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Abstract: This paper presents the results of a study of adhesive joints, focused on the heterogeneity
of the properties of the adhesive material in the adhesive joint. The main objective of the study
was to determine potential differences in the material properties of adhesive joints made with
selected structural adhesives. Due to the impact of the joined material on the adhesive during the
curing of the joint as well as the impact of phenomena occurring during the curing of the adhesive,
the properties of the adhesive joint may vary along the thickness of the joint. Determining the
differences in material properties over the thickness of the adhesive bond is important for more
accurate prediction of adhesive bond strength in FEM simulations. In order to observe changes in
the material properties of bonds, nanoindentation tests have been carried out on eight adhesive
joint bonds made with common structural adhesives used to join sheets of aluminium alloy or
corrosion-resistant steel. Basing on the achieved test results, load/unload curves were developed
for imprints at characteristic spots of the joints. Distinct differences in the achieved average force
value were observed for imprints located in the wall-adjacent zone and in the centre of the adhesive
joint; this can be interpreted as areas of the joint with different material structures of higher or lower
density of imperfections or porosities. Differences in the load/unload curves for ‘rigid’ and ‘flexible’
adhesives were analysed. The summary includes a conclusion that an adhesive joint is characterised
by heterogeneous properties along its thickness.

Keywords: adhesive joint; nanoindentation; apparent Young’s modulus; adhesive joint material
properties

1. Introduction

Adhesive bonding currently constitutes one of the most important and common
methods of joining construction materials. It is one of the very few methods that allows
different materials to be joined inseparably. Even though the first use of adhesive technology
in joining materials dates back to 4000 BCE, the technology is constantly developing [1,2].
Said development of adhesive technology includes dynamic developments concerning
adhesives, mixing and application methods, curing methods, and surface preparation
for bonding. Despite the long-term evolution of bonding processes, certain phenomena
accompanying bonding and their consequences still need to be clarified.

In previous research works by various authors, the topic of determining the adhesive
properties of an adhesive joint has been addressed. The findings presented in literature
studies show significant differences in Young’s modulus values of the adhesive in a joint,
depending on the distance from the edge of the joint (connector-adhesive bond zone). There
is a noticeable trend of decreasing Young’s modulus values with increasing distance from
the surface of the connectors [3–5]. In other studies, authors have indicated the differences
in Young’s modulus values of an adhesive joint and the sole adhesive material, made in a
dumbbell shape, when subjected to axial tensile testing [6].

It is not uncommon for literature studies to address the issue of adhesive joint material
properties [7,8] that are subject to modification. Often, the properties of an adhesive joint
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can be interpreted indirectly through the results obtained in the course of tests concern-
ing the strength of the adhesive joints or material in paddle form [9]. However, more
often than not, in their studies, authors usually interpret the adhesive joint material as
homogeneous [10–12]. Few studies can be found in the literature that address the subject
of differences in adhesive joint properties. In [13], the authors studied changes in Young’s
modulus and hardness, using nanoindentation mapping, on wood adhesive joints. A slight
decrease in Young’s modulus values and a significant reduction in hardness were observed
as the bond moved away from the edge of the joint along the joint bond thickness. These
changes were attributed to the penetration of the adhesive into the porosity of the wood
connector. A similar scope of research was carried out in subsequent studies [14], and the
authors additionally included numerical testing in their considerations and studied Young’s
modulus and hardness depending on the imprint depth in the course of a nanoindentation
study. Literature research papers often note differences in the material properties of the
tested adhesives [15–18]. Other test results, also using nanoindentation, show significant
differences in the values of Young’s modulus of samples in the form of adhesive joints
and the same material made in the form of a dumbbell subjected to an axial tensile test.
The Young’s modulus of an adhesive in a joint is higher by 85% in comparison to the base
material [5].

In many research papers, the authors point out the correlation between adhesive layer
thickness and adhesive connection strength, which may be considered a heterogeneity of
adhesive joint material. Changes in the adhesive joint strength should be associated with
an increased quantity of imperfections in the adhesive material occurring in the larger
volume (thickness) of the adhesive joint. The inclusion of initial cracking in the design of
the adhesive joint numerical model makes it possible to improve the accuracy of the results
of numerical calculations compared to experimental results [19,20].

In view of the information presented in the above publications, it is important to
consider if the bonding material may affect the mechanical properties of an adhesive in
a joint.

