intelligence-Enabled Approaches. Complexity 2022, 2022, 2767371. [CrossRef]

20. Sideris, I.; Crivelli, F.; Bambach, M. GPyro: Uncertainty-aware temperature predictions for additive manufacturing. J. Intell.
Manuf. 2023, 34, 243–259. [CrossRef]

21. Caiazzo, F.; Caggiano, A. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
Materials 2018, 11, 444. [CrossRef] [PubMed]

22. Pant, P.; Chatterjee, D. Prediction of clad characteristics using ANN and combined PSO-ANN algorithms in laser metal deposition
process. Surfaces Interfaces 2020, 21, 100699. [CrossRef]

23. Feenstra, D.R.; Molotnikov, A.; Birbilis, N. Utilisation of artificial neural networks to rationalise processing windows in directed
energy deposition applications. Mater. Des. 2021, 198, 109342. [CrossRef]

24. Gao, J.; Wang, C.; Hao, Y.; Liang, X.; Zhao, K. Prediction of TC11 single-track geometry in laser metal deposition based on back
propagation neural network and random forest. J. Mech. Sci. Technol. 2022, 36, 1417–1425. [CrossRef]

25. Bhardwaj, T.; Shukla, M. Laser Additive Manufacturing- Direct Energy Deposition of Ti-15Mo Biomedical Alloy: Artificial Neural
Network Based Modeling of Track Dilution. Lasers Manuf. Mater. Process. 2020, 7, 245–258. [CrossRef]

26. Liu, H.; Qin, X.; Huang, S.; Jin, L.; Wang, Y.; Lei, K. Geometry Characteristics Prediction of Single Track Cladding Deposited by High
Power Diode Laser Based on Genetic Algorithm and Neural Network. Int. J. Precis. Eng. Manuf. 2018, 19, 1061–1070. [CrossRef]

27. Saqib, S.; Urbanic, R.J.; Aggarwal, K. Analysis of Laser Cladding Bead Morphology for Developing Additive Manufacturing
Travel Paths. Procedia CIRP 2014, 17, 824–829. [CrossRef]

28. Narayana, P.L.; Kim, J.H.; Lee, J.; Choi, S.W.; Lee, S.; Park, C.H.; Yeom, J.T.; Reddy, N.G.S.; Hong, J.K. Optimization of process
parameters for direct energy deposited Ti-6Al-4V alloy using neural networks. Int. J. Adv. Manuf. Technol. 2021, 114, 3269–3283.
[CrossRef]

29. Lee, S.; Peng, J.; Shin, D.; Choi, Y.S. Data analytics approach for melt-pool geometries in metal additive manufacturing. Sci.
Technol. Adv. Mater. 2019, 20, 972–978. [CrossRef] [PubMed]

30. Pham, T.Q.D.; Hoang, T.V.; van Tran, X.; Fetni, S.; Duchêne, L.; Tran, H.S.; Habraken, A.M. Uncertainty Quantification in the
Directed Energy Deposition Process Using Deep Learning-Based Probabilistic Approach. Key Eng. Mater. 2022, 926, 323–330.
[CrossRef]

http://doi.org/10.1007/s00170-022-09188-y
http://dx.doi.org/10.1080/0951192X.2016.1187295
http://dx.doi.org/10.1016/j.procir.2016.07.041
http://dx.doi.org/10.1109/MC.2021.3074851
http://dx.doi.org/10.12783/dtetr/icpr2017/17652
http://dx.doi.org/10.1080/00207543.2022.2129501
http://dx.doi.org/10.1007/978-3-030-53195-9
http://dx.doi.org/10.1007/978-3-319-64985-6
http://dx.doi.org/10.1007/978-3-662-62225-4
http://dx.doi.org/10.1088/0965-0393/19/5/055003
http://dx.doi.org/10.1016/j.jmatprotec.2012.03.016
http://dx.doi.org/10.1016/j.optlastec.2020.106287
http://dx.doi.org/10.1016/j.optlastec.2018.08.015
http://dx.doi.org/10.1007/s11666-017-0554-5
http://dx.doi.org/10.1155/2022/2767371
http://dx.doi.org/10.1007/s10845-022-02019-7
http://dx.doi.org/10.3390/ma11030444
http://www.ncbi.nlm.nih.gov/pubmed/29562682
http://dx.doi.org/10.1016/j.surfin.2020.100699
http://dx.doi.org/10.1016/j.matdes.2020.109342
http://dx.doi.org/10.1007/s12206-022-0229-0
http://dx.doi.org/10.1007/s40516-020-00117-z
http://dx.doi.org/10.1007/s12541-018-0126-8
http://dx.doi.org/10.1016/j.procir.2014.01.098
http://dx.doi.org/10.1007/s00170-021-07115-1
http://dx.doi.org/10.1080/14686996.2019.1671140
http://www.ncbi.nlm.nih.gov/pubmed/31692926
http://dx.doi.org/10.4028/p-j9chvq