The main objective of the presented research was to determine whether an adhesive
joint could be considered a homogeneous material throughout its thickness or if differences
in the properties of the adhesive joint material could be observed. The authors assumed
the value of the force required to reach a fixed imprint depth in the nanoindentation test
as an indicator of the heterogeneity of the joint material. The purpose was to determine
whether there are significant differences in the load/unload characteristics obtained in
the nanoindentation test between ‘rigid’ and ‘flexible’ construction adhesives. An equally
important aspect of the conducted research is the comparison of load/unload characteristics
concerning the characteristic measurement points of an adhesive joint. The characteristic
points of an adhesive joint are defined by the authors as the points along the thickness of
the adhesive joint where the greatest differences in material properties are expected. These
points are symbolically marked as IF—joint wall-adjacent zone, i.e., the point closest to the
edge of the joint, and C—joint core, i.e., the point in the middle of the joint.

2. Materials and Methods

In order to determine the load/unload characteristics for specific measurement points
of adhesive joints, a test stand including a CSM Instruments ultrananoindenter (CSM
Instruments, Needham Heights, MA, USA) was used. The precision measurement system
of the CSM Instruments nanoindenter allows the indenter to be positioned with high
accuracy. Results from the instrument measurement were developed using the Oliver–
Pharr method, thanks to which it is possible to calculate Young’s modulus and the hardness
of the material. The principle used in the Oliver–Pharr method consists of determining the
stress–strain curves when performing a nanoindentation test and to apply the Hertzian
mathematical model. This model describes the deformation of the material based on the
geometrical parameters of the indenter and the elastic properties of the material [21].
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For nanoindentation tests, eight samples were prepared: two for each of the Epidian 5
and Epidian 57 adhesive compositions [22], cured with PAC or Z1 hardeners, in the mass
proportions recommended by the adhesive manufacturer, as presented in Table 1. The
adhesives prepared in this way were used to join two construction materials: the first being
the steel–steel configuration (1.4301 corrosion-resistant steel) and the second being the
aluminium alloy–aluminium alloy configuration (EN AW 2024-T3).

Table 1. Mechanical properties and resin/curing agent mass ratios of used adhesive compositions.

Adhesive
Composition

Resin/Curing Agent
Mass Ratio

Young’s Modulus
[MPa]

Tensile Strength
[MPa]

Epidian 5/PAC 100:80 1285 50
Epidian 5/Z1 100:12 2029 70

Epidian 57/PAC 100:65 979 35
Epidian 57/Z1 100:10 1701 50

The samples were made as a butt joint with initial dimensions of 40 × 60 × 6 mm.
The sheets were initially cut using a hydroabrasive jet. The sheet metal surface was
cleaned with ProfiSauber cleaner and Loctite 7061 degreaser. For the two materials to
be joined, the surface preparation technology was different. The surface of the stainless
steel sheet was sanded manually with 320-grit sandpaper, using circular motions in such a
way as to produce a random directionality of irregularities on the surface of the prepared
sheet. In the preparation of the aluminium alloy sheet surfaces, non-woven P320 abrasive
sheets were used, and the surface was sanded by hand in such a way as to achieve a
random distribution of irregularities on the metal sheet surface. Non-woven abrasive
sheets were used for surface preparation due to the reduced clogging effect of non-woven
material during operation compared to sandpaper, which results in more effective surface
preparation. The surface of the sheets was then cleaned with a cleaner and twice with a
Loctite 7061 degreaser. The excess of used materials was removed, and the sample was left
to dry.

The selected adhesive composition was applied to the cleaned surface of the sample
with a spatula, spreading the adhesive evenly on both bonded surfaces. In the next step,
the sheets were fixed relative to each other, the joint was secured against displacement,
and it was placed in a specially prepared vacuum bag using a vacuum of 0.1 MPa. Due to
the different densities of the used adhesive compositions, varying joint thicknesses were
achieved. An attempt was made to obtain the lowest possible joint thicknesses in order to
observe the strongest possible material ‘strengthening’ in the adhesive joint area. Samples
were cured for a period of 24 h, under constant environmental conditions: pressure of
0.1 MPa, temperature 18–20 ◦C, and relative humidity 38–40%. Then, after removal from
the vacuum bag, they were seasoned for a minimum of 168 h. Figure 1 presents a photo of
preparing samples in a vacuum bag for nanoindentation tests.

After a seasoning period, 10 × 15 mm samples were cut from the centre of the sheet
using the hydroabrasive jet cutting process for nanoindentation tests. Hydroabrasive jet
cutting allows adhesive joint samples to be made, reducing the risk of bond destruction to
a minimum, thanks to the lack of thermal effects occurring in the cutting zone. Samples
prepared in such a way, with the surface exposed for testing, were placed in moulds and
poured with Scandiplex resin. Samples with adhesive joint sections were prepared by pre-
grinding on grinding discs while intensive cooling was applied. The surface preparation
process continued with the use of abrasive papers, starting with coarse-grained paper
(180, 240), and very fine machining was carried out using fine-grained papers (1000, 1200,
2500). During grinding, conditions were maintained to minimise the thermal impact on the
adhesive joint by using an emulsion coolant. After grinding, the samples were subjected to
mechanical polishing on horizontally arranged felt-lined rotating discs and covered with
an Al2O3 water suspension. The polishing was carried out until it achieved a mirror-like,
scratch-free surface. The finished sample was washed in water and ethanol and then dried
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with a stream of compressed air. Figure 2 presents a photograph of samples with adhesive
joint sections prepared for nanoindentation tests.
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This study, which aimed to observe the heterogeneity of material properties at the
thickness of the adhesive joint depending on the distance from the phase boundaries, was
carried out using a CSM Instruments ultrananoindenter. Figure 3 presents the test stand
with a mounted sample.

The test was carried out on the thickness of the adhesive joint, starting from the metal–
adhesive phase boundary to the centre of the joint, using a reference head to keep the
indenter recesses constant in relation to the material surface. The indentations were made
at two points, starting at a distance of 3 µm from the edge of the joint and at the center of
the joint. In order to ensure averaging of the results, 10 repetitions were performed for
each measurement point at various locations of the adhesive joint. Nanoindentation was
performed using a diamond indenter with Berkovich geometry to a fixed depth of 800 nm.
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3. Results

The charts below (Figures 4–11) present the course of the nanoindentation test for two
characteristic measurement points: the point closest to the phase boundary—IF—and the
point in the centre of the adhesive joint—C. We identified these points in turn with the
wall-adjacent zone and the core of the adhesive joint. These are zones with potentially
numerous joint material properties. The measurement point in the wall-adjacent zone was
taken at a distance of 3 µm from the metal–adhesive border each time. The charts for the
two joined materials are labelled AL for aluminium alloy and ST for corrosion-resistant
steel. In the graph, starting from the left, it is possible to determine the loading curve,
then the horizontal stabilisation curve located where the target imprint depth of 800 nm is
reached, and the unloading curve, so that force hysteresis as a function of imprint depth can
be observed. The presented curves constitute examples of representative curves obtained in
the course of the nanoindentation test. This means that the curves selected for comparison
were those that, for a given measurement point in the study, reached the value closest to
the mean value from all the imprints taken after rejecting extreme values.
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Figure 11. A graph of the course of measurement with a nanoindenter at a distance of 3 µm and
18 µm from the edge of the adhesive joint (phase boundary) for 0.036 mm thick Epidian 57/Z1 epoxy
adhesive bonding sheets of 1.4301 steel.

Comparing the curves for the Epidian 5/PAC flexible adhesive, it is possible to notice
a higher value of force when making an imprint in the wall-adjacent zone. This results from
the greater resistance when inserting the indenter into the material in this zone. The course
of the curves at representative points of the joint is standard for this type of test. This means
that the material at the point of measurement is homogeneous. No significant differences
in the curves were observed between the joints that bind two sheets of aluminium alloy
and corrosion-resistant steel.

Table 2 presents the average values of the maximum force obtained for nanoindenta-
tion. The values are provided for all tested adhesives for values in the wall-adjacent zone IF
and the core (centre) of the joint C. The mass proportions used in the adhesive composition
used for the joints are given next to the name of the hardener.

Table 2. Average values of maximum force in the analysed nanoindentation imprints.