Materials 2023, 16, 7308 13 of 13

31. Hu, Z.; Mahadevan, S. Uncertainty quantification and management in additive manufacturing: Current status, needs, and
opportunities. Int. J. Adv. Manuf. Technol. 2017, 93, 2855–2874. [CrossRef]

32. Wang, Z.; Liu, P.; Ji, Y.; Mahadevan, S.; Horstemeyer, M.F.; Hu, Z.; Chen, L.; Chen, L.Q. Uncertainty Quantification in Metallic
Additive Manufacturing through Physics-Informed Data-Driven Modeling. JOM 2019, 71, 2625–2634. [CrossRef]

33. Gholaminezhad, I.; Assimi, H.; Jamali, A.; Vajari, D.A. Uncertainty quantification and robust modeling of selective laser melting
process using stochastic multi-objective approach. Int. J. Adv. Manuf. Technol. 2016, 86, 1425–1441. [CrossRef]

34. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive computation and machine learning; MIT
Press: Cambridge, MA, USA, 2006.

35. Bishop, C.M. Pattern Recognition and Machine Learning; Information science and statistics; Springer: New York, NY, USA, 2006.
36. Meng, L.; Zhang, J. Process Design of Laser Powder Bed Fusion of Stainless Steel Using a Gaussian Process-Based Machine

Learning Model. JOM 2020, 72, 420–428. [CrossRef]
37. Saunders, R.; Rawlings, A.; Birnbaum, A.; Iliopoulos, A.; Michopoulos, J.; Lagoudas, D.; Elwany, A. Additive Manufacturing Melt

Pool Prediction and Classification via Multifidelity Gaussian Process Surrogates. Integr. Mater. Manuf. Innov. 2022, 11, 497–515.
[CrossRef]

38. Tapia, G.; Khairallah, S.; Matthews, M.; King, W.E.; Elwany, A. Gaussian process-based surrogate modeling framework for
process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. Int. J. Adv. Manuf. Technol. 2018,
94, 3591–3603. [CrossRef]

39. Olleak, A.; Xi, Z. Calibration and Validation Framework for Selective Laser Melting Process Based on Multi-Fidelity Models and
Limited Experiment Data. J. Mech. Des. 2020, 142, 081701. [CrossRef]

40. Moges, T.; Yang, Z.; Jones, K.; Feng, S.; Witherell, P.; Lu, Y. Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder
Bed Fusion Additive Manufacturing. J. Comput. Inf. Sci. Eng. 2021, 21, 050902. [CrossRef]

41. Ren, Y.; Wang, Q.; Michaleris, P. A Physics-Informed Two-Level Machine-Learning Model for Predicting Melt-Pool Size in Laser
Powder Bed Fusion. J. Dyn. Syst. Meas. Control 2021, 143, 121006. [CrossRef]

42. Yan, F.; Chan, Y.C.; Saboo, A.; Shah, J.; Olson, G.B.; Chen, W. Data-Driven Prediction of Mechanical Properties in Support of
Rapid Certification of Additively Manufactured Alloys. Comput. Model. Eng. Sci. 2018, 117, 343–366. [CrossRef]

43. Lee, J.A.; Sagong, M.J.; Jung, J.; Kim, E.S.; Kim, H.S. Explainable machine learning for understanding and predicting geometry
and defect types in Fe-Ni alloys fabricated by laser metal deposition additive manufacturing. J. Mater. Res. Technol. 2023,
22, 413–423. [CrossRef]

44. Wang, S.; Zhu, L.; Fuh, J.Y.H.; Zhang, H.; Yan, W. Multi-physics modeling and Gaussian process regression analysis of cladding
track geometry for direct energy deposition. Opt. Lasers Eng. 2020, 127, 105950. [CrossRef]

45. Hermann, F.; Chen, B.; Ghasemi, G.; Stegmaier, V.; Ackermann, T.; Reimann, P.; Vogt, S.; Graf, T.; Weyrich, M. A Digital Twin
Approach for the Prediction of the Geometry of Single Tracks Produced by Laser Metal Deposition. Procedia CIRP 2022, 107, 83–88.
[CrossRef]

46. Menon, N.; Mondal, S.; Basak, A. Multi-Fidelity Surrogate-Based Process Mapping with Uncertainty Quantification in Laser
Directed Energy Deposition. Materials 2022, 15, 2902. [CrossRef] [PubMed]

47. Menon, N.; Mondal, S.; Basak, A. Linking processing parameters with melt pool properties of multiple nickel-based superalloys
via high-dimensional Gaussian process regression. J. Mater. Inform. 2023, 3, 7. [CrossRef]

48. Nath, P.; Olson, J.D.; Mahadevan, S.; Lee, Y.T.T. Optimization of fused filament fabrication process parameters under uncertainty
to maximize part geometry accuracy. Addit. Manuf. 2020, 35, 101331. [CrossRef] [PubMed]

49. Zhang, Y.; Karnati, S.; Nag, S.; Johnson, N.; Khan, G.; Ribic, B. Accelerating Additive Design with Probabilistic Machine Learning.
ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 011109. [CrossRef]

50. Mondal, S.; Gwynn, D.; Ray, A.; Basak, A. Investigation of Melt Pool Geometry Control in Additive Manufacturing Using Hybrid
Modeling. Metals 2020, 10, 683. [CrossRef]

51. Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach.
Learn. Res. 2010, 11, 2079–2107.

52. Hassen, A.A.; Noakes, M.; Nandwana, P.; Kim, S.; Kunc, V.; Vaidya, U.; Love, L.; Nycz, A. Scaling Up metal additive
manufacturing process to fabricate molds for composite manufacturing. Addit. Manuf. 2020, 32, 101093. [CrossRef]

53. Hermann, F.; Vogt, S.; Göbel, M.; Möller, M.; Frey, K. Laser Metal Deposition of AlSi10Mg with high build rates. Procedia CIRP
2022, 111, 210–213. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00170-017-0703-5
http://dx.doi.org/10.1007/s11837-019-03555-z
http://dx.doi.org/10.1007/s00170-015-8238-0
http://dx.doi.org/10.1007/s11837-019-03792-2
http://dx.doi.org/10.1007/s40192-022-00276-1
http://dx.doi.org/10.1007/s00170-017-1045-z
http://dx.doi.org/10.1115/1.4045744
http://dx.doi.org/10.1115/1.4050044
http://dx.doi.org/10.1115/1.4052245
http://dx.doi.org/10.31614/cmes.2018.04452
http://dx.doi.org/10.1016/j.jmrt.2022.11.137
http://dx.doi.org/10.1016/j.optlaseng.2019.105950
http://dx.doi.org/10.1016/j.procir.2022.04.014
http://dx.doi.org/10.3390/ma15082902
http://www.ncbi.nlm.nih.gov/pubmed/35454595
http://dx.doi.org/10.20517/jmi.2022.38
http://dx.doi.org/10.1016/j.addma.2020.101331
http://www.ncbi.nlm.nih.gov/pubmed/33392000
http://dx.doi.org/10.1115/1.4051699
http://dx.doi.org/10.3390/met10050683
http://dx.doi.org/10.1016/j.addma.2020.101093
http://dx.doi.org/10.1016/j.procir.2022.08.050

	Introduction
	Prediction Workflow
	Materials and Methods
	Experimental Data
	Training of Regression Models

	Results and Discussion
	Analysis of Regression Models
	Identification of Optimal Process Parameters
	Multiple Local Minima
	Optimal Process Parameters at Different Velocities


	Conclusions
	References