E5 E57

PAC (80 g/100 g) Z1 (12 g/100 g) PAC (65 g/100 g) Z1 (10 g/100 g)

Bonded
Mate-
rial

Item
Average

Force
[mN]

Standard
Devia-

tion
[mN]

Joint
Thick-
ness
[mm]

Average
Force
[mN]

Standard
Devia-

tion
[mN]

Joint
Thick-
ness
[mm]

Average
Force
[mN]

Standard
Devia-

tion
[mN]

Joint
Thick-
ness
[mm]

Average
Force
[mN]

Standard
Devia-

tion
[mN]

Joint
Thick-
ness
[mm]

AL
IF 1.923 0.1457

0.03
4.227 0.4528

0.046
1.443 0.1466

0.039
2.329 0.3763

0.034C 1.766 0.1034 2.948 0.0293 1.216 0.1075 2.086 0.1009

ST
IF 2.085 0.2111

0.072
3.072 0.1465

0.061
2.332 0.2649

0.039
1.935 0.1381

0.036C 1.8583 0.0822 2.798 0.1434 1.301 0.1156 1.790 0.1092

Figures 12 and 13 provide a comparison of the average force values at the maximum
imprint depth, i.e., 800 nm. It is possible to notice clear differences in the force values for
the characteristic points, i.e., the wall-adjacent zone IF and joint core C. The symbol AL
denotes an aluminium alloy sample; ST denotes a 1.4301 steel sample. Figure 14 presents
microscopic images of the sections, with the adhesive joint exposed and the imprint visible.
The imprints are made at defined distances from the edge of the joint so that they do not
interact with each other during the test.
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In the provided microscope images, it is possible to see the individual imprints made
in the joint material. They have been marked with arrows. The precision of performing
individual imprints in relation to joint thickness should be emphasised. The precise
measurement system of the CSM Instruments nanoindenter allows the indenter to be
positioned at a resolution of 0.1 nm.
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4. Discussion

In samples bonded with adhesives conventionally described as ‘rigid’, differences in
the slope of the loading curve can be observed as compared to ‘flexible’ adhesives. The
slope of the curve, obtained for rigid adhesives, is closer to the ordinate axis, while at the
same time, the target depth of 800 nm is reached at a higher contact force. It is possible to
formulate a general conclusion that the shape of the graph, and more precisely, its loading
section, takes a shape closer to a straight line for rigid adhesives in comparison with that
of flexible adhesives. However, this is true for curves at measuring points in the centre of
the joint. It should also be noted that, in each of the analysed joints, significant differences
were observed in the value of the maximum average force in the imprint, comparing the
values obtained for the measurement points closest to the interphase zone and those in
the centre of the adhesive joint. These differences range from 8.1% to 79.2%. A correlation
was also determined between the selected measurement point and the standard deviation.
For measuring points located in the centre of the joint, smaller scatterings of the measured
values were observed. This may indicate that the adhesive joint is more homogeneous
in the core area of the joint than in the adjacent area. It is not possible to unequivocally
state that the bonded materials presented in the study have a significant effect on the
maximum force values obtained in the imprints. If one should compare the differences
between the characteristic measurement points (IF—wall-adjacent zone and C—joint core)
in the samples bonding 1.4301 steel, they are on average greater (27.3%) than in the samples
bonding EN-AW 2024-T3 aluminium alloy (20.6%). It should also be emphasised that the
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average differences in imprint force values between IF and C points, are greater for flexible
adhesives (with PAC hardener) than for rigid adhesives (with Z1 hardener), regardless of
the bonded material.

The obtained test results allow us to conclude that there are differences in the properties
of the adhesive joint, which can be described as heterogeneity of the properties of the
adhesive material along the thickness of the joint. As a measure of the heterogeneity of
the joint material, the value of the force required to reach a fixed imprint depth in the
nanoindentation test was used. In the presented comparative graphs, covering the entire
range of studied adhesives, these differences form a recurring trend.

5. Conclusions

The experimental research presented here focused on determining the differences in
material properties at the thickness of an adhesive joint connecting different structural
materials. In particular, the differences in force values obtained in the imprints at the
characteristic points of the joint were compared.

The results discussed support the following conclusions:

• The material in an adhesive joint exhibits different material properties which vary
along its thickness.

• The material in the adhesive joint in the adjacent zone (IF) exhibits greater resistance
during indentation than the material in the centre of the adhesive joint (C), which can
be interpreted as local changes in material properties.

• As the thickness of the adhesive joint increases, greater differences are observed
between the wall-adjacent zone and the core of the adhesive joint.

• The differences in the average force values in the nanoindentation imprints between
the characteristic points can be interpreted as areas of the joint with different material
structures of higher or lower density of imperfections, porosity, etc.

• Depending on the thickness of the adhesive joint, these differences may be important
for the load-bearing capacity of the adhesive joint in an adhesive bond.

• The presented results should provide an important basis for improving the prediction
of the strength of adhesive joints and, in particular, as part of the input data determin-
ing the variable material properties of the adhesive in the joint, e.g., stiffness required
in the development of an improved numerical FEM model.
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